Interannual Variability of Salinity in the Chukchi Sea and Its Relationships with the Dynamics of the East Siberian Current during 1993–2020
Abstract
:1. Introduction
2. Materials and Methods
2.1. SMAP Data
2.2. GLORYS12v1 Data
2.3. Water Masses Definition and Calculation Process
3. Results
3.1. Interannual Variability of Salinity in the Chukchi Sea
3.2. Interannual Variability of the Water Masses Propagation
3.3. Interannual Variability Features of Chukchi Sea Dynamics and Its Influence on Salinity Transport
4. Discussion
5. Conclusions
- (1)
- Based on SMAP satellite and GLORYS12v1 reanalysis datasets, features of interannual variability of salinity in the Chukchi Sea have been identified. The “western” type is characterized by the penetration of salty waters into the northwestern part of the sea and far into the north covering vast areas in the shelf. The “eastern” type shows a decrease in the area covered by salty waters and freshening of the area near the Chukchi coast. The analysis of calculated maximum depths of BSW and ACW also revealed differences between the two types. During the “western” type, the propagation of BSW is observed up to 180°W and 72.5°N, with widespread penetration into the Long Strait and Herald Canyon. The main feature of the “eastern” type is the displacement of the western boundary of the BSW area to 174–176°W. Interannual variations in ACW also follow these patterns. Displacement is most noticeable at depths of 5–10 m, where the displacement occurs from ~177°W to 174–175°W.
- (2)
- There are two main factors that affect the formation of type. Firstly, the inflow of Pacific waters through the Bering Strait. Secondly, the inflow of Arctic-origin waters, which increases during the intensification of the East Siberian Current (ESC). An increase in the average seasonal anomalies of the ESC velocity was detected during the same years when an eastern type was observed with values above 0.1 m/s. On the other hand, opposite anomalies were observed during the western type. The zonal transport of the ESC has varied significantly during 1993–2019, with maxima observed in 1994, 2012, and 2016 up to 0.24 Sv (by 0.2 Sv relative to the average). In the same years, the weakening of transport down to 0.52 Sv (by 0.25 Sv relative to the average) in the Bering Strait was observed. This result is consistent with the transport balance of the Chukchi Sea. The minimum of ESC transport was detected in 1995–1996, 1998–1999, 2006–2007, 2011, and 2014–2015, when it reversed to the west. Therefore, ESC salinity transport intensification reaches up to 3–8.3 103 kg/s at the same years as water transport due to their similar variability.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pickart, R.S.; Spall, M.A.; Mathis, J.T. Dynamics of upwelling in the Alaskan Beaufort Sea and associated shelf-basin fluxes. Deep Sea Res. Part I Oceanogr. Res. Pap. 2013, 76, 35–51. [Google Scholar] [CrossRef]
- Timmermans, M.-L.; Marshall, J. Understanding Arctic Ocean circulation: A review of ocean dynamics in a changing climate. J. Geophys. Res. Oceans 2020, 125, e2018JC014378. [Google Scholar] [CrossRef]
- Woodgate, R.A.; Aagaard, K.; Weingartner, T. Monthly temperature, salinity, and transport variability of the Bering Strait through flow. Geophys. Res. Lett. 2005, 32, L04601. [Google Scholar] [CrossRef]
- Serreze, M.C.; Crawford, A.D.; Stroeve, J.C.; Barrett, A.P.; Woodgate, R.A. Variability, trends, and predictability of seasonal sea ice retreat and advance in the Chukchi Sea. J. Geophys. Res. Oceans 2016, 121, 7308–7325. [Google Scholar] [CrossRef]
- Danielson, S.L.; Eisner, L.; Ladd, C.; Mordy, C.; Sousa, L.; Weingartner, T.J. A comparison between late summer 2012 and 2013 water masses, macronutrients, and phytoplankton standing crops in the northern Bering and Chukchi Seas. Deep Sea Res. Part II Top. Stud. Oceanogr. 2017, 135, 7–26. [Google Scholar] [CrossRef]
- Woodgate, R.A.; Weingartner, T.; Lindsay, R. The 2007 Bering Strait oceanic heat flux and anomalous Arctic sea-ice retreat. Geophys. Res. Lett. 2010, 37, L01602. [Google Scholar] [CrossRef]
- Woodgate, R.A. Increases in the Pacific inflow to the Arctic from 1990 to 2015, and insights into seasonal trends and driving mechanisms from year-round Bering Strait mooring data. Prog. Oceanogr. 2018, 124–154. [Google Scholar] [CrossRef]
- Corlett, W.B.; Pickart, R.S. The Chukchi slope current. Prog. Oceanogr. 2017, 153, 50–65. [Google Scholar] [CrossRef]
- Ovall, B.; Pickart, R.S.; Lin, P.; Stabeno, P.; Weingartner, T.; Itoh, M.; Kikuchi, T.; Dobbins, E.; Bell, S. Ice, wind, and water: Synoptic-scale controls of circulation in the Chukchi Sea. Prog. Oceanogr. 2021, 199, 102707. [Google Scholar] [CrossRef]
- Itoh, M.; Pickart, R.S.; Kikuchi, T.; Fukamachi, Y.; Ohshima, I.K.; Simizu, D.; Arrigo, K.; Vagle, S.; He, J.; Ashjian, C.; et al. Water properties, heat and volume fluxes of Pacific water in Barrow Canyon during summer 2010. Deep Sea Res. Part I Oceanogr. Res. Pap. 2015, 102, 43–54. [Google Scholar] [CrossRef]
- Stabeno, P.; Kachel, N.; Ladd, C.; Woodgate, R. Flow patterns in the eastern Chukchi Sea: 2010–2015. J. Geophys. Res. Oceans 2018, 123, 1177–1195. [Google Scholar] [CrossRef]
- Linders, J.; Pickart, R.S.; Björk, G.; Moore, G.W.K. On the nature and origin of water masses in Herald Canyon, Chukchi Sea: Synoptic surveys in summer 2004, 2008, and 2009. Prog. Oceanogr. 2017, 159, 99–114. [Google Scholar] [CrossRef]
- Kodryan, K.V.; Kivva, K.K.; Zubarevich, V.L.; Pedchenko, A.P. Water Masses in the Western Chukchi Sea in August 2019 and Their Hydrochemical Features. Oceanology 2023, 63, 314–324. [Google Scholar] [CrossRef]
- Weingartner, T.; Aagaard, K.; Woodgate, R.; Danielson, S.; Sasaki, Y.; Cavalieri, D. Circulation on the north central Chukchi Sea shelf. Deep Sea Res. Part II Top. Stud. Oceanogr. 2005, 52, 3150–3174. [Google Scholar] [CrossRef]
- Lin, P.; Pickart, R.S.; Våge, K.; Li, J. Fate of warm Pacific water in the Arctic basin. Geophys. Res. Lett. 2021, 48, e2021GL094693. [Google Scholar] [CrossRef]
- Pisareva, M.; Pickart, R.; Spall, M.; Nobre, C.; Torres, D.J.; Moore, G.W.K.; Whitledge, E.T. Flow of pacific water in the western Chukchi SEA: Results from the 2009 RUSALCA expedition. Deep Sea Res. Part I Oceanogr. Res. Pap. 2015, 105, 53–73. [Google Scholar] [CrossRef]
- Kinney, C.J.; Assmann, K.M.; Maslowski, W.; Björk, G.; Jakobsson, M.; Jutterström, S.; Lee, Y.J.; Osinski, R.; Semi-letov, I.; Ulfsbo, A.; et al. On the circulation, water mass distribution, and nutrient concentrations of the western Chukchi Sea. Ocean Sci. 2022, 18, 29–49. [Google Scholar] [CrossRef]
- Vanin, N.S. Thermohaline water structure on the southwestern Chukchi Sea shelf under conditions of opposite regimes of atmospheric circulation in summer periods of 2003 and 2007. Russ. Meteorol. Hydrol. 2010, 35, 468–475. [Google Scholar] [CrossRef]
- Dmitrenko, I.A.; Kirillov, S.A.; Krumpen, T.; Makhotin, M.; Abrahamsen, E.P.; Willmes, S.; Bloshkina, E.; Holemann, J.A.; Kassens, H.; Wegner, C. Wind-driven diversion of summer river runoff preconditions the Laptev Sea coastal polynya hydrography: Evidence from summer-to-winter hydrographic records of 2007–2009. Cont. Shelf Res. 2010, 30, 1656–1664. [Google Scholar] [CrossRef]
- Proshutinsky, A.; Dukhovskoy, D.; Timmermans, M.-L.; Krishfield, R.; Bamber, J.L. Arctic circulation regimes. Phil. Trans. R. Soc. A 2015, 373, 20140160. [Google Scholar] [CrossRef]
- Nguyen, A.T.; Woodgate, R.A.; Heimbach, P. Elucidating Large-Scale Atmospheric Controls on Bering Strait Throughflow Variability Using a Data-Constrained Ocean Model and Its Adjoint. J. Geophys. Res. Oceans 2020, 125, e2020JC016213. [Google Scholar] [CrossRef]
- Peralta-Ferriz, C.; Woodgate, R.A. The Dominant Role of the East Siberian Sea in Driving the Oceanic Flow Through the Bering Strait—Conclusions From GRACE Ocean Mass Satellite Data and In Situ Mooring Observations Between 2002 and 2016. Geophys. Res. Lett. 2017, 44, 11472–11481. [Google Scholar] [CrossRef]
- Weingartner, T.J.; Danielson, S.L.; Sasaki, Y.; Pavlov, V.; Kulakov, M.Y. The Siberian Coastal Current: A wind- and buoyancy-forced Arctic coastal current. J. Geophys. Res. Oceans 1999, 104, 29697–29713. [Google Scholar] [CrossRef]
- Zhuk, V.R.; Kubryakov, A.A. Interannual Variability of the Lena River Plume Propagation in 1993–2020 during the Ice-Free Period on the Base of Satellite Salinity, Temperature, and Altimetry Measurements. Remote Sens. 2021, 13, 4252. [Google Scholar] [CrossRef]
- Wang, X.; Zhao, J.; Lobanov, V.B.; Kaplunenko, D.; Rudykh, Y.N.; He, Y.; Chen, X. Distribution and Transport of Water Masses in the East Siberian Sea and Their Impacts on the Arctic halocline. J. Geophys. Res. Oceans 2021, 126, e2020JC016523. [Google Scholar] [CrossRef]
- Osadchiev, A.A.; Pisareva, M.N.; Spivak, E.A.; Shchuka, S.A.; Semiletov, I.P. Freshwater transport between the Kara, Laptev, and East-Siberian seas. Sci. Rep. 2020, 10, 13041. [Google Scholar] [CrossRef] [PubMed]
- Munchow, A.; Weingartner, T.J.; Cooper, L.W. The summer hydrography and surface circulation of the East Siberian Shelf Sea. J. Phys. Oceanogr. 1999, 29, 2167–2182. [Google Scholar] [CrossRef]
- Zhuk, V.R.; Kubryakov, A.A. Effect of the East Siberian Current on Water Exchange in the Bering Strait Based on Satellite Altimetry Measurements. Oceanology 2021, 61, 791–802. [Google Scholar] [CrossRef]
- Andreev, A.G. The distribution of the desalinated waters of the Amur estuary in the Okhotsk Sea according to satellite observations. Issled. Zemli Kosmosa 2019, 2, 89–96. (In Russian) [Google Scholar] [CrossRef]
- Kubryakov, A.A.; Stanichny, S.V.; Zatsepin, A.G. River plume dynamics in the Kara Sea from altimetry-based lagrangian model, satellite salinity and chlorophyll data. Remote Sens. Environ. 2016, 176, 177–187. [Google Scholar] [CrossRef]
- Tarasenko, A.; Supply, A.; Kusse-Tiuz, N.; Ivanov, V.; Makhotin, M.; Tournadre, J.; Chapron, B.; Boutin, J.; Kolodziejczyk, N.; Reverdin, G. Properties of surface water masses in the Laptev and the East Siberian seas in summer 2018 from in situ and satellite data. Ocean Sci. 2021, 17, 221–247. [Google Scholar] [CrossRef]
- Zhao, J.; Wang, Y.; Liu, W.; Bi, H.; Cokelet, E.D.; Mordy, C.W.; Lawrence-Slavas, N.; Meinig, C. Sea Surface Salinity Variability in the Bering Sea in 2015–2020. Remote Sens. 2022, 14, 758. [Google Scholar] [CrossRef]
- Vazquez-Cuervo, J.; Gentemann, C.; Tang, W.; Carroll, D.; Zhang, H.; Menemenlis, D.; Gomez-Valdes, J.; Bouali, M.; Steele, M. Using Saildrones to Validate Arctic Sea Surface Salinity from the SMAP Satellite and from Ocean Models. Remote Sens. 2021, 13, 831. [Google Scholar] [CrossRef]
- Fournier, S.; Lee, T.; Tang, W.; Steele, M.; Olmedo, E. Evaluation and Intercomparison of SMOS, Aquarius, and SMAP Sea Surface Salinity Products in the Arctic Ocean. Remote Sens. 2019, 11, 3043. [Google Scholar] [CrossRef]
- Tang, W.; Yueh, S.; Yang, D.; Fore, A.; Hayashi, A.; Lee, T.; Fournier, S.; Holt, B. The Potential and Challenges of Using Soil Moisture Active Passive (SMAP) Sea Surface Salinity to Monitor Arctic Ocean Freshwater Changes. Remote Sens. 2018, 10, 869. [Google Scholar] [CrossRef]
- Jean-Michel, L.; Eric, G.; Romain, B.-B.; Gilles, G.; Angélique, M.; Marie, D.; Clement, B.; Mathieu, H.; Olivier, L.G.; Charly, R.; et al. The Copernicus Global 1/12° Oceanic and Sea Ice GLORYS12 Reanalysis. Front. Earth Sci. 2021, 9, 698876. [Google Scholar] [CrossRef]
- Lellouche, J.-M.; Greiner, E.; Le Galloudec, O.; Garric, G.; Regnier, C.; Drevillon, M.; Benkiran, M.; Testut, C.-E.; Bourdalle-Badie, R.; Gasparin, F.; et al. Recent updates on the copernicus marine service global ocean monitoring and forecasting real-time 1/12° high-resolution system. Ocean Sci. 2018, 14, 1093–1126. [Google Scholar] [CrossRef]
- Meissner, T.; Wentz, F.J.; Manaster, A.; Lindsle, R. Remote Sensing Systems SMAP Ocean Surface Salinities [Level 2C, Level 3 Running 8-day, Level 3 Monthly], Version 4.0 Validated Release; Remote Sensing Systems: Santa Rosa, CA, USA, 2019. [Google Scholar] [CrossRef]
- Cabanes, C.; Grouazel, A.; von Schuckmann, K.; Hamon, M.; Turpin, V.; Coatanoan, C.; Paris, F.; Guinehut, S.; Boone, C.; Ferry, N.; et al. The CORA dataset: Validation and diagnostics of in-situ ocean temperature and salinity measurements. Ocean Sci. 2013, 9, 1–18. [Google Scholar] [CrossRef]
- Hall, S.B.; Subrahmanyam, B.; Morison, J.H. Intercomparison of Salinity Products in the Beaufort Gyre and Arctic Ocean. Remote Sens. 2022, 14, 71. [Google Scholar] [CrossRef]
- Zimin, A.V.; Atadzhanova, O.A.; Konik, A.A.; Gordeeva, S.M. Comparison of Hydrography Observations with Data of Global Products in the Barents Sea. Fundam. Prikl. Gidrofiz. 2020, 13, 66–77. (In Russian) [Google Scholar] [CrossRef]
- Danielson, S.L.; Weingartner, T.J.; Hedstrom, K.S.; Aagaard, K.; Woodgate, R.; Curchitser, E.; Stabeno, P.J. Coupled wind-forced controls of the Bering-Chukchi shelf circulation and the Bering Strait throughflow: Ekman transport, continental shelf waves, and variations of the Pacific-Arctic sea surface height gradient. Prog. Oceanogr. 2014, 125, 40–61. [Google Scholar] [CrossRef]
- McDougall, T.J.; Barker, P.M. Getting Started with TEOS-10 and the Gibbs Seawater (GSW) Oceanographic Toolbox, 2011; 28p. SCOR/IAPSO WG127. Available online: https://www.teos-10.org/pubs/Getting_Started.pdf (accessed on 15 September 2022).
- Paquette, R.G.; Bourke, R.H. Temperature fine structure near the Sea-ice margin of the Chukchi Sea. J. Geophys. Res. Oceans 1979, 84, 1155–1164. [Google Scholar] [CrossRef]
- Pisareva, M.N.; Pickart, R.S.; Iken, K.; Ershova, E.A.; Grebmeier, J.M.; Cooper, L.W.; Bluhm, B.A.; Nobre, C.; Hopcroft, R.R.; Hu, H.; et al. The Relationship Between Patterns of Benthic Fauna and Zooplankton in the Chukchi Sea and Physical Forcing. Oceanography 2015, 28, 68–83. [Google Scholar] [CrossRef]
- Supply, A.; Boutin, J.; Kolodziejczyk, N.; Reverdin, G.; Lique, C.; Vergely, J.-L.; Perrot, X. Meltwater Lenses Over the Chukchi and the Beaufort Seas During Summer 2019: From In Situ to Synoptic View. J. Geophys. Res. Oceans 2022, 127, e2021JC018388. [Google Scholar] [CrossRef]
- Jay, V.C.; Fischbach, S.A.; Kochnev, A.A. Walrus areas of use in the Chukchi Sea during sparse sea ice cover. Mar. Ecol. Prog. Ser. 2012, 468, 1–13. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhuk, V.R.; Kubryakov, A.A. Interannual Variability of Salinity in the Chukchi Sea and Its Relationships with the Dynamics of the East Siberian Current during 1993–2020. Remote Sens. 2023, 15, 5648. https://doi.org/10.3390/rs15245648
Zhuk VR, Kubryakov AA. Interannual Variability of Salinity in the Chukchi Sea and Its Relationships with the Dynamics of the East Siberian Current during 1993–2020. Remote Sensing. 2023; 15(24):5648. https://doi.org/10.3390/rs15245648
Chicago/Turabian StyleZhuk, Vladislav R., and Arseny A. Kubryakov. 2023. "Interannual Variability of Salinity in the Chukchi Sea and Its Relationships with the Dynamics of the East Siberian Current during 1993–2020" Remote Sensing 15, no. 24: 5648. https://doi.org/10.3390/rs15245648
APA StyleZhuk, V. R., & Kubryakov, A. A. (2023). Interannual Variability of Salinity in the Chukchi Sea and Its Relationships with the Dynamics of the East Siberian Current during 1993–2020. Remote Sensing, 15(24), 5648. https://doi.org/10.3390/rs15245648