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Abstract: Earthquakes occur all around the world, causing varying degrees of damage and destruc-
tion. Earthquakes are by their very nature a sudden phenomenon and predicting them with a precise
time range is difficult. Some phenomena may be indicators of physical conditions favorable for large
earthquakes (e.g., the ionospheric Total Electron Content (TEC)). The TEC is an important parameter
used to detect pre-earthquake changes by measuring ionospheric disturbances and space weather
indices, such as the global geomagnetic index (Kp), the storm duration distribution (Dst), the sunspot
number (R), the geomagnetic storm index (Ap-index), the solar wind speed (Vsw), and the solar
activity index (F10.7), have also been used to detect pre-earthquake ionospheric changes. In this
study, the feasibility of the 6th-day earthquake prediction by the deep neural network technique
using the previous five consecutive days is investigated. For this purpose, a two-staged approach
is developed. In the first stage, various preprocessing steps, namely TEC signal improvement and
time-frequency representation-based TEC image construction, are performed. In the second stage, a
multi-input convolutional neural network (CNN) model is designed and trained in an end-to-end
fashion. This multi-input CNN model has a total of six inputs, and five of the inputs are designed as
2D and the sixth is a 1D vector. The 2D inputs to the multi-input CNN model are TEC images and
the vector input is concatenated space weather indices. The network branches with the 2D inputs
contain convolution, batch normalization, and Rectified Linear Unit (ReLU) activation layers, and
the branch with the 1D input contains a ReLU activation layer. The ReLU activation outputs of
all the branches are flattened and then concatenated. And the classification is performed via fully
connected, softmax, and classification layers, respectively. In the experimental work, earthquakes
with a magnitude of Mw5.0 and above that occurred in Turkey between 2012 and 2019 are used as
the dataset. The TEC data were recorded by the Turkey National Permanent GNSS Network-Active
(TNPGN-Active) Global Navigation Satellite System (GNSS) stations. The TEC data five days before
the earthquake were marked as “precursor days” and the TEC data five days after the earthquake
were marked as “normal days”. In total, 75% of the dataset is used to train the proposed method
and 25% of the dataset is used for testing. The classification accuracy, sensitivity, specificity, and
F1-score values are obtained for performance evaluations. The results are promising, and an 89.31%
classification accuracy is obtained.
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1. Introduction

The ionosphere is a layer of the Earth’s atmosphere that is a dispersive medium for
electromagnetic signals. Accurate modeling of the number of free electrons in this layer
has undeniable importance for satellite and communication systems since electromagnetic
signals traveling between space and the Earth are affected by ionospheric plasma. This
amount of electrons, which expresses the density of the plasma, is dominantly controlled
by the sun. Ionosphere variation is also sensitive to natural and anthropogenic events,
such as earthquakes, volcanoes, tsunamis, severe surface explosions, underground nuclear
explosions, typhoons, and space weather [1–9]. This study focused on the interaction
between earthquakes and the ionosphere.

The phenomenon of shaking of the environment and the Earth’s surface, in which the
vibrations that occur suddenly due to fractures in the Earth’s crust spread out as waves,
is called an “earthquake”. The plates that make up the Earth’s crust move slowly due to
convective currents in the upper mantle, and they perform this movement along faults.
Meanwhile, very violent ruptures and movements occur due to the friction and strain
between the plates, causing earthquakes. Efforts to predict the time, magnitude, and
location of an earthquake are very important in minimizing the loss of life and property
caused by the event. The interaction between earthquakes and the ionosphere was first
reported in the great 1964 Alaska earthquake [10]. In ongoing studies, some researchers
have revealed the acoustic coupling processes from the lithosphere to the atmosphere
for the 1968 Japan earthquake and the 1969 Kurile Islands earthquake [11,12]. In the late
1990s, it was discussed that seismo-ionosphere interaction could contribute to earthquake
prediction [13,14]. In particular, the rapid development of Global Navigation Satellite
System (GNSS) technology, which provides low-cost, high-accuracy, near-real-time, and
continuous ionospheric data, has broadened the interest and scope of ionospheric precursor
studies. The Total Electron Content (TEC) parameter is used to describe how many free
electrons have been found in the ionosphere by GNSS measurements [15]. The amount of
free electrons in a cylinder with a base area of 1 square meter along the GNSS signal line of
sight is represented by the TEC.

There are many studies in the literature on ionospheric earthquake precursors using
TEC data. In many of them, abnormal changes in the TEC variation, which are thought to be
caused by earthquakes, were detected using classical anomaly detection methods [16–30].
About ten years ago, the first implementations of artificial intelligence (AI) techniques in
earthquake–ionosphere studies were published in a series of articles [31–34]. The support
vector machine (SVM), multi-layer perceptron, genetic algorithm, and adaptive network-
based fuzzy inference system were utilized in these studies.

AI techniques can model future ionospheric variations with high accuracy, thus pro-
viding an advantage in anomaly detection in near real-time applications. In the last decade,
the use of machine and deep learning techniques in ionospheric earthquake precursor
studies has gained momentum to enable near real-time precursor detection [35–56]. Some
researchers utilized an artificial neural network (ANN), particle swarm optimization, firefly
algorithm, artificial bee colony, decision tree, bagging, and random forest methods to detect
ionospheric and thermal anomalies before some strong earthquakes and compared the
results with traditional anomaly detection methods [35,36,39–41]. Others proposed these
new methods as a new predictive tool to detect seismo-ionospheric precursors because their
results were quite promising. Several researchers [37,57,58] investigated the ability of the
autoregressive integrated moving average (ARIMA) and long short-term memory (LSTM)
network models to predict TEC time series and identify TEC anomalies. The results showed
that both the ARIMA and LSTM methods can successfully detect ionospheric anomalies,
but the performance of the LSTM is more robust compared to the ARIMA. In addition,
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the authors of [59] show that although local anomalies were observed at stations within
Dobrovolsky’s earthquake preparation area (EPA), they were not observed at stations
outside the EPA. In another study, an N-ANN (N-Model Neural Network Model) method
was introduced for an AI-based early earthquake detection strategy [43]. The model was
tested on 16 earthquake events in Sumatra and reached 76% accuracy. In [44], TEC data
were trained with ANN for both magnitude classification and earthquake prediction. The
ANN achieved an accuracy of 94.60% for magnitude classification and predicted the 2017
Mw 8.2 Mexico earthquake with an accuracy of 85.71%. A machine learning-based system
for real-time earthquake prediction based on TEC data with geomagnetic indices was
developed in [45]. The authors focused on 80 earthquakes greater than Mw 4.0 in Italy
between 1 January 2014 and 30 September 2016 using SVM as a classifier. In total, 35 of
these earthquakes were allocated as training, 21 as validation, and 24 as testing. In addition,
17 of the 21 earthquakes in the validation period and 22 of the 24 earthquakes in the test
period were detected correctly. The authors of [38] used ionospheric TEC data that were
derived from a GNSS network, and an SVM classifier to predict earthquake precursors
48 h in advance. The authors used 106 earthquake precursors that were greater than Mw
6.0 in their experiments and an 83% accuracy score was obtained. A system that uses
the bidirectional LSTM (Bi-LSTM) network was proposed to estimate the TEC values of
earthquakes of Mw 6.0 and above in Taiwan between 2003 and 2014 [50]. Along with
the observed TEC values, they also tried to predict the TEC values by using some space
weather indices that have an impact on the non-periodic changes of the TEC values, such as
the Dst, F10.7, sunspot number, and solar emission index (Lyman–α). The authors labeled
the TEC values before earthquakes of Mw 6.0 and above as the positive period (earthquake)
and the TEC values before earthquakes of magnitude Mw 5.3 and above as the negative
period (normal cases). As a result, 13 models were trained and 22/22 of positive cases and
10/19 of negative cases were predicted with an overall accuracy of 78.05%.

In this study, an artificial intelligence-based system was developed to distinguish
the “precursor days” and “normal days” periods of ionospheric TEC variation associated
with main shock earthquakes above Mw5.0, which have occurred in Turkey. The TEC time
series were obtained based on daily satellite observations of 168 Global Navigation Satellite
System (GNSS) stations belonging to the Turkey National Permanent GNSS Network-Active
(TNPGN-Active). The TEC time series were converted to images in the time–frequency
domain by continuous wavelet time–frequency transformation and used as input data
together with six space weather indices (Vsw, Kp, R, Dst, Ap, and F10.7) to train an end-to-
end trainable multi-input convolutional neural network (CNN) model, which is stronger
than classical machine and deep learning networks. The main contributions of this paper
are as follows:

1. TEC time–frequency images are constructed and used as the input to a CNN model
for “precursor days” and “normal days” prediction purposes for the first time.

2. Five-day TEC and space weather indices are used dependently to detect the pre-
earthquake and post-earthquake TEC and space weather indices. In other words,
5-day data is used as the input to the proposed CNN model simultaneously.

The study is divided into the following sections. In Section 2, the proposed method
and related theories are presented in detail. The data collection, preprocessing, TEC image
generation, and developed multi-input CNN model are described. The experimental works
and the obtained results are detailed in Section 3. The parameters, data division, and
training progress of the developed model are described. Finally, some concluding remarks
and plans are given in Section 4.

2. Proposed Method

In Figure 1, the proposed method consists of three distinct stages: TEC and space weather
indices-based data collection, preprocessing, and multi-input CNN-based classification.
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Figure 1. The illustration of the proposed earthquake precursor detection system.

2.1. Data Collection

The ionospheric activity parameter that can be obtained using GPS/GNSS is the TEC.
As mentioned above, the TEC is calculated as the integration of the number of ionospheric
electrons in a region. This is achieved by measuring the time delay of electromagnetic
waves sent from an observation point to a satellite or earth station at a given altitude range.
This time delay is due to the high density of free electrons in the ionosphere and can be
used to calculate the ionospheric TEC calculation. Although the ionospheric TEC is very
sensitive to space weather conditions, solar and geomagnetic activities are the main factors
causing unexpected anomalies. To say that the anomalies to be detected in the TEC time
series are related to the earthquake, first and foremost, the space weather conditions should
be analyzed in detail. In this context, in addition to TEC data, space weather indices such as
the global geomagnetic index (Kp), the storm distribution time (Dst), the sunspot number
(R), the geomagnetic storm index (Ap-index), the solar wind speed (Vsw), and the solar
activity index (F10.7) are collected.

The TEC data are collected from the Turkish Continuously Operating Reference Sta-
tions, namely the TNPGN-Active network. TEC data from the last 15 years can be collected
from 168 GNSS stations in this network. The TNPGN-Active network is a geocentric
positioning system consisting of fixed GNSS stations and control centers for real-time posi-
tioning information, completed in May 2009. With the TNPGN-Active network, real-time
geographic location information with centimeter accuracy can be obtained in a few seconds
at any place and time in places where a sufficient number of GNSS satellites can be seen
throughout Turkey and communication opportunities are possible. Figure 2 shows the
distribution of stations belonging to the TNPGN-Active network on the map of Turkey.
In addition, the space weather indices were downloaded from NASA’s OmniWeb Data
Explorer (https://omniweb.gsfc.nasa.gov/form/dx1.html) (accessed on 4 July 2023).
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The TEC data from stations located within Dobrovolsky’s earthquake preparation area
(EPA) were utilized for each earthquake [59]. The EPA is calculated using the equation
100.43M km. For instance, for an earthquake of magnitude Mw6, this value represents
stations within a circle having a radius of approximately 380 km.

2.2. Preprocessing

As mentioned earlier, the TEC data are calculated based on the signal communication
time between a GNSS receiver and its satellite. Because the ionospheric effect in GNSS
signals depends on the signal frequency, TEC values can be obtained with the aid of
any dual-frequency receiver. In some cases, TEC values cannot be calculated due to
interruptions in the signals and gaps that occur in the TEC time series. In this case, the
most appropriate values for missing TEC values are calculated with any interpolation
method. Here, an interpolation method using the spline function [60], which provides an
accurate estimation of missing data by creating a continuous function between each point
in the dataset, was used to complete the missing TEC data. The polynomials used for the
interpolation method using the spline function can be defined by the following equation:

si(x) = ai + bi(x− xi) + ci(x− xi)
2 + di(x− xi)

3 (1)

where si(x) denotes the polynomial between the points i and i + 1. The coefficients ai, bi,
ci, and di are determined according to certain boundary conditions and the values of two
points. Determining the boundary conditions, combining the polynomials, and constructing
the spline function are the steps that need to be performed correctly to complete the missing
data in a given dataset. This method is frequently used in data analysis, especially by
ensuring that the function between each point in the dataset is smooth. A drawing showing
that the gaps are completed by the interpolation method for a TEC data series is given
in Figure 3. The blue curve shows the obtained TEC data, while the red curve shows
the completed TEC data. In Figure 3, while the blue curve indicates the TEC signal
before the interpolation process, the red curve shows the TEC signal after the spline
interpolation process. As shown in Figure 3, the missing parts of the TEC signal are
appropriately completed.
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2.3. Time–Frequency Image Representation of TEC Signal

A time–frequency representation is a mathematical tool that provides information
about the frequency content of a signal as it evolves. It is used to analyze signals that
are non-stationary, meaning their frequency content changes over time. Time–frequency
representations provide information about which frequencies are present in a signal at
different points in time. This allows for a more detailed analysis of signal components and
their variations over time. The Continuous Wavelet Transform (CWT) is a mathematical
operation that analyzes a signal in both the time and frequency domains using wavelet
functions [61]. It is represented by the following equation:

W(a, b) =
1√
a

∞∫
−∞

f (x)ψ∗
(

x− b
a

)
∂x (2)

where W(a, b) indicates the wavelet coefficients, f (x) represents the input signal, ψ∗(x)
denotes the complex conjugate wavelet function, and a and b are parameters that control
the scale and translation of the wavelet function, respectively. By varying the values of
a and b, the CWT captures different scales and positions of the frequency components
present in the signal. Smaller values correspond to higher frequency resolutions and
finer time localization, while larger values capture lower frequencies with coarser time
localization. The CWT provides a time–frequency representation of the signal, showing
how its frequency content changes over time. This representation can be visualized as a
two-dimensional plot, often referred to as a time–frequency spectrogram or scalogram,
where the y-axis represents frequency, the x-axis represents time, and the intensity or color
indicates the magnitude of the frequency component. In Figure 4, the CWT images obtained
for different TEC data are given.
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2.4. Multi-Input Convolutional Neural Networks Model

A multi-input convolutional neural network (CNN) is a type of neural network archi-
tecture that processes multiple input sources simultaneously using convolutional layers [62].
Each input source can represent different types of data, such as images, text, audio, or
any other form of structured or unstructured data. The basic idea behind a multi-input
CNN is to extract features from each input source independently and then combine or
fuse these features at later stages of the network to make predictions or perform a specific
task. This approach allows the network to leverage the complementary information from
different input sources and can lead to improved performance in tasks that require the
integration of diverse data modalities. It is important to note that the specific architecture
and design choices for a multi-input CNN can vary depending on the nature of the task and
the characteristics of the input data. The fusion mechanism, in particular, plays a crucial
role in determining how the features from different input sources are combined.
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As shown in Figure 5, the 5-day time–frequency TEC images and space climate indices
are provided as inputs to a multi-input CNN model. The nodes that take time–frequency
images as input pass through convolution, batch normalization, rectified linear unit (ReLU),
and flatten layers in sequence [63]. The convolutional layer is a commonly used layer type
in neural network models. This layer applies a series of filters to the given input data and
generates a set of feature maps as output. This operation is widely used, especially in
areas such as image processing. The equation for the convolutional layer can be expressed
as follows:

Yi,j,k = σ

(
N

∑
n=1

P

∑
p=1

Q

∑
q=1

Wn,p,q,kXi+p−1,j+q−1,n

)
(3)

where X is the image given as the input to the convolution layer. The size of the input
image is i× j× n, where i and j are the height and width of the input image, respectively,
and n is the number of channels. Also, W is a set of tensors consisting of k filter matrices,
each of size p × q × n. These filters are used to perform the convolution operation. It is the
output feature map of the convolution layer, and the size of this matrix is i× j× k. Here,
i and j represent the height and width of the output, respectively, while k represents the
number of filters. The σ function is called the activation function and compresses the result
of the convolution operation to output it. Various activation functions, such as ReLU and
sigmoid, can be used. Batch normalization is a method used to normalize the output of
any layer in a neural network model. This method calculates a scale factor to combine the
mean and variance to zero for each batch of data during training.
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These normalized outputs are then passed to an activation function. Batch normaliza-
tion can be defined by the following equations:

µB =
1
m

m

∑
i=1

xi (4)

σ2
B =

1
m

m

∑
i=1

(xi − µB)
2 (5)

x̂i =
xi − µB√

σ2
B + ε

(6)

yi = γx̂i + β (7)

where xi is the ith sample in a batch, µB is the batch mean, and σ2
B is the batch variance.

x̂i denotes the normalized output. γ and β are scale factors and bias parameters. ε is a small
value used to avoid division by zero error. These equations show that the batch mean and
variance are calculated, the normalized output is then obtained using these values, and,
finally, the scale factor and bias terms are applied. This process can be used to normalize
the output of any layer in a neural network model. Batch normalization helps neural
networks perform better, often by providing a faster and more stable training process.
ReLU is an activation function often used in neural network models. The ReLU function
outputs the input value directly if the input value is greater than 0, while the output
value is assigned 0 if the input value is less than 0. The ReLU function is mathematically
expressed as

f (x) = max(0, x) (8)

In Equation (8), x represents the input value and f (x) represents the output value. If
the input x is positive, ReLU returns x as the output, and if the input x is negative or zero,
ReLU returns 0 as the output. The ReLU function can be used as the activation function of
any layer in a neural network model. Specifically, in deep neural network models, using
the ReLU function creates less directional derivative (gradient) reduction problems for
near-zero input values and provides faster learning. However, because the ReLU function
produces an output of 0 for negative input values, in this case, a field with a positive
input value and producing an output of zero (dying ReLU) may occur. This may limit
the learning capacity of the network. To address this, variations like Leaky ReLU add a
small slope to the negative part of the function, allowing a small gradient and preventing
complete inactivity, thereby enhancing the network performance. A flatten layer is a layer
that flattens the output of any previous layer in a neural network model, making it a single
vector. This layer is often used especially for processing images as input. The flatten layer
can be expressed by the following mathematical equations:

f latten(X) = X′ (9)

X′i = Xr,c,k (10)

where X is a tensor from the previous layer. X′ is a flattened tensor. Xr,c,k is the rth row,
cth column, and kth channel value in the tensor. Equation (9) determines the order of each
element in the tensor in the smoothed vector. A concatenate layer, which combines two or
more tensors to form a new tensor, is located after flattening layers. This layer is especially
used when more than one branch needs to be combined in neural network models or
especially when the input data has different properties. Mathematically, the merged layer
can be expressed by the following equations:

concat(X1, X2, . . . , Xn) = Y (11)
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where X1, X2, . . . , Xn are the tensors to combine and Y is the tensor to form. 1, 2, . . . , n
represent the number of channels of each tensor, respectively. The Fully Connected Layer
is a neural network layer that generates another vector as output by subjecting the vector
data received as input to a matrix multiplication process. This layer is usually used in the
last layers and produces outputs that are used in tasks such as classification or regression.
The mathematical equations for the fully connected layer are as follows:

y = σ(Wx + b) (12)

where x is an n-dimensional vector representing the input of the layer. W is the weight
matrix and is m× n in size. m is the size of the output vector. b is the bias term and is
an m-dimensional vector. σ is the activation function. The softmax layer is an output
layer used in classification problems. It interprets the vector data received as input as
probability values of classes and selects the most probable class. The softmax function is
utilized to compute the probability value for each class by normalizing it relative to the total
probabilities. The mathematical formulation of the softmax layer is expressed as follows:

yi =
ezi

∑C
j=1 ezj

(13)

where yi represents the probability value of class i. zi denotes the net output value of class i,
and C signifies the total number of classes. The softmax function calculates the ratio of zi to
ezi , reflecting the contribution of ezi to the overall probability of class C. Consequently, the
probability of each class is proportioned to the total probabilities divided by the number
of classes, ensuring that the sum of all the class probabilities equals 1. An important
aspect of the softmax function is its adaptability to varying numbers of classes, enabling its
application in diverse classification problems with different class counts.

The Classification Output is an output layer used in a classification problem. This
layer calculates the probability values of the classes for a sample and performs the clas-
sification. The number of classes is determined as C and an output neuron is created for
each class. Output neurons are converted to probability values using sigmoid, softmax,
or other activation functions. In classification problems, the cross-entropy loss function
is generally used. This function calculates the difference between the actual class label
and the probability values predicted by the model. This difference is tried to be reduced
to increase the accuracy of the model. The cross-entropy loss function can be expressed
mathematically as

L = −
C

∑
i=1

yi log(ŷi) (14)

Here, yi is the real class label ŷi and is the probability value predicted by the model.
The cross-entropy loss is calculated by comparing the probability values of all the output
neurons with the correct class label.

3. Experimental Works and Results

In the experimental studies, earthquakes of Mw5.0 and greater that occurred in Turkey
between the years 2012 and 2019 were selected. We utilized data from GNSS stations in
the CORS network to enhance the sensitivity to local ionospheric changes. However, there
was a notable scarcity of data for TNPGN-Active prior to 2012, restricting our data collec-
tion to a limited time frame for the study. Additionally, due to the challenge of detecting
seismo-ionospheric anomalies in earthquakes smaller than Mw5.0, only earthquakes of
specific magnitudes were included in the dataset. These factors contribute to the study’s
data limitations. The research focuses solely on Turkey within the mid-latitude region,
characterized by fewer non-periodic fluctuations in ionospheric variation compared to high
and low latitudes [64]. In the analysis of ionospheric anomalies in this region, the emphasis
is placed on the strong correlation between the detected anomalies and earthquakes. Vari-
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ous earthquakes from the mentioned timeline are given in Table 1. The first two columns
of Table 1 contain the location of the earthquakes, the third column contains the name of
the earthquakes, and the fourth and fifth columns contain the date and magnitude of the
earthquakes, respectively. The data on earthquakes were obtained from the United States
Geological Survey (USGS) (https://earthquake.usgs.gov/earthquakes/search/) (accessed
on 4 July 2023). In total, 5 days of TEC and space weather data before the earthquake from
all TNPGN-Active GNSS stations within the EPA were recorded and labeled as “precursor
days”. For example, for the MW5.2 Elazig earthquake, the Bingol, Malatya, Tunceli, Ergani,
and Diyarbakir stations were used together with Elazig. The 5-day post-earthquake TEC
and space weather data were collected from the same stations and labeled as “normal days”.
In the test studies, it was seen that 5 days of TEC data were sufficient to capture a pattern
in time series with deep learning. If the number of missing data in the TEC data is less than
20 samples, the missing data are completed with the spline function. Otherwise, the TEC
data of the relevant day is not used. Thus, there were 175 samples in the “precursor days”
class and 150 samples in the “normal days” class.

Table 1. Some of the earthquakes that are considered in experimental works (USGS, 2023).

Lon (o) Lat (o) Earthquake Date Mw

42.276 39.234 Bulanık (Muş) 2012-03-26T10:35:33 5
27.904 40.863 Marmara Denizi—[12.14 km] Marmaraereğlisi (Tekirdağ) 2012-06-07T20:54:25 5.1
28.907 36.530 Akdeniz—[17.00 km] Fethiye (Muğla) 2012-06-10T12:44:16 6
42.444 37.157 Silopi (Şırnak) 2012-06-14T05:52:51 5.5
43.667 38.733 İpekyolu (Van) 2012-06-24T20:07:21 5
28.933 36.479 Akdeniz—[16.38 km] Fethiye (Muğla) 2012-06-25T13:05:28 5.3
28.856 35.714 Akdeniz—[75.07 km] Kaş (Antalya) 2012-07-09T13:55:00 6
36.371 37.574 Andırın (Kahramanmaraş) 2012-07-22T09:26:02 5
42.980 37.464 Uludere (Şırnak) 2012-08-05T20:37:21 5.3
37.140 37.284 Pazarcık (Kahramanmaraş) 2012-09-19T09:17:46 5.1
25.670 39.680 Ege Denizi—[37.56 km] Bozcaada (Çanakkale) 2013-01-08T14:16:09 5.6
25.790 40.303 Ege Denizi—[12.01 km] Gökçeada (Çanakkale) 2013-07-30T05:33:07 5.3
31.257 36.692 Akdeniz-Antalya Körfezi—[15.41 km] Manavgat (Antalya) 2013-12-08T17:31:57 5
31.332 36.048 Akdeniz—[74.69 km] Alanya (Antalya) 2013-12-28T15:21:03 6
25.280 40.304 Ege Denizi—[41.51 km] Gökçeada (Çanakkale) 2014-05-24T09:25:01 6.5
30.930 36.172 Akdeniz—[48.08 km] Kumluca (Antalya) 2014-09-04T21:00:03 5.2
26.274 38.904 Ege Denizi—[29.35 km] Karaburun (İzmir) 2014-12-06T01:45:06 5.1
26.728 34.864 Akdeniz—[213.23 km] Datça (Muğla) 2015-04-16T18:07:37 5.9
35.036 36.565 Akdeniz-Mersin Körfezi—[14.71 km] Karataş (Adana) 2015-07-29T22:00:54 5
29.885 36.185 Akdeniz, Kekova Adası, Demre (Antalya) 2015-10-06T21:27:34 5.2
37.824 38.838 Hekimhan (Malatya) 2015-11-29T00:28:08 5
40.217 39.261 Kiğı (Bingöl) 2015-12-02T23:27:07 5.3
34.358 39.564 Çiçekdağı (Kırşehir) 2016-01-10T17:40:48 5
27.597 36.405 Ege Denizi—[32.95 km] Datça (Muğla) 2016-09-27T20:57:09 5.2
26.132 39.542 Ayvacık (Çanakkale) 2017-02-06T03:51:40 5.3
38.487 37.596 Samsat (Adıyaman) 2017-03-02T11:07:25 5.5
28.647 37.153 Ula (Muğla) 2017-04-13T16:22:16 5
27.816 38.736 Saruhanlı (Manisa) 2017-05-27T15:53:23 5.1
26.313 38.849 Ege Denizi—[22.36 km] Karaburun (İzmir) 2017-06-12T12:28:37 6.2
27.444 36.920 Ege Denizi—[12.00 km] Bodrum (Muğla) 2017-07-20T22:31:09 6.5
27.624 36.958 Ege Denizi-Gökova Körfezi—[12.17 km] Bodrum (Muğla) 2017-08-08T07:42:21 5.1
28.605 37.115 Ula (Muğla) 2017-11-24T21:49:14 5.1
38.504 37.584 Samsat (Adıyaman) 2018-04-24T00:34:29 5.1
31.214 36.054 Akdeniz—[76.70 km] Kumluca (Antalya) 2018-09-12T06:21:46 5.2
28.058 35.979 Akdeniz—[72.62 km] Marmaris (Muğla) 2019-01-24T14:30:52 5.1
26.426 39.601 Ayvacık (Çanakkale) 2019-02-20T18:23:28 5
29.434 37.440 Acıpayam (Denizli) 2019-03-20T06:34:27 5.5
39.121 38.387 Sivrice (Elazığ) 2019-04-04T17:31:07 5.2

https://earthquake.usgs.gov/earthquakes/search/
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In addition to the TEC data, space weather data (Kp, Dst, Ap, R, Vsw, F10.7) for the
days before and after the earthquakes were also recorded. While the Kp, Dst, and Ap
indices indicate a geomagnetic storm condition, the R, Vsw, and F10.7 indices indicate
solar activity levels. In total, 75% of the collected data were used to train the proposed
multi-entry deep network architecture, and the remaining 25% of the data was used to test
the trained network. In Figures 6 and 7, the TEC images and space weather data produced
for the “precursor days” and “normal days” classes are shown.
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For performance evaluation, the accuracy, sensitivity, specificity, precision, and F1-
score were used as performance measurement metrics. These metric results were obtained
with true positive (TP), true negative (TN), false positive (FP), and false negative (FN) values
in the confusion matrix. The mathematical definitions of these performance evaluation
metrics were given using Equations (15)–(19).

Accuracy =
TP + TN

TP + TN + FP + FN
(15)

Sensitivity =
TP

TP + FN
(16)
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Speci f icity =
TN

TN + FP
(17)

Precision =
TP

TP + FP
(18)

F1− score =
2× TP

2× TP + FP + FN
(19)

Accuracy provides a general measure of correctness by calculating the ratio of correctly
predicted instances to the total number of instances. However, it may not be suitable for
imbalanced datasets. Sensitivity focuses on the model’s ability to correctly identify positive
instances, while specificity gauges its capability to correctly identify negative instances.
Precision evaluates the accuracy of positive predictions, which is particularly important
when the cost of false positives is high. The F1-score, being the harmonic mean of precision
and sensitivity, strikes a balance between these metrics, making it especially valuable
for evaluating models in situations where both false positives and false negatives carry
significance, such as in imbalanced datasets.

In Figure 8, the architecture of the developed multi-input CNN model was imple-
mented in MATLAB. As seen in Figure 8, after the 2D inputs, the convolution, batch
normalization, ReLU, and flatten layers were sequenced. For the 1D input (input6), only
the ReLU and flatten layers were sequenced. Then, all the flattened outputs were concate-
nated and fed into the fully connected layer. The classification was handled via the softmax
and classification output layers, respectively.
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In the convolution layers, 11 of the filters of size 3 × 3 were used, and in the train-
ing of the proposed multi-input CNN model, the ‘MiniBatchSize’ was set to 80 and the
‘MaxEpoches’ was selected as 50. In addition, the initial learning rate was set to 0.0001 and
‘Adam’ optimization was used.

In Figure 9, the training progress of the multi-input CNN model is depicted. Initially,
the training accuracy hovered around 40%, while the test accuracy was approximately 55%.
By the 90th iteration, the training accuracy reached 100%, and the test accuracy exceeded
80%, maintaining this level until the conclusion of the training process. Regarding the
loss values, initially, the training dataset’s loss increased to around 100 but subsequently
decreased to approximately 0, steadily decreasing after the 50th iteration. Similarly, the
loss value for the test dataset reached approximately 0 by the 100th iteration and persisted
at this level throughout the remaining training process. Notably, the training concluded
after the 50th epoch and was completed in 7 min and 53 s, as displayed in Figure 9.
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Figure 9. The training progress of the multi-input CNN model.

The confusion matrix, which was obtained for the test dataset, is shown in Figure 10.
The rows show the true class outputs and the columns show the predicted outputs. In total,
83 of the “precursor days” samples and 59 of the “normal days” samples were correctly
classified by the proposed multi-input CNN model, and the calculated accuracy score
was 89.31%. In addition, 12 of the “precursor days” samples and 5 of the “normal days”
samples were wrongly classified. Thus, the sensitivity, specificity, precision, and F1-score
values were 94.32%, 83.10%, 87.37, and 90.71%, respectively. The calculated performance
evaluation metrics are given in Table 2.
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Table 2. Performance metrics of the proposed method.

Performance Evaluation Metrics Values

Accuracy (%) 89.31
Sensitivity (%) 94.32
Specificity (%) 83.10
Precision (%) 87.37
F1-score (%) 90.71

We conducted a comparison where various statistical measurements were employed.
The TEC signals and the space weather indices were used in the extraction of the various
statistical measurements, such as the minimum and maximum values, mean, and standard
deviation. Additionally, a detailed examination of the data distribution was performed
through the generation of a histogram with 30 bins, allowing us to discern key features of
the dataset’s frequency distribution. Notably, the identification of the mode, represented
by the bin center with the highest frequency, provided insights into the central tendencies
of the data. Moreover, crucial percentiles (2.5th, 5th, 25th, 50th, 75th, 95th, and 97.5th)
were calculated, shedding light on the data’s distribution and variability. The inclusion of
entropy, kurtosis, and skewness as statistical metrics further contributed to our analysis.
These measures offer insights into the dataset’s information content, shape of distribution
tails, and asymmetry, providing a comprehensive understanding of its statistical profile.
This multifaceted comparison of statistical metrics enhances our ability to characterize
the dataset across various dimensions. This comprehensive comparison of statistical
metrics offers a nuanced understanding of the dataset’s characteristics, ranging from central
tendencies to dispersion, enabling a robust assessment of its overall statistical profile.

Various classical classifiers, namely decision tree, Support Vector Machine (SVM), and
k-Nearest Neighbors (kNN), were employed in the classification process. The decision tree’s
appeal lies in its interpretability and the ease with which it can handle both categorical
and numerical features, making it particularly useful for understanding the decision-
making process. Its hierarchical structure allows for transparent visualization, facilitating
insights into feature importance and the logic behind classification decisions. Support
Vector Machines (SVMs) excel in scenarios where the data is not linearly separable, as
they transform the input space into a higher-dimensional one to discover a hyperplane
that effectively separates classes. This capability makes SVMs robust in capturing intricate
decision boundaries and handling complex relationships within the data. Additionally, the
concept of the margin in SVMs contributes to better generalization performance, enhancing
their applicability to various classification tasks. k-Nearest Neighbors (kNN) leverages
the principle of locality, assuming that similar instances tend to fall into the same class.
This method is especially effective in scenarios where instances of the same class are
spatially clustered. The flexibility of kNN in adapting to the local structure of the data
makes it a valuable choice for datasets with irregular decision boundaries and varying
class distributions.

Table 3 presents a performance comparison of the proposed method against various
statistical machine learning and deep learning approaches. The decision tree classifier
achieves a moderate accuracy of 68.8%, highlighting potential limitations in capturing the
dataset’s complexity. The SVM demonstrates improved accuracy at 80.6%, leveraging its
strength in handling intricate decision boundaries. The kNN performs reasonably well
with 74.2% accuracy, showcasing its suitability for datasets with localized patterns. We
also designed a 3D CNN model for classifying daily spectrogram images with limited
computing power or small datasets. The model has taken a 3D tensor of size [150 150 5 1]
as the input, which was formed by stacking the images from each day. The model consisted
of a 3D convolutional layer with 16 filters and ReLU activation, a batch normalization layer,
a 3D max-pooling layer, a dropout layer, a fully connected layer with two output nodes,
a softmax layer, and a classification output layer. The model was trained with stochastic
gradient descent with momentum, with a mini-batch size of 16, an initial learning rate
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of 0.0001, and 20 epochs. The model performance was evaluated using the training and
validation sets. The 3D CNN model produced an 83.6% accuracy score. Notably, the
proposed method outperforms these classical classifiers, attaining the highest accuracy at
89.3%. This result suggests the efficacy of the proposed approach, indicating its potential
as a robust solution for the specific classification task under consideration.

Table 3. Performance comparison of proposed method with the various statistical machine learning
and deep learning approaches.

Classifier Accuracy (%)

Decision tree 68.8
SVM 80.6
kNN 74.2
3D CNN 83.6
Proposed 89.3

4. Conclusions

In this paper, an efficient deep learning model, namely the multi-input CNN approach,
is applied to distinguish the “precursor days” and “normal days” of the ionospheric
variation. Indeed, an earthquake precursor system is aimed to be designed using the deep
learning model. In this context, TEC images and space weather indices are used as input
to the designed multi-input CNN model. The model is trained in an end-to-end fashion,
and the obtained results are evaluated using various performance evaluation metrics.
According to the obtained results, the proposed method is able to classify the “precursor
days” and “normal days” labeled with an 89.31% accuracy score. This accuracy rate is
very promising for the near real-time detection of ionospheric changes as an earthquake
precursor. Specifically, the high-level pattern of the TEC data in the days before earthquakes
may be a harbinger of any upcoming earthquake with the aid of deep learning through
an earthquake monitoring system to be established. In future studies, deeper multi-input
CNN models will be designed to improve performance, and more datasets will be collected
to test the developed model. In this article, the results obtained using limited data and the
most basic multi-input CNN architecture are presented. As the amount of data increases,
more complex network architectures can be designed. For this purpose:

(1) To handle the increasing data size, we will add more layers to each network branch.
Specifically, we will add a convolutional layer, a batch normalization layer, and a
ReLU layer to each branch. The convolutional layer will apply a set of filters to the
input to extract features. The batch normalization layer will normalize the output
of the convolutional layer to improve the stability and speed of the training. The
ReLU layer will apply a non-linear activation function to the output of the batch
normalization layer to introduce non-linearity and sparsity to the network.

(2) To improve the performance and robustness of the network, we will add skip con-
nection layers to each deepened network branch. Skip connection layers are layers
that connect the output of one layer to the input of another layer that is not adjacent
to it. This way, the network can learn both local and global features and avoid the
problem of vanishing gradients. Skip connection layers also help reduce overfitting
by regularizing the network and preventing co-adaptation of features.

(3) To enhance the collaboration and interaction among the network branches, we will add
connection skip layers between different input branches of the network. Connection
skip layers are layers that connect the output of one branch to the input of another
branch that is not directly connected to it. This way, the network can learn from
multiple sources of information and leverage the complementary and supplementary
features from different branches. Connection skip layers also help train the branches
jointly instead of separately and avoid the problem of branch divergence.

(4) To increase the flexibility and adaptability of the network, we will add attention
mechanisms to the network branches. Attention mechanisms are units that create
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direct connections between the input and the output of the network and assign
different weights to different parts of the input based on the output. This way, the
network can focus on the most relevant and informative parts of the input and ignore
the irrelevant and noisy parts. Attention mechanisms also help simplify the network
structure, reduce the number of parameters, and avoid the problem of overfitting.

(5) In our future works, we will employ Grad-CAM (Gradient-weighted Class Activa-
tion Mapping) to gain insights into the model’s decision-making process, especially
regarding false positives and negatives. Grad-CAM is a technique that visualizes the
regions of an image that are important for a particular class prediction. It does so by
leveraging the gradients of the target class concerning the final convolutional layer of
the model. This provides a heat map highlighting the areas of the input image that
contributed most to the model’s decision. By incorporating Grad-CAM into our anal-
ysis, we can pinpoint the regions of interest in instances where the model failed. This
visualization not only helps in understanding the characteristics of misclassifications
but also provides valuable insights into the features or patterns the model may be
overlooking or misinterpreting.
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