Single-Image Simultaneous Destriping and Denoising: Double Low-Rank Property
Abstract
:1. Introduction
Related Work
- (1)
- We propose a synchronous denoising model based on double low-rank matrix recovery by capitalizing on the full potential of the low-rank characteristics exhibited by both image prior and stripe noise.
- (2)
- By employing the research approach of image decomposition, this paper simultaneously optimizes the solutions for all underlying priors within a unified framework, achieving the goal of synchronous denoising.
- (3)
- To solve the proposed model, we devise an effective ADMM strategy and achieve excellent processing results.
2. Simultaneous Destriping and Denoising
2.1. Degradation Model
2.2. The DLRSDD Model
- : data fidelity term.
- : regularization term for the clean image.
- : regularization term for stripe noise.
- : regularization term for random noise.
- : regularization parameters.
2.3. ADMM Optimization
2.3.1. Solution of Image U
2.3.2. Solution of Stripe Noise S
2.3.3. Solution of Random Noise N
Algorithm 1 Double low-rank simultaneous destriping and denoising algorithm |
Input: Degraded image F, parameters. |
1: Initialize. |
2: For k = 1: K do |
3: Solve , and via (15), (16), and (18). |
4: Solve , and via (24), (25), and (27). |
5: Solve and via (31) and (35). |
6: Update Lagrange multiplier , , , and . |
7: End for |
Output: Image I, stripe noise S, and random noise N. |
3. Simulation and Experiments
3.1. Experimental Settings
3.2. Results on Synthesized Images
3.3. Results on Real Noisy Images
4. Discussion
4.1. Parameter Determination
4.2. Nuclear Norm Minimization (NNM) and Weighted Nuclear Norm Minimization (WNNM)
4.3. Results Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dabov, K.; Foi, A.; Katkovnik, V.; Egiazarian, K. Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE Trans. Image Process. 2007, 16, 2080–2095. [Google Scholar] [CrossRef]
- Buades, A.; Coll, B.; Morel, J.M. A non-local algorithm for image denoising. In Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), San Diego, CA, USA, 20–25 June 2005; Volume 2, pp. 60–65. [Google Scholar]
- Elad, M.; Aharon, M. Image denoising via sparse and redundant representations over learned dictionaries. IEEE Trans. Image Process. 2006, 15, 3736–3745. [Google Scholar] [CrossRef] [PubMed]
- Mairal, J.; Bach, F.; Ponce, J.; Sapiro, G.; Zisserman, A. Non-local sparse models for image restoration. In Proceedings of the 2009 IEEE 12th International Conference on Computer Vision, Kyoto, Japan, 29 September–2 October 2009; pp. 2272–2279. [Google Scholar]
- Zoran, D.; Weiss, Y. From learning models of natural image patches to whole image restoration. In Proceedings of the 2011 International Conference on Computer Vision, Barcelona, Spain, 6–13 November 2011; pp. 479–486. [Google Scholar]
- Zuo, W.; Zhang, L.; Song, C.; Zhang, D. Texture enhanced image denoising via gradient histogram preservation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Portland, OR, USA, 23–28 June 2013; pp. 1203–1210. [Google Scholar]
- Dong, W.; Shi, G.; Li, X. Nonlocal image restoration with bilateral variance estimation: A low-rank approach. IEEE Trans. Image Process. 2012, 22, 700–711. [Google Scholar] [CrossRef] [PubMed]
- Gu, S.; Zhang, L.; Zuo, W.; Feng, X. Weighted nuclear norm minimization with application to image denoising. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 2862–2869. [Google Scholar]
- Zhang, K.; Zuo, W.; Chen, Y.; Meng, D.; Zhang, L. Beyond a gaussian denoiser: Residual learning of deep cnn for image denoising. IEEE Trans. Image Process. 2017, 26, 3142–3155. [Google Scholar] [CrossRef]
- Zhang, K.; Zuo, W.; Zhang, L. FFDNet: Toward a fast and flexible solution for CNN-based image denoising. IEEE Trans. Image Process. 2018, 27, 4608–4622. [Google Scholar] [CrossRef]
- Xu, X.; Li, M.; Sun, W.; Yang, M.H. Learning spatial and spatio-temporal pixel aggregations for image and video denoising. IEEE Trans. Image Process. 2020, 29, 7153–7165. [Google Scholar] [CrossRef]
- Song, Y.; Zhu, Y.; Du, X. Grouped multi-scale network for real-world image denoising. IEEE Signal Process. Lett. 2020, 27, 2124–2128. [Google Scholar] [CrossRef]
- Xu, X.; Li, M.; Sun, W. Learning deformable kernels for image and video denoising. arXiv 2019, arXiv:1904.06903. [Google Scholar]
- Anwar, S.; Barnes, N. Real image denoising with feature attention. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 3155–3164. [Google Scholar]
- Wegener, M. Destriping multiple sensor imagery by improved histogram matching. Int. J. Remote Sens. 1990, 11, 859–875. [Google Scholar] [CrossRef]
- Gadallah, F.; Csillag, F.; Smith, E. Destriping multisensor imagery with moment matching. Int. J. Remote Sens. 2000, 21, 2505–2511. [Google Scholar] [CrossRef]
- Chen, J.; Shao, Y.; Guo, H.; Wang, W.; Zhu, B. Destriping CMODIS data by power filtering. IEEE Trans. Geosci. Remote Sens. 2003, 41, 2119–2124. [Google Scholar] [CrossRef]
- Cao, Y.; Yang, M.Y.; Tisse, C.L. Effective strip noise removal for low-textured infrared images based on 1-D guided filtering. IEEE Trans. Circuits Syst. Video Technol. 2015, 26, 2176–2188. [Google Scholar] [CrossRef]
- Münch, B.; Trtik, P.; Marone, F.; Stampanoni, M. Stripe and ring artifact removal with combined wavelet—Fourier filtering. Opt. Express 2009, 17, 8567–8591. [Google Scholar] [CrossRef] [PubMed]
- Pande-Chhetri, R.; Abd-Elrahman, A. De-striping hyperspectral imagery using wavelet transform and adaptive frequency domain filtering. ISPRS J. Photogramm. Remote Sens. 2011, 66, 620–636. [Google Scholar] [CrossRef]
- Chang, Y.; Fang, H.; Yan, L.; Liu, H. Robust destriping method with unidirectional total variation and framelet regularization. Opt. Express 2013, 21, 23307–23323. [Google Scholar] [CrossRef] [PubMed]
- Dou, H.X.; Huang, T.Z.; Deng, L.J.; Zhao, X.L.; Huang, J. Directional l0 Sparse Modeling for Image Stripe Noise Removal. Remote Sens. 2018, 10, 361. [Google Scholar] [CrossRef]
- Yang, J.H.; Zhao, X.L.; Ma, T.H.; Chen, Y.; Huang, T.Z.; Ding, M. Remote sensing images destriping using unidirectional hybrid total variation and nonconvex low-rank regularization. J. Comput. Appl. Math. 2020, 363, 124–144. [Google Scholar] [CrossRef]
- Liu, X.; Lu, X.; Shen, H.; Yuan, Q.; Jiao, Y.; Zhang, L. Stripe noise separation and removal in remote sensing images by consideration of the global sparsity and local variational properties. IEEE Trans. Geosci. Remote Sens. 2016, 54, 3049–3060. [Google Scholar] [CrossRef]
- Chang, Y.; Yan, L.; Wu, T.; Zhong, S. Remote sensing image stripe noise removal: From image decomposition perspective. IEEE Trans. Geosci. Remote Sens. 2016, 54, 7018–7031. [Google Scholar] [CrossRef]
- Chen, Y.; Huang, T.Z.; Zhao, X.L.; Deng, L.J.; Huang, J. Stripe noise removal of remote sensing images by total variation regularization and group sparsity constraint. Remote Sens. 2017, 9, 559. [Google Scholar] [CrossRef]
- Kuang, X.; Sui, X.; Chen, Q.; Gu, G. Single Infrared Image Stripe Noise Removal Using Deep Convolutional Networks. IEEE Photonics J. 2017, 9, 3900913. [Google Scholar] [CrossRef]
- Kuang, X.; Sui, X.; Liu, Y.; Chen, Q.; Guohua, G. Single infrared image optical noise removal using a deep convolutional neural network. IEEE Photonics J. 2017, 10, 7800615. [Google Scholar] [CrossRef]
- He, Z.; Cao, Y.; Dong, Y.; Yang, J.; Cao, Y.; Tisse, C.L. Single-image-based nonuniformity correction of uncooled long-wave infrared detectors: A deep-learning approach. Appl. Opt. 2018, 57, D155–D164. [Google Scholar] [CrossRef] [PubMed]
- Shao, Y.; Sun, Y.; Zhao, M.; Chang, Y.; Zheng, Z.; Tian, C.; Zhang, Y. Infrared image stripe noise removing using least squares and gradient domain guided filtering. Infrared Phys. Technol. 2021, 119, 103968. [Google Scholar] [CrossRef]
- Chang, Y.; Yan, L.; Liu, L.; Fang, H.; Zhong, S. Infrared aerothermal nonuniform correction via deep multiscale residual network. IEEE Geosci. Remote Sens. Lett. 2019, 16, 1120–1124. [Google Scholar] [CrossRef]
- Wang, Y.T.; Zhao, X.L.; Jiang, T.X.; Deng, L.J.; Chang, Y.; Huang, T.Z. Rain streaks removal for single image via kernel-guided convolutional neural network. IEEE Trans. Neural Netw. Learn. Syst. 2020, 32, 3664–3676. [Google Scholar] [CrossRef] [PubMed]
- Shugar, D.; Jacquemart, M.; Shean, D.; Bhushan, S.; Upadhyay, K.; Sattar, A.; Schwanghart, W.; McBride, S.; Vries, M.; Mergili, M.; et al. A massive rock and ice avalanche caused the 2021 disaster at Chamoli, Indian Himalaya. Science 2021, 373, eabh4455. [Google Scholar] [CrossRef]
- Touzi, R. Target Scattering Decomposition in Terms of Roll-Invariant Target Parameters. IEEE Trans. Geosci. Remote Sens. 2007, 45, 73–84. [Google Scholar] [CrossRef]
- Chang, Y.; Yan, L.; Fang, H.; Liu, H. Simultaneous destriping and denoising for remote sensing images with unidirectional total variation and sparse representation. IEEE Geosci. Remote Sens. Lett. 2013, 11, 1051–1055. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, Z.; Liu, S.; Liu, T.; Chang, Y. Destriping algorithm with l0 sparsity prior for remote sensing images. In Proceedings of the 2015 IEEE International Conference on Image Processing (ICIP), Quebec City, QC, Canada, 27–30 September 2015; pp. 2295–2299. [Google Scholar]
- Huang, Z.; Zhang, Y.; Li, Q.; Li, Z.; Zhang, T.; Sang, N.; Xiong, S. Unidirectional variation and deep CNN denoiser priors for simultaneously destriping and denoising optical remote sensing images. Int. J. Remote Sens. 2019, 40, 5737–5748. [Google Scholar] [CrossRef]
- Huang, Z.; Zhang, Y.; Li, Q.; Li, X.; Zhang, T.; Sang, N.; Hong, H. Joint analysis and weighted synthesis sparsity priors for simultaneous denoising and destriping optical remote sensing images. IEEE Trans. Geosci. Remote Sens. 2020, 58, 6958–6982. [Google Scholar] [CrossRef]
- Chang, Y.; Chen, M.; Yan, L.; Zhao, X.L.; Li, Y.; Zhong, S. Toward universal stripe removal via wavelet-based deep convolutional neural network. IEEE Trans. Geosci. Remote Sens. 2019, 58, 2880–2897. [Google Scholar] [CrossRef]
- Song, L.; Huang, H. Simultaneous Destriping and Image Denoising Using a Nonparametric Model with the EM Algorithm. IEEE Trans. Image Process. 2023, 32, 1065–1077. [Google Scholar] [CrossRef] [PubMed]
- Shen, H.; Zhang, L. A MAP-based algorithm for destriping and inpainting of remotely sensed images. IEEE Trans. Geosci. Remote Sens. 2008, 47, 1492–1502. [Google Scholar] [CrossRef]
- Carfantan, H.; Idier, J. Statistical linear destriping of satellite-based pushbroom-type images. IEEE Trans. Geosci. Remote Sens. 2009, 48, 1860–1871. [Google Scholar] [CrossRef]
- Bouali, M.; Ladjal, S. Toward optimal destriping of MODIS data using a unidirectional variational model. IEEE Trans. Geosci. Remote Sens. 2011, 49, 2924–2935. [Google Scholar] [CrossRef]
- Wu, X.; Qu, H.; Zheng, L.; Gao, T.; Zhang, Z. A remote sensing image destriping model based on low-rank and directional sparse constraint. Remote Sens. 2021, 13, 5126. [Google Scholar] [CrossRef]
- Eckstein, J.; Bertsekas, D.P. On the Douglas—Rachford splitting method and the proximal point algorithm for maximal monotone operators. Math. Program. 1992, 55, 293–318. [Google Scholar] [CrossRef]
- Boyd, S.; Parikh, N.; Chu, E.; Peleato, B.; Eckstein, J. Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 2011, 3, 1–122. [Google Scholar] [CrossRef]
- Donoho, D.L. De-noising by soft-thresholding. IEEE Trans. Inf. Theory 1995, 41, 613–627. [Google Scholar] [CrossRef]
- Ng, M.K.; Chan, R.H.; Tang, W.C. A fast algorithm for deblurring models with Neumann boundary conditions. SIAM J. Sci. Comput. 1999, 21, 851–866. [Google Scholar] [CrossRef]
- Cai, J.F.; Candès, E.J.; Shen, Z. A singular value thresholding algorithm for matrix completion. SIAM J. Optim. 2010, 20, 1956–1982. [Google Scholar] [CrossRef]
- Blumensath, T.; Davies, M.E. Iterative thresholding for sparse approximations. J. Fourier Anal. Appl. 2008, 14, 629–654. [Google Scholar] [CrossRef]
- Jiao, Y.; Jin, B.; Lu, X. A primal dual active set with continuation algorithm for the l0-regularized optimization problem. Appl. Comput. Harmon. Anal. 2015, 39, 400–426. [Google Scholar] [CrossRef]
- Li, K.; Wan, G.; Cheng, G.; Meng, L.; Han, J. Object detection in optical remote sensing images: A survey and a new benchmark. ISPRS J. Photogramm. Remote Sens. 2020, 159, 296–307. [Google Scholar] [CrossRef]
- Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar] [CrossRef]
Noise Level | Method | Cam. | Hou. | Pep. | Sta. | But. | Jet. | Par. | Riv. | Bar. | Shi. | Man. | Cou. | Ave. |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
LRSID | 31.54 | 29.96 | 27.82 | 32.47 | 32.52 | 34.18 | 34.16 | 32.52 | 30.60 | 33.15 | 34.31 | 31.29 | 32.04 | |
SNRCNN | 34.00 | 34.19 | 31.85 | 33.79 | 34.06 | 33.84 | 34.09 | 33.64 | 33.78 | 33.82 | 33.81 | 33.57 | 33.70 | |
TSWEU | 33.71 | 33.58 | 32.96 | 32.74 | 32.83 | 33.54 | 33.33 | 32.55 | 32.64 | 33.50 | 32.93 | 31.85 | 33.01 | |
SEID | 34.79 | 35.96 | 32.09 | 34.23 | 35.43 | 35.17 | 35.38 | 34.14 | 35.73 | 35.74 | 34.11 | 32.87 | 34.64 | |
DLRSDD | 36.44 | 37.31 | 35.98 | 36.08 | 37.23 | 35.70 | 36.43 | 35.84 | 35.64 | 36.85 | 36.36 | 35.09 | 36.25 | |
LRSID | 31.02 | 29.94 | 27.66 | 32.23 | 32.36 | 33.97 | 34.29 | 32.37 | 31.29 | 33.15 | 34.08 | 31.20 | 31.96 | |
SNRCNN | 33.63 | 33.71 | 31.52 | 33.23 | 33.42 | 33.37 | 33.62 | 33.13 | 33.17 | 33.34 | 33.19 | 33.05 | 33.20 | |
TSWEU | 33.77 | 33.65 | 32.97 | 32.93 | 32.74 | 33.55 | 33.43 | 32.68 | 32.75 | 33.56 | 33.07 | 32.02 | 33.09 | |
SEID | 34.95 | 35.91 | 32.00 | 34.08 | 35.28 | 35.08 | 35.40 | 34.13 | 35.51 | 35.79 | 34.02 | 32.82 | 34.58 | |
DLRSDD | 36.19 | 36.97 | 35.49 | 35.75 | 36.58 | 35.48 | 36.18 | 35.38 | 35.20 | 36.50 | 35.84 | 34.86 | 35.87 | |
LRSID | 31.31 | 29.61 | 27.64 | 32.01 | 32.41 | 34.00 | 34.06 | 32.11 | 31.09 | 33.15 | 33.85 | 31.26 | 31.87 | |
SNRCNN | 32.61 | 32.82 | 31.00 | 32.10 | 32.73 | 32.33 | 32.41 | 32.17 | 32.00 | 32.31 | 32.17 | 32.18 | 32.24 | |
TSWEU | 33.72 | 33.63 | 33.11 | 33.17 | 33.08 | 33.68 | 33.44 | 32.85 | 32.94 | 33.68 | 33.07 | 32.47 | 33.24 | |
SEID | 34.31 | 36.05 | 31.79 | 34.00 | 35.47 | 35.03 | 35.32 | 33.99 | 35.29 | 35.62 | 34.16 | 32.92 | 34.50 | |
DLRSDD | 35.67 | 36.12 | 34.96 | 34.97 | 36.34 | 34.82 | 35.60 | 34.67 | 34.52 | 35.66 | 35.17 | 34.44 | 35.24 | |
LRSID | 28.12 | 27.64 | 25.91 | 28.20 | 28.22 | 28.65 | 28.73 | 28.18 | 27.38 | 28.51 | 28.67 | 27.75 | 28.00 | |
SNRCNN | 28.55 | 28.56 | 27.73 | 28.39 | 28.47 | 28.43 | 28.55 | 28.36 | 28.38 | 28.43 | 28.41 | 28.35 | 28.38 | |
TSWEU | 27.78 | 27.93 | 27.66 | 27.61 | 27.64 | 27.93 | 27.50 | 27.58 | 27.60 | 27.95 | 27.78 | 27.22 | 27.68 | |
SEID | 29.37 | 32.66 | 29.29 | 29.63 | 30.48 | 30.00 | 30.37 | 28.85 | 31.47 | 30.88 | 29.19 | 27.91 | 30.01 | |
DLRSDD | 33.33 | 34.69 | 33.37 | 32.68 | 33.93 | 32.31 | 32.97 | 32.74 | 33.39 | 34.06 | 33.13 | 32.62 | 33.27 | |
LRSID | 27.96 | 27.38 | 25.84 | 28.06 | 28.15 | 28.57 | 28.65 | 28.04 | 27.72 | 28.39 | 28.62 | 27.80 | 27.93 | |
SNRCNN | 28.38 | 28.42 | 27.57 | 28.08 | 28.23 | 28.17 | 28.36 | 28.17 | 28.09 | 28.24 | 28.23 | 28.15 | 28.17 | |
TSWEU | 27.81 | 27.93 | 27.71 | 27.68 | 27.72 | 27.92 | 27.48 | 27.68 | 27.68 | 27.97 | 27.83 | 27.30 | 27.73 | |
SEID | 29.26 | 32.59 | 29.28 | 29.42 | 30.59 | 30.00 | 30.26 | 28.91 | 31.38 | 30.88 | 29.19 | 27.99 | 29.98 | |
DLRSDD | 33.18 | 34.67 | 33.12 | 32.28 | 33.69 | 32.09 | 32.79 | 32.54 | 33.12 | 33.81 | 32.97 | 32.53 | 33.07 | |
LRSID | 28.05 | 27.41 | 25.75 | 27.98 | 28.05 | 28.52 | 28.59 | 27.96 | 27.44 | 28.23 | 28.50 | 27.67 | 27.85 | |
SNRCNN | 28.03 | 28.04 | 27.24 | 27.72 | 27.74 | 27.91 | 27.98 | 27.73 | 27.63 | 27.83 | 27.79 | 27.67 | 27.78 | |
TSWEU | 27.77 | 27.93 | 27.72 | 27.79 | 27.91 | 28.00 | 27.66 | 27.71 | 27.78 | 27.96 | 27.87 | 27.41 | 27.79 | |
SEID | 29.31 | 32.64 | 28.97 | 29.58 | 30.63 | 30.04 | 30.58 | 28.84 | 31.45 | 30.88 | 29.22 | 27.79 | 29.99 | |
DLRSDD | 32.67 | 34.05 | 32.20 | 31.81 | 32.83 | 31.74 | 32.44 | 31.83 | 32.55 | 33.23 | 32.28 | 31.75 | 32.45 |
Noise Level | Method | Cam. | Hou. | Pep. | Sta. | But. | Jet. | Par. | Riv. | Bar. | Shi. | Ma. | Cou. | Avg |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
LRSID | 0.869 | 0.856 | 0.896 | 0.929 | 0.916 | 0.892 | 0.895 | 0.965 | 0.959 | 0.961 | 0.974 | 0.937 | 0.921 | |
SNRCNN | 0.852 | 0.844 | 0.876 | 0.915 | 0.901 | 0.872 | 0.874 | 0.970 | 0.974 | 0.965 | 0.968 | 0.970 | 0.915 | |
TSWEU | 0.849 | 0.842 | 0.875 | 0.914 | 0.897 | 0.869 | 0.872 | 0.961 | 0.968 | 0.961 | 0.967 | 0.949 | 0.910 | |
SEID | 0.942 | 0.907 | 0.929 | 0.938 | 0.957 | 0.932 | 0.944 | 0.959 | 0.977 | 0.971 | 0.956 | 0.928 | 0.945 | |
DLRSDD | 0.946 | 0.936 | 0.942 | 0.958 | 0.969 | 0.939 | 0.953 | 0.981 | 0.982 | 0.983 | 0.978 | 0.971 | 0.961 | |
LRSID | 0.866 | 0.854 | 0.895 | 0.928 | 0.916 | 0.891 | 0.895 | 0.963 | 0.961 | 0.961 | 0.972 | 0.936 | 0.920 | |
SNRCNN | 0.849 | 0.841 | 0.873 | 0.910 | 0.897 | 0.868 | 0.870 | 0.965 | 0.970 | 0.960 | 0.962 | 0.965 | 0.911 | |
TSWEU | 0.849 | 0.842 | 0.875 | 0.914 | 0.897 | 0.869 | 0.872 | 0.961 | 0.969 | 0.961 | 0.967 | 0.950 | 0.911 | |
SEID | 0.942 | 0.907 | 0.928 | 0.937 | 0.957 | 0.932 | 0.944 | 0.960 | 0.977 | 0.971 | 0.956 | 0.930 | 0.945 | |
DLRSDD | 0.946 | 0.936 | 0.941 | 0.957 | 0.968 | 0.939 | 0.952 | 0.977 | 0.980 | 0.981 | 0.976 | 0.971 | 0.960 | |
LRSID | 0.868 | 0.853 | 0.895 | 0.928 | 0.916 | 0.892 | 0.895 | 0.960 | 0.959 | 0.961 | 0.972 | 0.937 | 0.920 | |
SNRCNN | 0.836 | 0.828 | 0.857 | 0.897 | 0.888 | 0.858 | 0.852 | 0.952 | 0.956 | 0.945 | 0.947 | 0.955 | 0.898 | |
TSWEU | 0.849 | 0.842 | 0.875 | 0.915 | 0.897 | 0.869 | 0.872 | 0.961 | 0.969 | 0.962 | 0.968 | 0.958 | 0.911 | |
SEID | 0.942 | 0.907 | 0.929 | 0.939 | 0.958 | 0.931 | 0.944 | 0.959 | 0.977 | 0.971 | 0.956 | 0.931 | 0.945 | |
DLRSDD | 0.945 | 0.933 | 0.939 | 0.954 | 0.967 | 0.935 | 0.950 | 0.970 | 0.975 | 0.977 | 0.972 | 0.967 | 0.957 | |
LRSID | 0.658 | 0.643 | 0.706 | 0.791 | 0.759 | 0.704 | 0.708 | 0.902 | 0.902 | 0.883 | 0.911 | 0.889 | 0.788 | |
SNRCNN | 0.651 | 0.629 | 0.689 | 0.776 | 0.745 | 0.689 | 0.693 | 0.910 | 0.921 | 0.892 | 0.911 | 0.919 | 0.785 | |
TSWEU | 0.633 | 0.616 | 0.678 | 0.768 | 0.734 | 0.678 | 0.677 | 0.888 | 0.905 | 0.877 | 0.900 | 0.886 | 0.770 | |
SEID | 0.861 | 0.865 | 0.878 | 0.866 | 0.915 | 0.884 | 0.868 | 0.909 | 0.946 | 0.916 | 0.870 | 0.848 | 0.886 | |
DLRSDD | 0.913 | 0.883 | 0.913 | 0.918 | 0.951 | 0.904 | 0.912 | 0.959 | 0.967 | 0.965 | 0.950 | 0.949 | 0.932 | |
LRSID | 0.656 | 0.639 | 0.705 | 0.789 | 0.758 | 0.703 | 0.707 | 0.897 | 0.903 | 0.881 | 0.910 | 0.891 | 0.787 | |
SNRCNN | 0.647 | 0.626 | 0.685 | 0.772 | 0.740 | 0.685 | 0.690 | 0.904 | 0.912 | 0.886 | 0.905 | 0.914 | 0.780 | |
TSWEU | 0.632 | 0.616 | 0.679 | 0.768 | 0.735 | 0.678 | 0.677 | 0.889 | 0.906 | 0.878 | 0.900 | 0.888 | 0.770 | |
SEID | 0.862 | 0.865 | 0.878 | 0.866 | 0.915 | 0.885 | 0.868 | 0.909 | 0.945 | 0.916 | 0.870 | 0.849 | 0.886 | |
DLRSDD | 0.912 | 0.886 | 0.910 | 0.917 | 0.949 | 0.903 | 0.911 | 0.955 | 0.963 | 0.963 | 0.950 | 0.949 | 0.931 | |
LRSID | 0.657 | 0.640 | 0.703 | 0.789 | 0.757 | 0.703 | 0.707 | 0.896 | 0.898 | 0.879 | 0.908 | 0.888 | 0.785 | |
SNRCNN | 0.639 | 0.617 | 0.673 | 0.762 | 0.730 | 0.679 | 0.681 | 0.891 | 0.902 | 0.872 | 0.888 | 0.901 | 0.770 | |
TSWEU | 0.632 | 0.616 | 0.679 | 0.769 | 0.736 | 0.678 | 0.677 | 0.890 | 0.907 | 0.878 | 0.901 | 0.890 | 0.771 | |
SEID | 0.864 | 0.865 | 0.873 | 0.866 | 0.915 | 0.885 | 0.875 | 0.909 | 0.945 | 0.916 | 0.870 | 0.848 | 0.886 | |
DLRSDD | 0.909 | 0.888 | 0.907 | 0.911 | 0.945 | 0.901 | 0.909 | 0.949 | 0.959 | 0.959 | 0.942 | 0.942 | 0.927 |
Noisy Level | Method | PSNR | SSIM | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dior-1 | Dior-2 | Dior-3 | Dior-4 | Dior-5 | Dior-6 | Avg. | Dior-1 | Dior-2 | Dior-3 | Dior-4 | Dior-5 | Dior-6 | Avg. | ||
LRSID | 34.32 | 32.95 | 33.31 | 33.68 | 33.71 | 34.04 | 33.67 | 0.975 | 0.965 | 0.990 | 0.992 | 0.975 | 0.970 | 0.978 | |
SNRCNN | 33.85 | 33.66 | 33.22 | 33.48 | 33.71 | 34.06 | 33.66 | 0.973 | 0.967 | 0.989 | 0.991 | 0.970 | 0.969 | 0.977 | |
TSWEU | 33.13 | 32.74 | 32.17 | 32.56 | 33.01 | 33.22 | 32.80 | 0.973 | 0.961 | 0.987 | 0.989 | 0.970 | 0.966 | 0.974 | |
SEID | 33.35 | 33.48 | 29.94 | 31.81 | 34.33 | 35.12 | 33.00 | 0.945 | 0.933 | 0.937 | 0.972 | 0.952 | 0.945 | 0.947 | |
DLRSDD | 35.52 | 36.19 | 34.59 | 35.02 | 36.02 | 38.00 | 35.89 | 0.977 | 0.976 | 0.992 | 0.993 | 0.979 | 0.978 | 0.983 | |
LRSID | 34.15 | 32.91 | 33.07 | 33.56 | 33.67 | 33.94 | 33.55 | 0.975 | 0.965 | 0.990 | 0.991 | 0.975 | 0.969 | 0.977 | |
SNRCNN | 33.22 | 33.15 | 32.53 | 32.84 | 33.27 | 33.53 | 33.09 | 0.967 | 0.962 | 0.987 | 0.989 | 0.967 | 0.964 | 0.973 | |
TSWEU | 33.19 | 32.78 | 32.30 | 32.59 | 33.12 | 33.26 | 32.87 | 0.973 | 0.961 | 0.987 | 0.989 | 0.970 | 0.967 | 0.975 | |
SEID | 33.23 | 33.39 | 29.94 | 31.72 | 34.33 | 35.02 | 32.94 | 0.945 | 0.932 | 0.937 | 0.972 | 0.952 | 0.945 | 0.947 | |
DLRSDD | 34.93 | 35.74 | 34.05 | 34.55 | 35.61 | 37.27 | 35.36 | 0.973 | 0.974 | 0.991 | 0.992 | 0.977 | 0.976 | 0.980 | |
LRSID | 33.96 | 32.61 | 32.83 | 33.33 | 33.43 | 33.69 | 33.31 | 0.974 | 0.960 | 0.989 | 0.991 | 0.974 | 0.968 | 0.976 | |
SNRCNN | 32.13 | 32.28 | 31.19 | 31.73 | 32.27 | 32.62 | 32.04 | 0.952 | 0.950 | 0.980 | 0.984 | 0.956 | 0.955 | 0.963 | |
TSWEU | 33.39 | 32.95 | 32.30 | 32.89 | 33.38 | 33.45 | 33.06 | 0.973 | 0.962 | 0.987 | 0.990 | 0.972 | 0.967 | 0.975 | |
SEID | 33.30 | 33.41 | 29.82 | 31.56 | 34.20 | 35.16 | 32.91 | 0.945 | 0.933 | 0.936 | 0.972 | 0.952 | 0.945 | 0.947 | |
DLRSDD | 34.35 | 35.04 | 33.16 | 33.95 | 34.76 | 36.38 | 34.61 | 0.967 | 0.969 | 0.987 | 0.990 | 0.970 | 0.972 | 0.976 | |
LRSID | 28.61 | 28.36 | 28.29 | 28.45 | 28.50 | 28.68 | 28.48 | 0.918 | 0.904 | 0.971 | 0.975 | 0.919 | 0.906 | 0.932 | |
SNRCNN | 28.41 | 28.37 | 28.11 | 28.25 | 28.38 | 28.52 | 28.34 | 0.921 | 0.909 | 0.971 | 0.975 | 0.920 | 0.911 | 0.935 | |
TSWEU | 27.86 | 27.69 | 27.53 | 27.65 | 27.79 | 27.83 | 27.72 | 0.913 | 0.892 | 0.965 | 0.970 | 0.910 | 0.896 | 0.924 | |
SEID | 28.39 | 28.75 | 27.45 | 26.21 | 29.40 | 30.77 | 28.49 | 0.875 | 0.847 | 0.916 | 0.909 | 0.875 | 0.887 | 0.885 | |
DLRSDD | 32.05 | 32.92 | 30.48 | 31.04 | 32.63 | 34.76 | 32.31 | 0.949 | 0.946 | 0.978 | 0.982 | 0.952 | 0.953 | 0.960 | |
LRSID | 28.58 | 28.30 | 28.21 | 28.36 | 28.46 | 28.58 | 28.41 | 0.917 | 0.901 | 0.970 | 0.974 | 0.918 | 0.904 | 0.931 | |
SNRCNN | 28.20 | 28.17 | 27.88 | 27.99 | 28.14 | 28.30 | 28.11 | 0.916 | 0.902 | 0.968 | 0.972 | 0.913 | 0.906 | 0.929 | |
TSWEU | 27.88 | 27.70 | 27.58 | 27.71 | 27.83 | 27.88 | 27.76 | 0.913 | 0.892 | 0.965 | 0.971 | 0.910 | 0.897 | 0.925 | |
SEID | 28.40 | 28.75 | 27.43 | 26.22 | 29.36 | 30.77 | 28.49 | 0.875 | 0.847 | 0.916 | 0.909 | 0.874 | 0.887 | 0.885 | |
DLRSDD | 31.81 | 32.67 | 30.30 | 30.76 | 32.35 | 34.39 | 32.05 | 0.946 | 0.942 | 0.977 | 0.981 | 0.949 | 0.951 | 0.958 | |
LRSID | 28.46 | 28.18 | 28.12 | 28.30 | 28.37 | 28.49 | 28.32 | 0.916 | 0.900 | 0.970 | 0.974 | 0.917 | 0.902 | 0.930 | |
SNRCNN | 27.80 | 27.72 | 27.36 | 27.56 | 27.79 | 27.92 | 27.69 | 0.905 | 0.887 | 0.962 | 0.967 | 0.904 | 0.895 | 0.920 | |
TSWEU | 27.92 | 27.76 | 27.62 | 27.73 | 27.87 | 27.92 | 27.80 | 0.913 | 0.895 | 0.966 | 0.971 | 0.911 | 0.898 | 0.926 | |
SEID | 28.31 | 28.84 | 27.45 | 26.25 | 29.32 | 30.79 | 28.49 | 0.875 | 0.847 | 0.916 | 0.909 | 0.874 | 0.887 | 0.885 | |
DLRSDD | 31.23 | 32.04 | 29.74 | 30.26 | 31.76 | 33.68 | 31.45 | 0.939 | 0.935 | 0.973 | 0.977 | 0.943 | 0.945 | 0.952 |
Test Image | Original | LRSID | SNRCNN | TSWEU | SEID | DLRSDD |
---|---|---|---|---|---|---|
a | 0.0155 | 0.0101 | 0.0114 | 0.0173 | 0.0087 | 0.0091 |
b | 0.0355 | 0.0304 | 0.0322 | 0.0301 | 0.0299 | 0.0292 |
c | 0.0162 | 0.0127 | 0.0128 | 0.0191 | 0.0107 | 0.0087 |
d | 0.0448 | 0.0443 | 0.0374 | 0.0986 | 0.0198 | 0.0283 |
Avg | 0.028 | 0.0244 | 0.0235 | 0.0413 | 0.0173 | 0.0188 |
Test Image | Original | LRSID | SNRCNN | TSWEU | SEID | DLRSDD |
---|---|---|---|---|---|---|
a | 0.895 | 0.580 | 0.654 | 0.996 | 0.500 | 0.525 |
b | 3.915 | 3.298 | 3.492 | 3.457 | 3.255 | 3.180 |
c | 0.798 | 0.616 | 0.659 | 1.113 | 0.527 | 0.404 |
d | 1.552 | 0.710 | 0.889 | 1.828 | 0.457 | 0.575 |
Avg | 1.790 | 1.301 | 1.424 | 1.848 | 1.185 | 1.171 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, X.; Zheng, L.; Liu, C.; Gao, T.; Zhang, Z.; Yang, B. Single-Image Simultaneous Destriping and Denoising: Double Low-Rank Property. Remote Sens. 2023, 15, 5710. https://doi.org/10.3390/rs15245710
Wu X, Zheng L, Liu C, Gao T, Zhang Z, Yang B. Single-Image Simultaneous Destriping and Denoising: Double Low-Rank Property. Remote Sensing. 2023; 15(24):5710. https://doi.org/10.3390/rs15245710
Chicago/Turabian StyleWu, Xiaobin, Liangliang Zheng, Chunyu Liu, Tan Gao, Ziyu Zhang, and Biao Yang. 2023. "Single-Image Simultaneous Destriping and Denoising: Double Low-Rank Property" Remote Sensing 15, no. 24: 5710. https://doi.org/10.3390/rs15245710
APA StyleWu, X., Zheng, L., Liu, C., Gao, T., Zhang, Z., & Yang, B. (2023). Single-Image Simultaneous Destriping and Denoising: Double Low-Rank Property. Remote Sensing, 15(24), 5710. https://doi.org/10.3390/rs15245710