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Abstract: Colored dissolved organic matter (CDOM) is a significant constituent of aquatic systems
and biogeochemical cycles. Satellite CDOM retrievals are challenging in inland waters, due to
overlapped absorption properties of bio-optical parameters, like Total Suspended Matter (TSM).
In this framework, we defined an accurate CDOM model using Sentinel2-MSI (S2-MSI) data in
Pertusillo Lake (Southern Italy) adopting a classification scheme based on satellite TSM data. Em-
pirical relationships were established between the CDOM absorption coefficient, aCDOM (440), and
reflectance band ratios using ground-based measurements. The Green-to-Red (B3/B4 and B3/B5)
and Red-to-Blue (B4/B2 and B5/B2) band ratios showed good relationships (R2 ≥ 0.75), which were
further improved according to sub-region division (R2 up to 0.93). The best accuracy of B3/B4 in
the match-ups between S2-MSI-derived and in situ band ratios proved the exportability on S2-MSI
data of two B3/B4-based aCDOM (440) models, namely the fixed (for the whole PL) and the switching
one (according to sub-region division). Although they both exhibited good agreements in aCDOM

(440) retrievals (R2 ≥ 0.69), the switching model showed the highest accuracy (RMSE of 0.0155 m−1).
Finally, the identification of areas exposed to different TSM patterns can assist with refining the
calibration/validation procedures to achieve more accurate aCDOM (440) retrievals.

Keywords: retrieval models; S2-MSI data; inland water reflectance; CDOM; unsupervised classification

1. Introduction

Colored dissolved organic matter (CDOM) is the photoactive constituent of dis-
solved organic carbon (DOC), which is the most prominent organic carbon pool in water
environments [1]. CDOM is crucial in aquatic ecological processes as it reduces light
penetration which impacts net primary production and the thermal properties of water
ecosystems [2–5]. Furthermore, CDOM is a key parameter for inland water quality as its
influence on pH, alkalinity, and the formation of potentially toxic metal complexes affects
drinking water safety [6,7]. Assessing the accuracy of CDOM retrievals and understanding
its spatiotemporal distribution is crucial to studying the carbon cycle of aquatic ecosystems
and managing their water quality status as well [8].

The joint exploitation of field spectroscopy and satellite data has proved useful in re-
trieving CDOM estimates in estuaries and inland waters [9,10]. In the last three decades,
most of the CDOM retrieval algorithms relied on empirical [11–14] or semi-analytical [15–18]
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models. More recently, some methods based on machine learning (ML) approaches [19–21]
have been proposed showing encouraging results at the global scale [21]. However, the
ML models usually rely on intricate structures of input variables and their development
requires large in situ training databases (i.e., hyperspectral radiometric measurements and
co-located water quality data) which are difficult to obtain in real-world scenarios [22].
Furthermore, the need to consider homogenous data (e.g., same spectral, spatial, and
temporal information) for transferability of already trained ML algorithms limits their
exportability over space and time [22]. Conversely, the semi-analytical algorithms are more
suitable to be regionally optimized as they rely on a transparent and modular structure [23],
which allows for a customization of the empirical relationships on which are based [24].
For instance, the Quasi-Anlytical Algorithm (QAA) has been widely implemented in oper-
ational chains [25,26] and/or modified to optimize its suitability for CDOM retrievals in
complex riverine and estuarine waters [27,28]. Although strong physical bases characterize
such semi-analytical models, their implementation in different inland water types requires
knowledge of site-specific bio-optical parameters (e.g., particulate backscattering, bbp (λ)) or
optimization approaches (i.e., radiative transfer models) that can increase CDOM retrieval
uncertainties [8]. The empirical algorithms are based on a few basic relationships between
apparent and inherent optical water properties and, thus are easier to be implemented
compared with the semi-analytical ones. On the other hand, they are particularly sensitive
to changes in boundary conditions [29]. For this reason, most of the regional studies for
CDOM estimates in freshwaters used empirical methods (e.g., regression) based on remote
sensing reflectance (Rrs) and CDOM absorption indices [30].

Most such algorithms [14,31,32] require input Rrs at different wavelengths within
the visible spectral domain (≈400–700 nm) combined in different band ratios [33]. Such a
spectral domain is generally available on the main land-oriented satellite sensors (e.g., Land-
sat Thematic Mapper-TM, Enhanced Thematic Mapper Plus-ETM+, and EO-1 Advanced
Land Imager-ALI) or ocean color spectrometers (e.g., Sea-viewing Wide Field-of-view
Sensor-SeaWiFS, Moderate-Resolution Imaging Spectroradiometer-MODIS, Visible Infrared
Imaging Radiometer Suite–VIIRS, and Medium-Resolution Imaging Spectrometer-MERIS),
which are no longer available and are unsuitable for most inland water bodies because of
their coarse spatial resolutions [34]. To overcome these limitations, the most recent Earth
Observation (EO) sensors, such as the MultiSpectral Instrument (MSI) on Sentinel-2A/B
(S2), offer many advantages for lake remote sensing thanks to a high revisiting time (up to
5 days) and 10–60 m spatial resolution together with a suitable spectral capability [35].

Several studies have demonstrated the S2-MSI suitability for CDOM estimation in
inland waters, by exploiting especially the Green (e.g., B3) to Red (e.g., B4, B5, B6, and B7)
band ratios [36]. Toming et al. [37] and Al-Kharusi et al. [33] used the B3 (560 nm central
wavelength) to B4 (665 nm central wavelength) ratio for estimating CDOM absorption
(aCDOM) by S2-MSI data in several lakes of Estonia and Sweden, respectively. Xu et al. [8]
and Shang et al. [30] have profitably adopted the B5 (665 nm central wavelength) to B2
(492 nm central wavelength) ratio to develop empirical CDOM models and characterize
its spatial dynamics in Chinese water reservoirs. The above studies have corroborated the
need to calibrate CDOM models at regional and locale scales by accounting for differences
in water bio-chemical properties across geographical regions [30].

Pertusillo Lake (hereinafter PL), situated in the Basilicata region (Southern Italy), is
considered a sensitive test site for the Italian Ministry of the Environment, because of its
environmental relevance in terms of ongoing anthropogenic pressures (e.g., proximity
to the largest onshore oil field in Europe [38]) and ecosystem bio-optical complexity [39].
Furthermore, environmental forcings, such as water-level fluctuations and river discharges
usually cause erosion, sediment resuspension, and changes in nutrient inputs, thus deter-
mining a high variability of the in-water bio-optical components [40]. PL has been never
studied up to now in terms of CDOM retrievals, but only to detect a potentially harmful
algal bloom using remote sensing data [39] or to assess the multi-temporal total suspended
matter (TSM) variability by merging S2-MSI and Landsat 8 (L8)-Operational Land Imager
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(OLI) records [40]. The latter study showed how PL can be divided into two areas with
different TSM spatial patterns probably due to eastward changes in hydrological (i.e.,
inflowing rivers) and bathymetric characteristics.

In this scenario, it is worth developing and validating CDOM models by adopting
a methodological approach that considers the spatial heterogeneity of water ecosystems
induced by hydrological forcing and topographic features and highlighted by the spatial
variability of other in-water constituents (e.g., TSM). In this study, we aim to define an
accurate CDOM retrieval model using S2-MSI data through the adoption of a previously
achieved classification scheme based on satellite TSM data [40]. Finally, the three-fold goals
of this work were to: (a) assess the performance of two literature aCDOM (440) algorithms,
namely an empirical [14] and a semi-analytical one [27] when ported on PL; (b) define a
customized version of S2-MSI aCDOM (440) model by using in situ radiometric data and
aCDOM (440) measurements; (c) maximize the accuracy of such a PL-tuned algorithm via a
switchable scheme based on a pixel membership to the two sub-regions identified using
the TSM-driven classification.

2. Materials and Methods
2.1. Study Site

The PL is an artificial freshwater reservoir situated in the high Agri Valley of the Basil-
icata region (Southern Italy) (Figure 1). The PL, constructed during the 1957–1963 years
by damming the Agri River, covers a surface of 7.5 km2 with approximately 80 m and
155 × 106 m3 maximum depth and volume, respectively [40]. It serves the Apulian Aque-
duct in providing drinking water to 3.5 million people as well as for irrigation and hydro-
electric energy production [41].
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Figure 1. On the left is the PL location and on the right is the magnification of the study area (reported
in the WGS 84 Coordinate Reference System (CRS)). The main rivers/tributaries (continuous black
lines) and the bathymetry (in blue tones) are depicted. The villages (black triangles) and the onshore
oil field (i.e., Centro Olio Val d’Agri) close to PL are also reported.

The PL shows a well-defined water level variability, mainly because of seasonal rainfall
and discharge of rivers, such as the Agri River that flows eastward along the lake basin [42].
Furthermore, the dam-induced hydrological regime and the torrential discharges of other
minor tributaries (i.e., Rifreddo, Grumentino, Maglia, Vella, and Sciaura rivers) influence
the PL net volume fluctuations and contribute to drain areas with different sediment types
at several lake locations [40].

PL Sub-Region Division: The ISODATA Classification

The recent work by Ciancia et al. [40] allowed for the identification of two sub-regions
characterized by different TSM spatial patterns. In particular, using a multi-temporal
analysis of TSM monthly maps obtained by S2-MSI and L8-OLI merged data, Ciancia
et al. [40] carried out a classification analysis to discriminate lake areas showing simi-
lar TSM spatial patterns within climatology. The ISODATA (Iterative Self-Organizing
Data Analysis technique) unsupervised classification [43] was applied by using 5-year
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(2014–2018) TSM climatological monthly means as “input spectral bands” and setting user-
defined threshold parameters (i.e., the maximum number of iterations and change threshold).

Figure 2 shows the PL sub-region division after implementing the ISODATA unsuper-
vised classification scheme on the MSI-OLI merged TSM dataset for the 5-year period, as
discussed in Ciancia et al. [40].
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while the red ones (from S7 to S10) are within the PL eastern side.

Considering the TSM climatological variability, two distinct sub-areas (i.e., the West
and East areas) have been identified, showing different suspended sediment concentrations,
hydrological forcing levels, and topography (i.e., bathymetry) [40]. The PL’s western region
is mainly affected by water level fluctuations and consequent deposition and erosion
phenomena due to shallow waters and multiple longitudinal and lateral deltas. Conversely,
PL’s eastern side is characterized by smaller loads of suspended particles probably as no
major rivers are inflowing there [40].

2.2. In Situ Data Acquisition

During the ‘Smart Basilicata’ project [44], six measurement campaigns were planned
and carried out to investigate the spatiotemporal variability of some bio-optical constituents
(e.g., TSM and aCDOM (440)) over the lake. Sub-surface water samples and radiometric
parameters were acquired at planned stations (Figure 2) in the period from May 2017 to
May 2018. Information regarding the in situ measurement campaigns (with distinction
between the two different subset) is listed in Table 1.

Table 1. Sampling campaigns and data used. Note that Rrs(λ) data were not acquired in September
2017 (19th).

Measurement
Campaigns

Number of Samples
In Situ Measurements

West Subset East Subset

May 2017 (10th, 26th) 12 8 TSM, aCDOM (440), Rrs(λ)

June 2017 (14th, 15th) 12 8 TSM, aCDOM (440), Rrs(λ)

September 2017 (19th) 5 4 TSM, aCDOM (440)

October 2017 (12th) 4 4 TSM, aCDOM (440), Rrs(λ)

November 2017 (21st) 4 4 TSM, aCDOM (440), Rrs(λ)

May 2018 (17th) 6 4 TSM, aCDOM (440), Rrs(λ)

Sub-surface (i.e., 0–1 m depth) water samples were collected by Niskin bottles for
subsequent TSM measurements and analyses of CDOM absorption spectra.
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2.2.1. The aCDOM (440) and TSM Measurements

For the TSM estimates, we adopted standard gravimetrical protocols [45,46]. After
collecting 500–1000 mL of water samples, a filtering procedure was applied through 0.7 µm
pre-weighed GF/F glass fiber filters. Moreover, the samples were rinsed with distilled
water and dried at 100 ◦C. Finally, they were re-weighed by an electronic balance (Mettler
Toledo AG245) with a 0.1 mg detection limit [40].

For the CDOM absorption measurements, 200 mL of water per station was filtered
through previously washed sterile 0.2 µm filters (Whatman GD/X). Afterward, amber
glass bottles, previously acid-soaked (10% HCl) and 3 times washed with Milli-Q water,
were used to stock the filtered water samples. Finally, the filtered and collected water
samples were maintained at a 4 ◦C constant temperature until the absorption measurements
(within a maximum of four weeks). CDOM absorption spectra were measured in a 10 cm
quartz cuvette between 250 and 750 nm spectral range through a dual beam UV-VIS
spectrophotometer (SHIMADZU 2600 Series) [47]. The CDOM absorption coefficient,
aCDOM (λ), was obtained using Equation (1):

aCDOM(λ) = 2.303 ∗ A(λ)/L, (1)

where L is the cuvette length (m), A(λ) the measured optical density and aCDOM (λ) repre-
sents the CDOM concentration at the computation wavelength λ. The CDOM spectral slope
(SCDOM) was computed by using an exponential function as reported in Equation (2) [48]:

aCDOM(λ) = aCDOM(λ0) ∗ exp[−SCDOM(λ− λ0)], (2)

where SCDOM is the fitted parameter for the exponential decay of aCDOM(λ) with increasing
wavelength λ respect to λ0, that is the reference wavelength at 440 nm. In this study, we
analyzed the spectral slope within the 350–500 nm wavelength range (i.e., SCDOM (350–500))
to ensure a sufficiently high signal-to-noise ratio [49].

Table 2 summarizes the descriptive statistics of aCDOM (440) and TSM derived from the six
measurement campaigns and related to the whole area, the West and East subset, respectively.

Table 2. Descriptive statistics of aCDOM (440) derived from the six measurement campaigns.

Parameter Values PL West Subset East Subset

aCDOM
(440)
(m−1)

min 0.1277 0.1414 0.1277

max 0.4145 0.4145 0.2533

mean 0.2252 0.2450 0.1980

stdv 0.0678 0.0756 0.0396

TSM
(g/m3)

min 0.6 1 0.6

max 7 7 2.6

mean 2.0829 2.3679 1.7029

stdv 1.1270 1.3296 0.6252

The aCDOM (440) values range from 0.1277 to 0.4145 m−1 with higher mean values in
the West subset than the East one while SCDOM (350–500 nm) records an averaged value
of 0.0168 nm−1 with negligible differences between sub-regions. The TSM estimations are
within 0.6–7 g/m3 and spatially differ with higher mean values in the West subset than the
East one as for aCDOM (440).

2.2.2. Radiometric Rrs(λ) Measurements

Simultaneously to water samples, the above-water radiometric data were acquired and
processed according to standard protocols [50]. By using a portable field spectroradiometer
(i.e., Field Spec FR PRO spectrometer Analytical Spectral Devices—ASD), in situ radiance
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measurements were acquired from a boat (at about 1.5 m height above the water surface)
within 10:00 to 15:00 only in absence of clouds and with low wind velocity conditions (max-
imum 5 m/s). To avoid direct sunlight and boat shadows, radiance measurements were
acquired positioning the probe at 45◦ zenith angle and 90 or 180◦ azimuth angle [50]. Water
leaving radiances were measured, pointing the radiometer downwards to the lake, while
sky radiances rotating it upwards and retaining the same zenithal and azimuthal angles.
Then, was normalized via measurements through a gray (30% albedo) panel (standard
Spectralon, Labsphere, NH, USA), assuming that it has a near-Lambertian behavior, to
calculate the downwelling spectral irradiance on the water surface (Es(λ)). Furthermore, to
reduce potential sources of noise in signal acquisition at least 5 spectra were acquired and
averaged for each measurement station.

Finally, it was possible to derive the remote sensing reflectance Rrs(λ) (sr−1), namely
the ratio of water leaving radiance Lw(θ,ϕ,λ) (Wm−2nm−1sr−1) to downwelling spectral
irradiance Es(λ) (Wm−2nm−1) [51]:

Rrs(λ) =
Lw(θ, Φ, λ)

Es(λ)
, (3)

All the acquired spectra were analyzed using the ViewSpec Pro software 6.0 (ASD Inc.,
Boulder, CO, USA [52]).

2.3. Satellite Data Acquisition and Processing

S2-MSI data were used in this work to develop a PL-tuned version of aCDOM (440)
model. MSI is a multi-spectral instrument acquiring the emitted/reflected Earth radiance
in 13 spectral bands with 10–60 m spatial resolution in the whole electromagnetic spectrum
(i.e., 440–2202 nm) and 10–20 m within the visible domain of interest (i.e., 492–704 nm) for
aCDOM (440) modeling (Table 3).

Table 3. Central wavelength (nm) and spatial resolution (m) of the S2-MSI bands used in this study.

S2-MSI Spectral Bands Blue2
B2

Green
B3

Red1
B4

Red2
B5

SWIR1
B11

central wavelength (nm) 492 560 665 704 1614
spatial resolution (m) 10 10 10 20 20

Level-1 S2 MSI images (MSI-L1C) were downloaded from the ESA’s Scientific Data
Hub [53]. All the MSI-L1C data falling within the in-situ sampling dates were processed.

MSI-L1C data were re-sampled at 20 m and processed to generate L2 products (i.e.,
Rrs(λ)) via the ACOLITE software (version 20220222) [54]. To derive atmospherically
corrected L2 data, the multi-band “dark spectrum fitting” (DSF) method has been used
since it was properly designed for aquatic remote sensing applications, especially in coastal
and inland waters [55]. Furthermore, a sun glint correction to the MSI data was applied by
adopting a SWIR-based threshold (pixels with sea surface reflectance at 1600 nm ≥ 0.11
were excluded) that is user-tunable within the ACOLITE tool [55].

Afterward, a fixed threshold (at 1600 nm) was applied to identify land/cloud pixels to
be excluded from further processing. The latter procedure allowed for the MSI-L2 Rrs(λ)
retrievals as input variables for the aCDOM (440) models.

2.4. CDOM Estimation Algorithms

Before developing a new customized aCDOM (440) model, we first assessed the accuracy
of two literature algorithms, namely an empirical style [14] and a semi-analytical one [27].
Among the empirical models viable in literature and tested by recent works [21,56], we
selected the Ficek et al. [14] algorithm owing to its superior statistical indicators and error
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metrics within the satellite-in situ match-ups [56]. Such an algorithm relies on a band ratio
of Green to Red, where aCDOM (440) can be defined as follows:

aCDOM(440) = 3.65 ∗
(

Rrs(570)
Rrs(655)

)−1.93
, (4)

Concerning the semi-analytical algorithms, we evaluated the QAA-CDOM [27] consider-
ing its proved suitability also for waters with low CDOM values (aCDOM (440) < 1 m−1) [27].
The QAA-CDOM scheme was developed from the original QAA [15,16], namely a se-
quential step-based scheme characterized by empirical (between Rrs and Inherent Optical
Properites-IOPs) and analytical relationships.

Steps of the QAA-CDOM (version 5–V5) procedure can be found in Appendix A. For
brevity, aCDOM (440) can be estimated from the reported IOPs as follows:

ap(440) = 0.63 ∗ b0.88
bp , (5)

aCDOM(440) = a(440)− aw(440)− ap(440), (6)

where a, ap, and aw are total, particulate, and pure water absorption, respectively, and
bbp is the particulate backscattering. The above-mentioned aCDOM (440) algorithms were
implemented on the in situ Rrs(λ) data considering the availability of a large enough dataset
of measurements over the investigated area.

2.5. Model Calibration and Validation

The development of a PL-tuned aCDOM (440) model on S2-MSI data relies on calibra-
tion/validation (cal/val) steps. Before calibration, a preliminary procedure was required
to simulate the S2-MSI bands from the in-situ measured Rrs(λ) spectra. According to the
spectral response functions of the S2-MSI bands [57], SRF(λ), we applied the following
formula [58]:

Rrse(i) =

∫ λmax
λmin SRF(λ)Rrs(λ)dλ∫ λmax

λmin SRF(λ)dλ
, (7)

where Rrse(i) is the equivalent remote sensing reflectance for i-band of S2-MSI while Rrs(λ)
is the in situ measured one; λmin and λmax are the lowest and highest wavelengths within
the S2-MSI band range, respectively.

The subsequent cal/val procedures were performed considering separately the whole
PL and the two sub-areas. For the three investigated regions (i.e., PL, West, and East) we
randomly selected two independent and homogenous (i.e., with the same seasonally-based
percentage of samples) datasets for calibration (70% of the dataset) and validation (30%
of the dataset) aimed at defining customized MSI-based aCDOM (440) models. Finally,
the performance of the S2-MSI-derived aCDOM (440) models was evaluated by validation
match-ups with corresponding in situ aCDOM (440) measurements.

Performance Analysis of aCDOM (440) Models

The performance assessment of the aCDOM (440) models firstly concerned the two
literature-selected algorithms (Equations (4)–(6)). In this case, we did not apply any specific
criteria for the match-up analysis because of the spatiotemporal concurrency of in situ
Rrs—aCDOM (440) data used.

Concerning the assessment of the S2-MSI-derived band ratios and aCDOM (440) models,
we considered the mean values within 3 × 3-pixel windows (hereinafter S2-MSI extracts)
centered over the sampling locations. To ensure the best quality of data for validation, we
retained only the S2-MSI extracts having a 50% minimum of valid pixels (i.e., at least 5 over
the 9 pixels in the 3 × 3-pixel windows) [59]. Regarding the temporal criterion, we used a
narrow time window (i.e., no more than ±3 h) for determining time proximity between in
situ and S2-MSI data [59].



Remote Sens. 2023, 15, 5718 8 of 20

The accuracy assessment was performed by using the following regression indices
and error metrics, namely the average ratio of satellite/modeled-to-in situ data (r), the
average absolute (unsigned) percent difference (APD), the root-mean-square error (RMSE),
the percentage root mean square error (%RMSE), and the determination coefficient (R2).
They are defined as follows:

r =
1
N∑N

i=1 (
xi

yi
), (8)

APD = 100
1
N∑N

i=1 (
|xi − yi|

yi
), (9)

RMSE =

√
1
N∑N

i=1(xi − yi)
2, (10)

%RMSE = RMSE ∗ 100 ∗N

∑N
i=1 yi

, (11)

wherein xi is the ith satellite/modeled value, yi is the ith in situ measurement, and N is the
number of samples.

3. Results
3.1. Assessment of aCDOM (440) Algorithms

The two aCDOM (440) algorithms [14,27] revealed poor suitability in retrieving accurate
aCDOM (440) estimations for the PL waters (aCDOM (440) < 1 m−1). The match-up analysis
exhibited a clear overestimation for both the two models, as shown in Figure 3a,b.
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The regression indices and error metrics for the two algorithms are reported in Table 4.

Table 4. Regression indices and error metrics for the Ficek et al. [14] and QAA-CDOM [27] algorithms.
* Represents a statistically significant p-value < 0.001.

Band Ratio R2 r APD RMSE n

Ficek et al. [14] 0.23 * 1.93 93.03 0.22 48

QAA-CDOM [27] 0.26 * 1.65 65.15 0.14 48

The two aCDOM (440) models exhibited low performance, with R2 between 0.23 and
0.26 and a strong overestimation and were proved by the r values ranging between 1.65
and 1.93 as well as the high values of APD (65.15–93.03%) and RMSE (0.14–0.22 m−1).

The achieved results suggested the need to define a customized aCDOM (440) model
that accounts for the PL optical properties. Considering the lack of measured in situ IOPs
(e.g., phytoplankton absorption coefficient, aph(λ) and/or particulate backscattering, and
bbp (λ)), we aimed at developing a customized aCDOM (440) model based on an empirical-
style algorithm by adopting the following cal/val procedures.

3.2. Model Calibration with In Situ Rrs(λ) Data

Within the calibration phase, the most suitable mathematical functions were assessed
to establish relationships between in situ Rrse (i.e., equivalent Rrs for S2-MSI bands) band
ratios and measured aCDOM (440) values. Four literature band ratios (within the Blue–Red
spectral range), namely B3/B4 [33], B3/B5 [36], B4/B2 [8], and B5/B2 [30], were retained for
regression analyses. For each band ratio, the best-fit functions (i.e., linear, exponential, and
power) recording the highest regression scores are reported in Table 5 with the distinction
between the whole PL and the two subregions.

Table 5. Calibration models for retrieving aCDOM (440) based on in situ S2-MSI-simulated band ratios.
* Represents a statistically significant p-value < 0.001.

Dataset Band Ratio Function Calibration Model R2 RMSE n

PL

B3/B4 exponential y = 0.347 × exp(−0.16x) 0.8 * 0.016 28

B3/B5 linear y = −0.016x + 0.269 0.79 * 0.0161 28

B4/B2 power y = 0.291x0.537 0.79 * 0.0162 28

B5/B2 power y = 0.268x0.348 0.75 * 0.0181 28

West subset

B3/B4 linear y = −0.031x + 0.3 0.87 * 0.012 15

B3/B5 linear y = −0.015x + 0.262 0.84 * 0.0147 15

B4/B2 power y = 0.275x0.505 0.79 * 0.0149 15

B5/B2 power y = 0.251x0.312 0.78 * 0.0158 15

East subset

B3/B4 exponential y = 0.424 × exp(−0.2x) 0.88 * 0.0121 13

B3/B5 linear y = −0.019x + 0.293 0.88 * 0.0122 13

B4/B2 exponential y = 0.091 × exp(1.68x) 0.92 * 0.009 13

B5/B2 linear y = 0.302x + 0.089 0.93 * 0.009 13

From Table 5, all the best fit functions generally showed a high determination coeffi-
cient (R2 ≥ 0.75) between in situ S2-MSI-simulated band ratios and aCDOM (440). However,
when analysis was conducted according to the sub-region division (West and East subset), a
further improvement in the correlation was achieved. Based on such a subset distinction, R2

shifted from a maximum of 0.8 (for the whole PL) to a maximum of 0.93 and RMSE from a
minimum of 0.016 to a minimum of 0.009 m−1 recorded in the East subset. Focusing on the
different band ratios, B3/B4 showed the best regression metrics in the PL and West subsets
via the exponential and linear best-fit functions, respectively (Figure 4a,b). Otherwise, a
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linear relationship between B5/B2 and aCDOM (440) recorded the best performance in the
East subset, as shown in Figure 4c.
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3.3. Model Validation with S2-MSI Data

As a first step of the validation phase, a specific match-up analysis was performed to
evaluate the accuracy of the S2-MSI-derived band ratios with the corresponding in situ ones.
According to the previously defined temporal criterion (i.e., ±3 h), only the S2-MSI-Rrs(λ)
imagery acquired on 14 June 2017 and 12 October 2017 were retained for such an analysis.
Figure 5 shows the match-up results for the following band ratios, namely B3/B4, B3/B5,
B4/B2, and B5/B2.
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The regression indices and error metrics for the investigated band ratios are listed in
Table 6.

Table 6. Regression coefficients and error metrics for the four band ratios considered. * Represents a
statistically significant p-value < 0.001.

Band Ratio R2 r APD %RMSE

B3/B4 0.77 * 1.03 9.86 11.91

B3/B5 0.74 * 0.89 16.90 23.88

B4/B2 0.94 * 1.15 15.94 19.98

B5/B2 0.78 * 1.41 41.62 48.25

All the four band ratios showed acceptable regression indices with a determination co-
efficient R2 ≥ 0.74. Most of the scatterplots revealed a quite good correlation (with r values
between 0.89 and 1.15), except for the B5/B2 ratio, which exhibits a clear overestimation
(r = 1.41).

The error metrics highlighted clear differences among the investigated band ratios thus
showing the best accuracy of the B3/B4 band ratio (APD of 9.86%) and the worst one for
B5/B2 (%RMSE of 48.25%). Such results revealed that the B5/B2-based calibration model
is not suitable for exportation on S2-MSI data as it could determine large APD or RMSE
values in the S2-MSI-derived aCDOM (440) retrievals. Although the in situ B5/B2 revealed
the best regression metrics of calibration for the East subset, we adopted, for validation, the
B3/B4-based aCDOM (440) model (via exponential best fit), ensuring a comparable score in
the regression rank (Table 5).
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Based on the achieved results, we selected the most suitable aCDOM (440) calibration
models for the final validation phase. The three aCDOM (440) models refer to the whole PL,
the West and East subset, respectively, and are defined as following:

aCDOM(440) = 0.347× exp
[
−0.16×

(
B3
B4

)]
, (12)

aCDOM(440) = −0.031
(

B3
B4

)
+ 0.3, (13)

aCDOM(440) = 0.424× exp
[
−0.2×

(
B3
B4

)]
, (14)

Fixed vs. Switchable PL-Tuned Models

The above-mentioned empirical relationships (Equations (12)–(14)) allowed at defining
a fixed or switchable scheme of model for aCDOM (440) retrievals by S2-MSI data. The aCDOM
(440) model defined by the Equation (12) represents a fixed scheme for all the pixels within
the whole PL. The Equations (13) and (14) are used to define a “switchable” scheme of
model on which the first algorithm (Equation (13)) is applied to the West subset pixels, while
the second one (Equation (14)) to the East subset pixels. By exploiting an informative layer
relied on a pixel membership to the two sub-regions (Figure 2), one of the two algorithms
(i.e., Equation (13) or (14)) is alternatively implemented and automatically applied.

Figures 6 and 7 show the S2-MSI aCDOM (440) maps of 14 June 2017 and 12 October 2017
used for validation match-ups of the fixed (Equation (12) and switching (Equations (13) and (14))
aCDOM (440) models, respectively.
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Figure 6. S2-MSI aCDOM (440) maps of 14 June 2017 for the CDOM fixed model (a) and the switching
one (b), respectively. The black and red dots are the validation sampling stations falling into the West
and East subsets, respectively.

Looking at Figures 6 and 7, PL is generally characterized by low-CDOM waters (aCDOM
(440) ≤ 0.25 m−1) with higher values in autumn than in summer as expected for reservoirs
impacted by river flow fluctuations. Regardless of the model considered, aCDOM (440)
shows a well-defined spatial variability with higher values in the PL’s Western side than
the Eastern as already noted by the in situ aCDOM (440) measurements (Table 2).



Remote Sens. 2023, 15, 5718 13 of 20Remote Sens. 2023, 15, x FOR PEER REVIEW 13 of 20 
 

 

 
Figure 7. S2-MSI aCDOM (440) maps of 12 October 2017 for the CDOM fixed model (a) and the 
switching one (b), respectively. The black and red dots are the validation sampling stations falling 
into the West and East subsets, respectively. 

Looking at Figures 6 and 7, PL is generally characterized by low-CDOM waters 
(aCDOM (440) ≤ 0.25 m−1) with higher values in autumn than in summer as expected for 
reservoirs impacted by river flow fluctuations. Regardless of the model considered, aCDOM 
(440) shows a well-defined spatial variability with higher values in the PL’s Western side 
than the Eastern as already noted by the in situ aCDOM (440) measurements (Table 2). 

Among the two investigated models, the switching model exhibited, on 14 June 2017, 
more pixels with higher aCDOM (440) values (depicted in yellow in Figure 6b) in the West 
sub-region. On 12 October 2017, the fixed model showed higher aCDOM (440) values (≈0.25 
m−1) spatially distributed over the PL west-central zone. On both the validation days the 
East subset exhibited comparable aCDOM (440) spatial patterns with values not higher than 
0.15–0.17 m−1. 

Both models showed a good agreement between estimated and measured aCDOM 
(440), even if the switching model performed better than the fixed one, exhibiting a higher 
determination coefficient R2 (0.80 against 0.7), as shown in Figure 8a,b. 

The regression indices and error metrics for the two PL-tuned aCDOM (440) models are 
summarized in Table 7. 

Table 7. Regression indices and error metrics of the two PL-tuned aCDOM (440) models. * Represents 
a statistically significant p-value < 0.001. 

Type Dataset 
CDOM  

Algorithm R2 r RMSE %RMSE APD 

fixed PL exponential 0.7 * 0.98 0.0194 10.52 8.75 

switching 
West linear 

0.8 * 0.99 0.0155 8.38 6.79 
East exponential 

As shown in Table 7, both customized aCDOM (440) models exhibited APD values well 
below 10%, confirming a satisfactory accuracy in aCDOM (440) retrievals. Within an in-depth 
analysis, the implementation of a switching aCDOM (440) model (Equations (9) and (10)) 
allowed for a further improvement of the accuracy scores with APD decreasing from 
8.75% to 6.79% and RMSE from 0.0194 m−1 to 0.0155 m−1. 

Figure 7. S2-MSI aCDOM (440) maps of 12 October 2017 for the CDOM fixed model (a) and the
switching one (b), respectively. The black and red dots are the validation sampling stations falling
into the West and East subsets, respectively.

Among the two investigated models, the switching model exhibited, on 14 June 2017,
more pixels with higher aCDOM (440) values (depicted in yellow in Figure 6b) in the West
sub-region. On 12 October 2017, the fixed model showed higher aCDOM (440) values
(≈0.25 m−1) spatially distributed over the PL west-central zone. On both the validation
days the East subset exhibited comparable aCDOM (440) spatial patterns with values not
higher than 0.15–0.17 m−1.

Both models showed a good agreement between estimated and measured aCDOM
(440), even if the switching model performed better than the fixed one, exhibiting a higher
determination coefficient R2 (0.80 against 0.7), as shown in Figure 8a,b.

The regression indices and error metrics for the two PL-tuned aCDOM (440) models are
summarized in Table 7.

Table 7. Regression indices and error metrics of the two PL-tuned aCDOM (440) models. * Represents
a statistically significant p-value < 0.001.

Type Dataset CDOM
Algorithm R2 r RMSE %RMSE APD

fixed PL exponential 0.7 * 0.98 0.0194 10.52 8.75

switching
West linear

0.8 * 0.99 0.0155 8.38 6.79
East exponential

As shown in Table 7, both customized aCDOM (440) models exhibited APD values well
below 10%, confirming a satisfactory accuracy in aCDOM (440) retrievals. Within an in-depth
analysis, the implementation of a switching aCDOM (440) model (Equations (9) and (10))
allowed for a further improvement of the accuracy scores with APD decreasing from 8.75%
to 6.79% and RMSE from 0.0194 m−1 to 0.0155 m−1.

Based on these findings, the adoption of a TSM-driven sub-region division of PL re-
sulted in a suitable methodological approach to reach more accurate aCDOM (440) retrievals.
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4. Discussion

Retrieving CDOM estimations and understanding its variability is crucial for mon-
itoring and managing inland waters. CDOM retrievals in such waters are affected by
different variables, such as hydrology, topography, and interactions between bio-optical
in-water constituents [60,61]. Within this framework, different studies [62–66] have sug-
gested the adoption of optical water classifications to improve retrieval models and/or
define class-specific algorithms for bio-optical parameters, such as CDOM. Most of these
studies have mainly divided waters into two types, namely clear and turbid, based on
different indices or turbidity (or TSM values) levels [8,67]. Such fixed threshold approaches
are site-dependent and result poorly suitable to be exported in other geographical regions
with different turbidity conditions. The TSM-driven unsupervised classification proposed
by Ciancia et al. [40] allowed for the overcoming of these limitations, because of its self-
adaptive rationale that is not based on site-specific in situ data [40]. Within the classification
scheme, the exploitation of multi-year TSM climatological monthly means as input spec-
tral bands allowed for inherently incorporating information on TSM-connected forcings.
Seasonal fluctuations of river discharges and bathymetry-induced erosion/sediment resus-
pension phenomena influenced the derived TSM climatological patterns [40]. Although
the PL sub-division was methodologically obtained through a TSM-driven classification,
the identification of sub-regions (Figure 2) was induced also by the eastward changes of
topographic (i.e., bathymetry) and hydrological features (i.e., inflowing rivers) [40]. In
this framework, the identification of areas exposed to different hydrological, topographic,
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and optical properties can allow for adopting more rigorous cal/val procedures aimed at
refining CDOM algorithms and achieving more accurate estimations.

4.1. CDOM Modelling

The development of a PL-customized aCDOM (440) model requires a preliminary
performance assessment of the already published algorithms/models, considering there is
no algorithm suitable for lakes at the global scale [56].

Among the empirical and semi-analytical algorithms, we selected two aCDOM (440)
models with the best performance rank for the algorithm and water type according to
the recently published European Space Agency (ESA) report [56]. However, both the
algorithms showed large overestimations (APD higher than 65.15%) of aCDOM (440) for PL,
confirming their sensitivity to changes in boundary conditions and suggesting the need to
define a customized model. The lack of measured in situ IOPs (e.g., aph(λ) and/or bbp(λ))
did not allow for tuning a QAA-based model but the development of an empirical-style
aCDOM (440) algorithm. The high uncertainties recorded by the Ficek et al. algorithm [14]
prompted us to not work on the tuning of regression coefficients but to consider both other
literature band ratios and suitable best-fit functions (i.e., linear, exponential, and power)
within the calibration phase.

The considered four band ratios could have profitably been adopted to estimate
aCDOM (440), as all the best-fit functions generally showed a good determination coefficient
(R2 ≥ 0.7) within regression analyses. The choice to separately consider the Western and
Eastern sub-regions resulted profitable improvement in the performance of the aCDOM
(440) models with noticeable differences in regression and error metrics (R2 up to 0.93
and RMSE of approximately 0.009 m−1). The achieved results corroborated the need to
identify sub-areas with similar bio-optical and topographical features to develop more
customized and accurate aCDOM (440) models. However, only the match-up analysis
between S2-MSI-derived and in situ band ratios allowed for a clear selection of the most
suitable one for exportability on S2-MSI data. Such an analysis revealed the B3/B4 band
ratio as the most suitable for estimating aCDOM (440) by S2-MSI data with good accuracy
(APD of 9.86%). On the other hand, the Blue-based band ratios (i.e., B5/B2) showed
minor capabilities for this purpose, probably due to the proven lower accuracy of the
atmospheric correction at the blue wavelengths [12,40]. Furthermore, in this spectral region,
the overlapping of phytoplankton (i.e., chlorophyll-a) and suspended matter (i.e., TSM)
absorption spectra with that of CDOM could make difficult its retrievals in inland water
bodies [68,69]. Selecting a relatively longer wavelength (>600 nm) as the denominator in the
band ratio proved to significantly improve the accuracy of the empirical models in inland
waters [29]. Since TSM usually presents high backscattering at these longer wavelengths,
the exploitation of Red/Near Infrared bands allows for better accounting for particulate
matter [70].

As per the validation phase, the two proposed model configurations (i.e., fixed or
switching) ensured both satisfactory results with APD values well below 10%. Within a
comparative analysis between the customized aCDOM (440) models, the switching scheme
showed a better performance (with a minimum APD value of 6.79%) but required a fur-
ther step in satellite data processing. Although the switching model needs a preliminary
informative layer to work (i.e., map of the PL sub-regions), its dynamic and automated algo-
rithm selection allows for exploiting the complementarity of two optimization algorithms
by switching between them through the pixel-based membership to the two sub-regions.
Despite its good accuracy, the customized switching model should be cautionary adopted
especially close to the deltaic and shallower PL’s Western zone. In this sub-region, water
level drawdown could determine areas of emergent bottom with frequent episodes of
erosion and/or deposition [40]. Increases in reflectance contribution due to bottom and pos-
sible emergent vegetation could cause sources of noise in the Rrs(λ) spectra with potential
implications on the derived switching aCDOM (440) model.



Remote Sens. 2023, 15, 5718 16 of 20

4.2. Future Developments

This work aimed at defining a PL-customized switching model for aCDOM (440) re-
trievals by S2-MSI data. From a future perspective, the adoption of a B3/B4-based aCDOM
(440) model could enable its easy exportability on Landsat 8/9 (L8/9)-Operational Land
Imager (OLI). In particular, the spectral proximity of the S2-MSI Green (560 nm) and Red
(665 nm) bands to the corresponding L8/9-OLI ones (at 561 nm and 655 nm, respectively)
should facilitate the inter-calibration procedure to develop an MSI–OLI combined dataset
of aCDOM (440) retrievals [40]. The joint exploitation of L8/9-OLI and S2-MSI data can
contribute to minimizing any acquisition gap, thus ensuring an average revisit time of
2.9 days [71]. Finally, the potential exportability of such a switching aCDOM (440) model on
Landsat8/9-OLI data can provide great advantages also for water quality monitoring [72]
aimed at ensuring the good quality status of water bodies, as requested by the Water
Framework Directive (WFD, 2000/60/EC and amendments).

Furthermore, the OLI-like spectral configuration (especially for the Red and Green
bands) of long-term satellite-sensor systems such as Landsat 5 Thematic Mapper (1984–2011)
and Landsat 7 Enhance Thematic Mapper plus (1999–2022) can allow for a potential inves-
tigation of about 40-year aCDOM (440) data [40]) enabling the assessment of climate-related
or human-induced PL water quality changes.

In this framework, an open challenge remains the assessment of the potential effects
of land transformation on inland water quality based on long-term analysis [73]. Areas
surrounding artificial lakes have been subjected to different land use/cover dynamics in the
last 30 years. A progressive forest expansion has been observed, mainly determined by land
abandonment phenomena of less-favored agricultural areas [74]. Variations in soil structure
and land use patterns can affect ecological, geochemical processes and hydrological vari-
ables (e.g., surface runoff, watershed precipitation, and river discharges) whose fluctuations
usually affect CDOM variability [75,76]. Within a long-term analysis, understanding the
potential relationship between land use changes and CDOM inter-annual variability plays
a key role in considering the increasing inflow of terrestrial and anthropogenic CDOM into
downstream-linked reservoirs [77].

5. Conclusions

In this study, we defined a PL-tuned aCDOM (440) model by S2-MSI data adopting a
previously achieved classification scheme on satellite TSM data [40].

The unsatisfactory performance (R2 ≤ 0.26 and APD ≥ 65.15%) of two published
aCDOM (440) algorithms (i.e., Ficek et al. [14] and QAA_CDOM [27]) suggested the develop-
ment of a PL-customized version of S2-MSI aCDOM (440) model by using in situ radiometric
data and aCDOM (440) measurements.

The regression analyses between in situ band ratios and aCDOM (440) measurements
allowed for defining the most suitable aCDOM (440) calibration models. The Green-to-Red
(B3/B4 and B3/B5) and Red-to-Blue (B4/B2 and B5/B2) band ratios showed generally good
performance (R2 ≥ 0.75), further improved when analysis was conducted according to the
sub-region division (R2 up to 0.93 and a minimum RMSE of approximately 0.009 m−1).
Match-ups between S2-MSI-derived and in situ band ratios revealed the potential exporta-
bility of such calibration models on S2-MSI data. The unsatisfactory accuracy by B5/B2 and
the good performance of B3/B4 resulted in the validation of two B3/B4-based aCDOM (440)
models, namely the fixed and the switching one, which is based on a pixel membership
to the two PL sub-regions identified by the TSM-driven classification. Both customized
aCDOM (440) models exhibited satisfactory accuracy in aCDOM (440) retrievals, with APD
values well below 10%. Within an in-depth analysis, the switching model recorded an
improved accuracy with APD decreasing from 8.75% to 6.79% and RMSE from 0.0194 m−1

to 0.0155 m−1 as well.
Based on the achieved findings, the identification of areas exposed to different TSM patterns,

and hydrological and topographical features can allow for adopting more rigorous cal/val
procedures aimed at refining algorithms and achieving more accurate aCDOM (440) retrievals.
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Appendix A

All sequential steps for QAA-CDOM (v5) are listed below (Equations (A1)–(A10)):

rrs(λ) =
Rrs(λ)

0.52 + 2.1 ∗ Rrs(λ)
, (A1)

u(λ) = 1− exp

(
−6.807r1.186

rs(λ)

0.31− rrs(λ)

)
, (A2)

a(560) = aw(560) + 10−1.169−1.468χ+0.274χ2
, (A3)

χ = log10

 Rrs(443) + Rrs(490)

Rrs(560) + 2 Rrs(665)
Rrs(490)Rrs(665)

, (A4)

bbp(560) =
u(560) ∗ a(560)

1− u(560)
− bbw(560), (A5)

bbp(443) = bbp(560)(
560
443

)
Y

, (A6)

Y = 2.2(1− 1.2exp
(
−0.9

rrs(443)
rrs(560)

)
), (A7)

a(443) =
(1− u(443))

(
bbw(443) + bbp(443)

)
u(443)

, (A8)

ap(443) = 0.63bbp(560)0.88, (A9)

aCDOM(443) = a(443)− aw(443)− ap(443) (A10)

where rrs(λ) is the remote sensing reflectance just below water surface, aw is the pure water
absorption [78,79], bbw is the pure water backscattering [80]. In this work, we adopted
aw(560) = 0.062 m−1, bbw(560) = 0.000779 m−1.
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