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Abstract: Monocular depth prediction research is essential for expanding meaning from 2D to
3D. Recent studies have focused on the application of a newly proposed encoder; however, the
development within the self-supervised learning framework remains unexplored, an aspect critical
for advancing foundational models of 3D semantic interpretation. Addressing the dynamic nature
of encoder-based research, especially in performance evaluations for feature extraction and pre-
trained models, this research proposes the switchable encoder learning framework (SELF). SELF
enhances versatility by enabling the seamless integration of diverse encoders in a self-supervised
learning context for depth prediction. This integration is realized through the direct transfer of feature
information from the encoder and by standardizing the input structure of the decoder to accommodate
various encoder architectures. Furthermore, the framework is extended and incorporated into an
adaptable decoder for depth prediction and camera pose learning, employing standard loss functions.
Comparative experiments with previous frameworks using the same encoder reveal that SELF
achieves a 7% reduction in parameters while enhancing performance. Remarkably, substituting
newly proposed algorithms in place of an encoder improves the outcomes as well as significantly
decreases the number of parameters by 23%. The experimental findings highlight the ability of SELF
to broaden depth factors, such as depth consistency. This framework facilitates the objective selection
of algorithms as a backbone for extended research in monocular depth prediction.

Keywords: structure from motion; self-supervised learning; monocular depth estimation

1. Introduction

Monocular depth prediction studies have demonstrated their significance in various
sectors, including autonomous robots, surveillance, healthcare, construction, and pro-
duction. These studies are fundamental in extending the semantic interpretation of 2D
data, facilitating advanced analyses such as 3D object detection, tracking, volumetric pre-
diction, and ground detection for specific industrial requirements. Although monocular
cameras can acquire data from a broad spectrum of environments, including car black
boxes and CCTV systems, the challenge of dense depth prediction persists, primarily due
to information loss during data collection.

The progression of depth prediction research originated from the hypothesis that humans
can ascertain relative distances in a single image through learned experience [1,2]. This
premise was adapted into a learning-based challenge for artificial intelligence algorithms,
yielding remarkable results in depth prediction. Progress in research in stereo camera
data suggests a shift from data-driven supervised learning to self-supervised learning,
addressing issues such as the high cost of training data production and the scarcity of
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depth data from LiDAR sensors [3–6]. Earlier studies aimed to transcend the constraints of
data acquisition and the reliance on stereo cameras by incorporating monocular camera
data [7–11]. Nonetheless, this shift introduced several new research challenges:

(1) Estimation of relative poses between images;
(2) Absence of ground truth for direct loss calculation, necessitating the creation of

synthetic data;
(3) Extraction of data that impedes learning, necessitating the removal of featureless or

non-displaced data;
(4) Consideration of biased occlusions caused by moving objects and camera move-

ments [11];
(5) Accommodation for non-common data between two images arising from alterations

in camera pose.

Previous research efforts have jointly trained a camera pose network to address
problem (1), leveraging feature matching between two consecutive datasets and design-
ing around depth prediction loss functions. Challenges (2), (3), and (5) were tackled by
enhancing the synthetic data generation module and refining the loss function for self-
supervised learning applications, while problem (4) was addressed using static scene
data [7,12]. The separate employment of optical flow [2,8,11] and segmentation prediction
algorithms [13–15] has been observed, with recent studies shifting towards loss-function-
based methodologies [16,17].

Despite notable advancements in monocular depth prediction research, the field
still lacks a comprehensive end-to-end learning framework. Prior studies have primarily
concentrated on decoder research, adopting a model where a newly proposed algorithm
is pre-trained for feature extraction and then implemented as a foundational element.
However, accurately evaluating the distinct contributions of the encoder, user-defined
decoder, loss function, synthetic data generation module, training methodology, and
camera pose algorithm to the enhancement of depth prediction remains a formidable
challenge. The requirement to modify or rebuild all components of self-supervised learning
in response to the introduction of a new encoder further complicates extended research in
monocular depth predictions.

In our study, we perform an exhaustive review of previous monocular self-supervised
learning research and introduce the switchable encoder learning framework (SELF), a
self-supervised learning framework designed to promote the progression of monocular
depth prediction studies. SELF integrates an adaptable decoder, enabling the immediate
application of algorithms with demonstrated efficacy in feature extraction for classification
tasks as encoders. The loss function and synthetic data generation processes are tailored
to the decoder, eliminating the need for extensive alterations. Although self-supervised
learning methods encounter limitations in concurrent depth and pose prediction, our
approach enhances pose prediction accuracy through a specialized loss function developed
for both camera pose and depth prediction. This method effectively advances the depth
factor, known as depth consistency.

The contributions of this study are outlined as follows:

(1) By integrating components from previous self-supervised learning research with the
newly introduced decoder into our self-supervised learning framework, the proposed
encoder becomes readily applicable to dense prediction tasks;

(2) Adaptive decoders, characterized by standardized long skip connections, facilitate the
utilization of variously structured encoders, including pre-trained models, without
necessitating adjustments. This permits an unbiased comparison of feature extraction
capabilities in dense prediction;

(3) Revolving around the adaptive decoder, each element is constructed with standard-
ized components, enhancing its utility for further 3D research and streamlining the
process of selecting a backbone, thereby reducing additional research time.
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The structure of this paper is organized in the following manner. Section 2 delineates
the components of self-supervised learning in monocular depth prediction, drawing on
previous research; this includes data preprocessing, augmentation, and synthetic image gen-
eration, as well as the encoder, decoder, loss function, and camera pose prediction. Section 3
describes the proposed self-supervised learning framework, following the sequence estab-
lished in Section 2. Section 4 involves a comparative analysis of the performance of our
learning framework through experiments; it examines the depth performance in relation to
the switchable encoder and elucidates how the expressive capability of the decoder and the
scale depth loss function within the learning framework contribute to the outcomes.

2. Related Works

SELF primarily encompasses synthetic data for self-supervised learning (Section 2.1),
an encoder (Section 2.2), a decoder (Section 2.3), self-supervised loss functions including
depth consistency (Section 2.4), and camera pose prediction (Section 2.5). This section
provides a comparative analysis of existing research on each of these elements.

2.1. Synthetic Data for Self-Supervised Learning

Self-supervised learning, a method that derives ground truth from provided data,
offers a cost-efficient alternative for reducing data labeling expenses and addresses the
challenge of diversity in the training dataset [18,19]. In scenarios lacking direct ground
truth comparisons, the creation of synthetic input data based on algorithm-predicted data
becomes a crucial aspect of monocular depth self-supervised learning [20–22].

Previous studies initially implemented self-supervised learning using stereo camera
data. For a pair of data points (ILe f t, IRight), researchers established a correlation via repro-
jection, a geometric transformation based on fixed camera intrinsic parameters (K) [23,24].
This method involved employing a loss function by generating a composite image from one
image using the data predicted with the algorithm [25,26], further detailed in Section 2.4.
Through this process, the algorithm not only interprets the disparity map of one image but
also learns the fixed geometric elements of the two cameras. Subsequently, the prediction
task involves generating a disparity map that includes the camera characteristics learned
using only one image.

This methodology was subsequently expanded to monocular camera data, character-
ized by inconsistent relative relationships between adjacent images. As a result, monocular
depth prediction requires the concurrent prediction of camera pose, leading the learning
framework to generate synthetic data based on these poses [17,27]. The generation of geo-
metric synthetic data has become standard in end-to-end learning frameworks, achieved
through pixel sampling synthesis algorithms or differentiable bilinear interpolation. To
tackle inconsistencies due to luminance errors and camera pose changes during learning,
algorithms predict two or more consecutive datasets simultaneously, creating synthetic data
for comparison using averages or minimum values [17]. Another approach involves com-
paring prediction results for three datasets in pairs and then performing cross-comparisons
to enhance training stability [27].

Recent efforts have involved the creation of additional synthetic data through separate
networks, such as optical flow or classification. However, this method has presented chal-
lenges in objectively assessing the monocular depth prediction capabilities of the proposed
algorithms. To mitigate the influence of other prediction algorithms on monocular depth
prediction performance, recent research has pivoted to generating synthetic data based on a
loss function. This approach entails creating synthetic data for areas of adjacent data that are
incomparable and affected by camera movement and applying a loss function to minimize
interference with learning, thus prioritizing the extraction of available data [8,11,16,17].

Prior research integrated these features for self-supervised learning, complicating the
evaluation of monocular depth predictions and hindering the selection of suitable algo-
rithms for more comprehensive studies. This paper addresses these issues by incorporating
normalization through the preprocessing of input data and a module for synthetic data



Remote Sens. 2023, 15, 5739 4 of 25

generation based on geometric principles within the learning framework. Consequently,
it extracts available data without relying on a separate network, generates weighted data
for moving objects, and modularizes it according to the decoder’s structure presented in
this paper.

2.2. Encoder

Dense prediction tasks in computer vision frequently utilize encoder-decoder struc-
tures to reconstruct the dimensions of input data. In this paradigm, encoders often use
pre-trained classification networks, commonly referred to as backbones, for feature extrac-
tion. Monocular depth prediction follows a similar structure, where the encoder’s efficiency
in feature extraction and the decoder’s ability to reproduce the extracted information sig-
nificantly impact performance [28,29]. The focus on encoder performance stems from the
challenge of retrieving information lost during the feature extraction process.

Initial research in monocular depth prediction explored depth data reconstruction us-
ing a VGG network with stacked layers serving as both encoders and decoders [3,4,6,11,23].
Despite this, limitations in detailed expression persisted, leading to subsequent studies
aimed at improving depth estimation. Techniques such as learning residuals, introduc-
ing skip connections for each layer to reduce parameters and increase learning stabil-
ity, and adopting the U-Net structure for a more precise depth description were investi-
gated [15,30,31]. The combination of ResNet and U-Net structures has become increasingly
prevalent in dense prediction task research [5,16,24].

To address overfitting associated with increased model size in the basic ResNet struc-
ture, recent research has concentrated on design modifications. These include integrating
full connections to each layer, implementing dropout layers, batch normalization, and aver-
age pooling layers [30,32,33]. Subsequently, studies have focused on optimization strategies,
encompassing efficient training, model adjustments, and training refinement [34], recently
applied to learning methodologies [30,31,35,36]. The model size is characterized by its
width, network depth, and input data resolution. Research has been conducted to deter-
mine the optimal hyper-parameters using the grid search algorithm [37–40]. Additionally,
a method for facilitating transfer learning by segmenting tasks based on a large pre-trained
model has been proposed [41,42].

This study examines algorithms that replace Recurrent Neural Network (RNN) struc-
tures with self-attention and cross-attention modules [43]. These modules, which segment
images into patches similar to RNN input data, have demonstrated superior performance
in computer vision tasks, outperforming traditional convolutional models in accuracy [44].
Proposals for multiple heads within the attention block cater to diverse interpretations of
data relevance, while residual structures enhance learnability [45,46]. To counteract the loss
of multi-head diversity near bottleneck sparsity, techniques involving re-attention and the
addition of class tokens to image patches have been introduced [47–50].

This paper departs from the encoder–decoder structure prevalent in recent research,
instead focusing on encoder research to augment classification performance and on decoder
research that applies these encoders as pre-trained backbones. This novel approach allows
for the objective evaluation of encoder efficiency by configuring the decoder to support
various encoder architectures, thereby optimizing dense reconstruction performance. Con-
sequently, the study enables the comparative selection of encoder algorithms as backbones
in specialized studies on monocular depth prediction tasks, significantly streamlining the
research process.

In this paper, we examine various encoder structures that are currently prominent in
the field of computer vision and assess their performance through experimental compar-
isons. This includes the classic ResNet [30], EfficientNet2 [38], the Swin Transformer [51]
from the pure self-attention series, and the hybrid convolution and self-attention MPViT [52],
all implemented as switchable encoders.
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2.3. Decoder

The landscape of dense reconstruction research, especially in monocular depth predic-
tion, has seen a significant divergence into two primary areas: encoder research, focusing
on feature extraction, and decoder research, dedicated to dense reconstruction [52–54]. The
architectural design of the decoder is focused on enhancing information in each layer by
integrating details from the encoder via long skip connections, particularly those associated
with the upsampling layers from the compressed receptive field [55–57]. Prior studies
aiming to improve dense reconstruction performance have investigated approaches such as
integrating a pre-trained high-resolution prediction network into the long skip connection
or using an additional network to harness global relationship information from the final
layer of the encoder [52]. Another strategy has been the implementation of a pyramid
decoder, capitalizing on the fact that each layer transmitted from the encoder to the decoder
is proportionally reduced relative to the input data [58–61]. However, there remains a
challenge in distinctly attributing advancements in depth prediction performance to either
a newly proposed encoder, a bespoke decoder structure, or a specific learning method.

Insights derived from previous research have revealed commonalities that inform
effective strategies [58–61]. First, improved performance is attained not by amalgamating
global and local features for a final prediction but by initially generating predictions based
on individual features from the encoder, followed by their integration. Second, convolution
and self-attention series algorithms, similar to those discussed in Section 2.2, create a
layer block structured to proportionally reduce in size relative to the input data, thereby
addressing training challenges. These findings support the preference for a pyramid
structure over a U-Net structure, facilitating the implementation of various techniques
mentioned earlier. The proposed method standardizes the input data of the decoder based
on features from all encoder layers, defining the layer sizes of the decoder as 1/2, 1/4,
1/8, and so on, relative to the input data [58]. A convolutional block adapts the long
skip connections, including the encoder’s final receptive field, to the decoder’s size and
channels [58]. These structural modifications aim to reduce reliance on the encoder structure
through a pyramidal network, arranging data from long skip connections into identical
channels of varying sizes [58–61]. Additionally, a dense network is utilized for depth
prediction across different depth sizes [52–54]. Although pyramid-structured networks
are hierarchical, they may impede information flow, prompting the incorporation of dense
connections from one dense network layer to another to address this issue [53,62,63].
Building an independent decoder maximizes the acceptance and standardization of the
final receptive field, and each layer blocks information from these encoders while also
considering backpropagation for monocular depth learning. Notably, the newly introduced
encoder requires no modifications, as the loss function and synthetic image generation are
dependent on the structure of the decoder.

2.4. Self-Supervised Loss Functions Including Depth Consistency

In the context of monocular camera data, the lack of direct depth ground truth for
comparison has necessitated the use of a 2D-plane-based loss function in previous research.
This challenge is further exacerbated by the necessity to incorporate the learning of the
camera pose algorithm, complicating the application of specialized loss functions focused
on features like lines, surfaces, or vanishing points, as well as those designed for generative
models [64–66].

The fundamental loss function in this context operates on the 2D image plane, with
an enhanced version supplanting optical flow or segmentation networks. This process
involves projecting the predicted depth data onto a two-dimensional plane, combined with
camera pose predictions, and then calculating the difference with subsequent input data to
train the depth network. Past research often refers to these image comparison loss functions
as reprojection loss or reconstruction loss [17,27,67–69]. The pixel-level L1 loss is typically
utilized to compare the planar image reconstructed through depth prediction with the
continuous input image. However, challenges emerge when dealing with data that cannot
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fully reconstruct the scene due to camera movement, leading to the adoption of SSIM
loss functions for assessing pixel similarities. Additionally, a smoothness loss function,
or edge-aware smoothness, is employed to mitigate discontinuities in pixel values that
could hinder learning [27,69,70]. The balance of the smoothness loss is crucial, as excessive
weighting may obscure vital edge information, necessitating experimental fine-tuning in
previous studies.

Furthermore, features extracted from monocular camera data are not uniform, posing
difficulties in directly comparing certain elements, such as the sky or scene-consistent data,
amidst changes in camera pose. To address this, prior research has selectively extracted
valid learning data through a comparison between the synthesized image, based on adjacent
frames, and the input image used for prediction [17,69–71].

An expanded loss function relates to occlusions caused by camera pose changes or
moving objects, a critical aspect of depth prediction. Traditional methods have utilized ap-
pearance loss, inspired by studies using stereo camera data [5,67]. This approach identifies
data not appearing in common due to varying camera positions as occlusions, applying a
low weight to foster learning on occluded data [17,72–74]. There are two variants of this
extended loss function: one is image-based, removing smoothness in the reconstructed
data, ideal for depth prediction; the other is depth-data-based, applying smoothness, better
suited for camera pose prediction. Both versions share the benefit of addressing occlusion
challenges using only input data, negating the need for additional prediction algorithms.

Finally, depending on the decoder design, the final loss function is computed at each
pyramid step to train the network, taking into consideration the incremental weights of
each step [27,58,63,75].

Camera pose prediction typically involves estimating the relationship between two
consecutive datasets with six degrees of freedom (DoF) [76–79]. The primary 2D-plane-
based loss function, as discussed earlier, acts as the central mechanism for training the
camera pose prediction algorithm, while the extended loss function indirectly addresses
occlusions resulting from obscured objects.

The paper focuses on evaluating the performance of camera pose prediction and
occlusion processing loss functions used in studies of camera pose.

2.5. Camera Pose Estimation

In the field of unsupervised monocular depth prediction, incorporating a camera pose
network is crucial for determining the relative positions of cameras [7–11]. A significant
challenge in this area has been achieving accurate six degrees of freedom (DoF) camera
pose predictions [76–79]. Two principal methodologies have been explored: one method
inputs moving objects and depth data directly, while the other utilizes a visual odometry
algorithm based on a distinct mathematical function [9].

The first approach, which aims to simultaneously predict depth and camera pose,
faces difficulties in efficiently managing these dual tasks. The second approach, employing
visual odometry in conjunction with a pre-trained camera pose model, offers improved
performance on given data but often fails to exceed the limitations inherent in mathematical
algorithms [17]. This dependence on specific mathematical algorithms also hinders the
generalizability of camera pose prediction models. A subsequent study introduced a
feature-matching method, which enhanced learning accuracy through an extended loss
function [17,27,70]. This technique has become standard practice in modern self-supervised
learning research.

Contrary to two-stage learning methods or transfer learning utilized in some previous
studies, our research is dedicated to a purely self-supervised learning approach. Through
experimentation, we have found that the implementation of the geometric consistency con-
straint loss function, as adopted in recent camera pose prediction research [17,64,65,70,72],
significantly improves prediction performance. The reduction in loss through geometric
consistency not only addresses the occlusion issue but also bolsters camera pose prediction.
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This enables the accurate forecasting of complete camera trajectories in extended video
sequences, overcoming the scale ambiguity present between successive images.

3. Switchable Encoder Self-Supervised Learning Framework

In our self-supervised learning framework, three consecutive images are used as
inputs. Two sets, (FirstSet: It−1, It) and (SecondSet: It, It+1), are formed from the images,
and the network is trained by calculating the intersection loss ( It−1 → It , It → It−1 ) within
each set and the overlap loss ( It−1 → It , It+1 → It ) between sets. After data preprocessing
and augmentation, SELF employs switchable encoders and adaptive decoders to predict
depths at varying resolutions. It then learns the inverse depth (ranging from 0 to 1), which
accounts for infinite distances like the sky. Thus, the input image and predicted depth data
create a composite of two images and depths based on the predicted camera pose. The loss
function is initially calculated by comparing these to extract uncertain data and generate
weights for moving object data. The network is then trained through backpropagation with
the final loss value. Framework’s organization is depicted in Figure 1.
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Figure 1. Switchable Encoder Self-Supervised Learning Framework. Two sets of three adjacent
images are taken as inputs. They are normalized by preprocessing, and one set (It−1, It) is input
to the depth and camera pose networks. By intersecting the two depth maps output by the depth
network with the two input images, a matrix [R,t] of two relative poses (Pt−1→t, Pt→t−1) is extracted
to generate a composite image and depth. Thus, based on the input image (It−1, It), predicted depth

map (D̂t−1, D̂t), and camera pose, we generate a synthetic image ((
∼
I t−1,

∼
I t)) and a synthetic depth

map (
∼
Dt−1,

∼
Dt), and we apply the loss function. Further, a photometric loss mask (Mp) and geometric

loss mask (Mg) are generated based on the loss function to finally recalculate the loss function.

3.1. Switchable Encoder

The switchable encoders used in this study are models pre-trained on ImageNet1K [80].
The structure of each encoder’s connection to the adaptive decoder is detailed in Table 1. We
adapted the encoders to minimize structural changes while preserving the performance of
networks originally designed for classical classification tasks in computer vision, specifically
for image feature extraction. The skip connection chose blocks analogous to the feature size
of the standardized decoder based on the input data. The bottleneck (B0) was designed to



Remote Sens. 2023, 15, 5739 8 of 25

be size-independent. The design of long skip connections for decoders is further discussed
in Section 3.2.

Table 1. Switchable Encoder. The convolutional block or attention block inside the encoder determines
the block to be connected with the decoder. Swin Transformer outputs the predicted depth from the
connection (B1) without any bottlenecks in the encoder structure. The numbers of training parameters
are 32.5 M, 26.9 M, 26.4 M, and 25.2 M from the left of the table.

ResNet50 [30] EfficientNet2-S [38] MPViT [52] Swin Transformer [51]

Layer Name Dim Bridge Stage Dim Bridge Scale Dim Bridge Scale Dim Bridge

Conv5 2048 B0 7 1280 B0 MPT Block 288 B0 / / B0

Conv4 1024 B1 6 256 MPT Block 288 B1 ST Block 512 B1

Conv3 512 B2 5 160 B1 MPT Block 216 B2 ST Block 256 B2

Conv2 256 B3 4 128 MPT Block 128 B3 ST Block 128 B3

Conv1 64 B4 3 64 B2 Conv-stem 64 B4 ST Block 64 B4

2 48 B3

1 24 B4

0 24

ResNet50 [30] consists of five convolutional blocks, with the latter four featuring a
bottleneck structure containing three convolutional layers each. The output from each
convolutional block is fed into the long-distance skip connections of the decoder, with the
fifth convolutional block in the bottleneck being directly linked to the decoder without skip-
ping. For EfficientNet2 [38], the architecture includes seven stage blocks: 3 × 3 Conv (1),
Fused-MBConv (3), MBConv (3), and 1 × 1 Conv (1). The first, second, third, and fifth
convolutional blocks are concatenated to align with the resolutions of the decoder’s skip
branches: 1/2, 1/4, 1/8, and 1/16, respectively, and the final 1/32 bottleneck layer is
directly connected to the decoder.

MPViT [52] is a hybrid encoder that employs two initial 3 × 3 convolutional layers
to produce quarter-size features of the input image, followed by multiscale patch embed-
ding and a stack of multipatch transformer blocks, which consist of a convolutional and
transformer encoder for local feature extraction. The MPT blocks are connected to the
skip branch of the decoder at sizes 1/4, 1/8, and 1/16, with the initial convolutional block
linked to the 1/2 size branch. The final block, sized at 1/32, is connected to the decoder’s
bottleneck layer. The Swin Transformer [51] replaces the convolutional component with
self-attention, utilizing a 4 × 4 sliding window for data embedding. It does not include a
convolutional block like MPViT and starts with 48 dimensions (4 × 4 × 3) at size 1/4. A
1/2 × 48-dimensional Swin Transformer block is added to match the decoder’s branch,
as demonstrated in a previous study [54], omitting the connection of B0 to the decoder’s
bottleneck layer.

3.2. Adaptive Decoder

The feature extraction networks, whether convolutional-based or self-attention-based
transformer families, have either pyramidal convolutional layers or attention blocks, de-
pending on their size. Drawing inspiration from this, we organized the connections to
the decoder through skip connections in a pyramid structure, as outlined in a previous
study [60], and utilized a dense network [63] for depth prediction at each size. The feature
data from the encoder was converted and upscaled from the preceding pyramid layer to
a uniform 128-dimensional pyramid scale. For each layer, a dense cascaded network [55]
was implemented for depth estimation. The bridges used were long skip connections with
convolutional blocks, and the decoder’s organization is depicted in Figure 2.
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Figure 2. Adaptive Decoder. Pyramid and Dense Cascade Network. A nested pyramid decoder is
constructed by maintaining the size of the encoder feature information and unifying the channels,
and each pyramid stage has a dense nested connection to estimate the depth result. Since they are
proportional to the size of the input image, 1/2, 1/4, 1/8, 1/16, and 1/32 of the pyramids have
feature sizes of (416, 128), (208, 64), (104, 32), (52, 16), and (26, 8), respectively. c is the number of
channels in the encoder and depends on the switchable encoder type. B0–B4 are bridges.

Initially, up to five bridges were contemplated for the decoder to directly receive
information from the encoder. These skip connections were structured based on the feature
extraction size of the encoder, as indicated in a previous study [60]. We incorporated five
pyramid layers with sizes of 1/2, 1/4, 1/8, and 1/16, proportional to the input data (H,W),
and an additional layer of size 1/32 corresponding to the final bottleneck layer of the
encoder. To harmonize the feature size for each layer of the switchable encoder, the same
convolution block previously described was employed in each long skip connection layer
of the bridge. This densely connected decoder structure, similar to that in prior work [54],
was expanded to include five skip connections and incorporated a 3D loss function and an
extended mask technique for facilitating the interchange of different encoders.

The upsampling process followed the top-down pathway method found in earlier
research [60]. Beginning with the bottleneck layer, the feature map of each pyramid layer
was upsampled twice, equalizing the number of channels in each layer. Unlike the neighbor
interpolation used in previous studies, we adopted a bilinear interpolation method for
scaling. However, the upscaling process in pyramid networks, typically connected by a
sum, can hinder information flow [55,63]. To ameliorate this, we enhanced information
flow using dense cascade connections that directly concatenated all preceding layers to
the subsequent layer. As expressed in Equation (1), X0, X1, . . . , Xi−1 represent each layer,
and Hl has a convolutional block that is adapted from [BN − ReLU − Conv(3× 3)] to
[Conv(3× 3)− BN − ReLU] to align with the upsampling of the decoder [25,31]. The
aggregated final feature map then proceeded through the convolutional block and sigmoid
layer—the chosen activation function—to produce a single-channel output, representing
the predicted depth result for each pyramid layer.

In summary, feature maps received through long skip connections from the encoder
were vertically upscaled using a pyramid network in the adaptive decoder. This network
integrated the cumulative feature map of the previous layer with dense cascade connections
to predict the depth map according to pyramid size. For training purposes, we computed
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the loss function at each pyramid layer, obtaining a proportionally weighted summed
loss function.

Xi = Hi([X0, X1, . . . , Xi−1]) (1)

3.3. Depth Consistency Guaranteed Loss Function

In self-supervised learning, depth prediction from a single image must be learned
without labeling depth ground truth, deriving the solution from a sequence of adjacent
images. An image, (It−1), is fed into the depth prediction network, which generates the

predicted depth data (
∼
Dt−1). The image (It−1) is then synthesized using the predicted depth

and camera pose to facilitate learning through comparisons with neighboring images. The

camera pose network synthesizes
∼
I t from the relative camera pose matrix [R,t] between

two images, considering the camera’s internal parameters (K), and compares it with the
neighboring images. The specific formulation is provided in Equation (2).

∼
I t−1→t = It−1

(
Reproject

(
D̂t, P̂t→t−1, K

))
(2)

There are two main challenges in generating the synthesized image
∼
I t. Firstly, the data

values transformed due to changes in camera pose are continuous and may not correspond
to integer values. To address this, we employed differentiable bilinear interpolation,
blending these values based on the It−1 we aimed to compare, augmented by the distance
value to neighboring pixels. Secondly, changes in the camera pose can cause pixel positions
in the image to overlap or disappear, potentially altering the overall image size. To counter
this, we considered image transformation

(∼
x,
∼
y
)

= T(x, y) to inverse warping (T−1:
inverse warping) to preserve the original size of the intended image. In our research,
the camera pose matrix [R,t] consistently possessed an inverse function, maintaining a
relationship between the neighboring images.

In our self-supervised learning framework, the loss is determined through comparison
with the synthesized image, and it is formulated as follows: V (validate) represents the set
∼
I t of comparable pixels successfully placed on the It plane based on the depth estimate,

and L1 is the loss of pixel
∼
I t(p) in the synthesized image compared with pixel It(p) in

the neighboring image. However, this formula does not account for real-world factors
like variations in light intensity. Even in consecutive images, losses due to light intensity
variations can impair learning efficiency. Therefore, we calculated the luminance, contrast,
and structure of the two images to assess their similarity. Luminance was compared based
on the average brightness of the images, µx, and was calculated using l(x, y) = 2µxµy+C1

µ2
x+µ2

y+C1
.

If µx, µy are similar, this value is close to 1, and the larger its difference, the more it tends
towards 0. Further, C1 prevents the denominator from approaching zero, C1 = (K1L)2,
where K1 denotes a general constant (usually 0.01) and L indicates the range of pixel
values (255). Therefore, we applied C1 = (0.01x255)2 = 6.5025. Contrast uses σx, and
the calculation of c(x, y) is the same as luminance. However, C2 = (K2L)2, and K2 was
0.03; thus, we applied 58.5225. Structure normalizes Image− µx/σx with µx denoting the
mean and σx representing the standard deviation to obtain the correlation between the
two images. Finally, structural similarity (SSIM) was applied by deriving Equation (4)
through the product of luminance, contrast, and structure [81].

LPhotometric =
1
|V| ∑p∈V

∥∥∥∥It(p)−
∼
I t(p)

∥∥∥∥
1

(3)

SSIM(x, y) =
(2µ xµy + C1

)
(2σ xy + C2

)
(

µ2
x + µ2

y + C1

)(
σ2

x + σ2
y + C2

) (4)
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Using these two loss functions, we applied the luminous-intensity loss function, as
expressed in Equation (5). Here, α was set to 0.15.

LPhotometric−ssim =
1
|V| ∑p∈V

((1− α)

∥∥∥∥It(p)−
∼
I t(p)

∥∥∥∥
1
+

α

2
(1− SSIM(It(p),

∼
I t(p))) (5)

This loss function makes uniform comparisons in regions with low texture or similar
luminosity challenging, consequently diminishing the efficiency of learning depth and
camera pose. To create smooth data, as accomplished in previous studies [5,7,8,17,70], we
introduced an edge-aware smoothness loss function, as depicted in Equation (6), prior to
normalization.

LEdge−Aware Smoothness = |∂xd∗t |e−|∂x It | +
∣∣∂yd∗t

∣∣e−|∂y It | (6)

In our self-supervised learning framework, we combined odometry, long-range cam-
era poses, and depth, leveraging the proposed switchable encoder. Consequently, we
introduced an additional loss function to ensure the consistency of the generated depth
map and facilitate the learning of the camera pose, as demonstrated in previous stud-
ies [17,72–74]. The three input images were divided into two sets. For each set, depth
was estimated by intersecting two images (It−1, It), one of which (It−1) was computed
as a depth map of the other image (It) along with the camera pose and was interpolated.
Geometric constraints were subsequently applied to both the synthesized and predicted

depth maps (
∼
Dt−1→t, D̂t). This unsupervised learning framework for monocular depth

prediction ensures depth consistency across the entire input sequence, given that the input
images are nested in a persisting sequence: ((It−1, It, It+1), (It, It+1, It+2)). The comparative

formulas are articulated in Equation (6), where
∼
Dt−1→t represents the depth map projected

onto the It image plane via the predicted depth map D̂t−1 and the predicted relative camera
pose between the two images (P̂t−1→t). We then applied geometric constraints based on
valid data (Equation (5)), as outlined in Equation (8). The validity of images is discussed
subsequent to the total loss calculation. In other studies [7,43], three images were used to
learn implicit scale consistency constraints by comparing the depth of the central image
with the other images on two separate occasions. For performance comparisons, a relative
evaluation of depth maps generated from a single image is beneficial. Our proposed monoc-
ular self-supervised learning framework ensures depth scale consistency across an image
sequence through a direct loss function and enhances long-range odometry performance.

Ddi f f (p) =

∣∣∣∣∼Dt−1→t(p)− D̂t(p)
∣∣∣∣

∼
Dt−1→t(p) + D̂t(p)

(7)

LGeometry =
1
|V| ∑p∈V

Ddi f f (p) (8)

The loss functions applied to the learning framework are defined as in Equation (7).
The weights of each loss function are W1, W2 and W3, respectively, and were set to 1.0, 0.1,
and 0.5, respectively.

LTOTAL = W1LPhotometric + W2LEdge−Aware Smoothness + W3LGeometry (9)

In accordance with the decoder structure detailed in Section 3.2, we applied a scale-
specific loss function to the feature map to enhance both the depth reconstruction capa-
bilities of the decoder and the training efficiency of the camera pose network. The final
loss function was determined based on the weights assigned to each pyramid level. We
calculated the final loss function from the final depth results of the four pyramid layers,
reducing the weight to 0.1.
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To address challenges in learning from consecutive images within monocular depth
estimation tasks, we utilized masks based on the time difference between image acquisitions.
Firstly, some pixels remain stationary despite changes in camera pose, such as objects
moving at a consistent speed in the same direction as the camera. Secondly, disparities
in regions and objects with different depths arise due to the acquisition time difference
between the images. For the first issue, we generated a mask based on a photometric loss
function, as implemented in previous studies [5,17,27], to isolate invalid data, as depicted
in Equation (10).

Mt−1(p) =

1 i f
∥∥∥∥It−1(p)−

∼
I t−1(p)

∥∥∥∥
1
< ‖It−1(p)− It(p)‖1

0 otherwise
(10)

where Mt−1 denotes a binary mask and
∼
I t−1(p) represents the result of re-projecting the

image of It through the predicted camera pose (P̂t→t−1). The mask Mt−1 = 0 yields pixels
that are valid for training and applied to the loss function.

Second, the depth mismatch between two images, stemming from the geometric error
described earlier, is presented in Equation (10). Studies [17] indicate that dynamic objects,
occlusions, and data that challenge the definition of relationships between two images can
increase the Ddi f f error, indicative of a breach in geometric consistency. Ddi f f , which has
a range of 0–1, is weighted, as expressed in Equation (10), forming a mask that assigns
lower weights to inconsistent data and higher weights to consistent data. This mask is then
used to compute the conventional luminosity loss function. Therefore, upon applying the
proposed mask, we derived the final photometric loss function, as outlined in Equation (12).

Mw = 1− Ddi f f (11)

LMask
Photometric =

1
|V| ∑p∈V

(Mw(p)·LPhotometric(p)) (12)

The final loss function was computed by applying a weight (Mw) for geometric
consistency to each data point. This weight was derived by extracting valid data (validate)
through a photometric mask. We employed masks to alleviate issues caused by moving
objects and occlusions, ensuring that regions with inaccurate predictions were assigned
lower weights during backpropagation.

3.4. Camera Pose Estimation Network

The camera pose network processes two consecutive images (It, It+1) as inputs and
predicts six degrees of freedom (6DoF) through feature matching, aligning with methodolo-
gies used in prior studies [8,16,17,27]. It outputs a transformation matrix that captures the
rotation and translation of the camera between the images.

Learned concurrently with depth prediction, the camera pose network merges the
two images into six channels and calculates the difference value, representing the 6DoF.
Utilizing this data, the learning framework produces synthetic images for depth prediction,
and the loss function evaluates the loss by downweighting valid data while considering
moving objects. In cases where moving objects are prevalent in the dataset, robust features
are extracted, which can impede accurate camera pose estimation. To counteract this, the
effectiveness of the camera pose network can be augmented by integrating a geometric
loss function.

4. Experiment

For comparative purposes, experiments were conducted against self-supervised learn-
ing frameworks from earlier studies [17,27]. We adopted the same encoder [30] as a baseline
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in our proposed learning framework, as utilized in [17], which offered comparisons for
odometry and analyzed the accuracy improvements in depth and odometry.

In evaluating depth, we adhered to established metrics from previous studies [6,11,17,23].
These metrics include the mean absolute relative error (AbsRel), mean log10 error (Log10),
root mean squared error (RMS), root mean squared log error (RMSlog), and accuracy under
various thresholds (δi < 1.25i, i = 1, 2, 3).

Note that in monocular self-supervised learning, the absolute scale is not directly
recoverable. Consistent with prior research in this field, we addressed this limitation by
scaling the predicted depth maps using a scalar that adjusts the median of the predictions
to match that of the ground truth. Additionally, to maintain applicability to specific
datasets like KITTI, we limited the predicted depths to a maximum of 80 m/10 m in the
respective datasets.

For a balanced comparison, our visual odometry evaluation was benchmarked against
both our learning framework and the findings of previous research [17]. The evaluation
includes standard metrics such as translational (terr) and rotational errors (rerr), calcu-
lated as averages over the entire sequence, alongside the absolute trajectory error (ATE).
This method conforms to the established practices for visual odometry evaluation in the
research community.

To showcase the efficacy of our monocular depth prediction self-supervised learning
framework with interchangeable encoders, we conducted a comparative analysis using
the monocular depth self-supervised learning framework from a recent study [27]. Our
experiments included the ResNet50 encoder [30] from the convolutional family and the
EfficientNet2-S, the smallest model of the EfficientNet2 encoders [38], optimized for similar
performance with fewer parameters. In the transformer family, we tested the hybrid
MPViT encoder [52] and the hierarchical Swin transformer encoder [51], which replaces all
convolutions with self-attention, to assess the impact of encoder performance on enhancing
monocular depth estimation in our proposed learning framework. We evaluated the
performance of our learning framework by comparing the depth prediction capabilities of
various switchable encoders, reconstructed using the decoder with the feature information
of the replaced encoder, and assessing the consistency of the predicted depth.

The data for training and evaluation of our constructed self-supervised learning frame-
work were sourced from the KITTI dataset [82]. The KITTI dataset assembles and processes
data gathered using various sensors, including video footage from a car’s journey. It
incorporates GPS, LiDAR, monochrome, and color cameras, with the depth information
aligned with that from the LiDAR. The KITTI dataset is a widely used benchmark dataset
in computer vision, particularly for tasks related to autonomous driving and scene under-
standing. It includes a diverse set of real-world images collected from a moving platform
in urban environments. In our experiments, we utilized a resolution of 832 × 256 pixels.
The depth and odometry measurements were divided into training, validation, and testing
categories, as detailed in Table 2.

Table 2. KITTI data used for depth and odometry prediction, evaluation, and testing.

Depth Estimation Odometry Estimation

Training 42,440 Seq. 00–07
Validation 2266 Seq. 08

Test 697 Seq. 09–10

4.1. Comparing the Performance of Self-Paced Learning Frameworks

In this experiment, we evaluated the performance of our proposed learning framework
against existing self-supervised learning methods [17]. We utilized the same encoder [30],
but with an enhanced decoder, to compare the depth and odometry performances.

For depth performance comparison, the same ResNet50 [38] encoder was employed,
reducing the original 34.6 M parameters in the depth prediction network to 32.5 M. This
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reduction resulted in an overall improvement in depth prediction performance to 0.113, as
detailed in Table 2. From the evaluation results, we observed enhancements in both overall
depth prediction and accuracy in critical corners.

The continuous odometry performance of camera poses is compared in Tables 3 and 4.
Using our proposed learning framework, there was a noticeable improvement in the
overall performance of the camera poses. This demonstrates that even though the cam-
era pose network was not directly linked to the depth network, the depth performance
predicted with the learning framework, utilizing the same loss function, influenced the
effectiveness of the feature-matching-based camera pose network. The odometry results are
illustrated in Figure 3. When compared to our previous study [17], the proposed learning
framework managed to reduce the number of training parameters to 93% using the same
encoder. Furthermore, it showed an overall enhancement in both depth and camera pose
prediction tasks.

Table 3. Results of relative depth estimation and absolute depth estimation using proposed learning
network and sparse LiDAR-based depth GT.

Abs Rel Sq Rel RMSE RMSE Log
Accuracy under a Threshold (δ)

δ1 δ2 δ3

SC-SFM [17] 0.114 0.813 4.706 0.191 0.873 0.960 0.981
Our (ResNet50) 0.113 0.793 4.724 0.187 0.869 0.959 0.983

The bolder text represents a comparative advantage.

Table 4. Overall performance in predicting camera movement and rotation. Seq. 09’s evaluation
shows a slight decrease in performance for camera movement prediction but an improvement in
rotation and difference from ground truth. Seq. 10 shows performance improvements in both relative
translation and rotation between consecutive images.

Seq. 09 Seq. 10

Translational
Error

Rotational
Error ATE RPE

(m)
RPE
(deg)

Translational
Error

Rotational
Error ATE RPE

(m)
RPE
(deg)

SC-SfM [17] 7.31 3.05 23.55 0.11 0.10 7.79 4.90 12.00 0.08 0.11
Our(ResNet50) 8.44 2.49 20.93 0.09 0.11 6.35 4.78 15.47 0.10 0.11

The bolder text represents a comparative advantage.

4.2. Comparing Depth Estimation Performance of Switchable Encoders

In our research, we evaluated the depth prediction performance by integrating newly
proposed encoder algorithms into our learning framework. The experiments confirmed
that the performance of the encoder significantly influences depth prediction performance
and that our proposed learning framework maintained consistency across various encoder
algorithms. The classification performance of each encoder used in the experiment is pre-
sented in Table 5. We chose the smallest model from each encoder algorithm to emphasize
performance improvements. To ensure equitable comparisons, each network was trained
for the same duration of 200 epochs using an A6000 1 GPU, with only the encoder being
interchanged. The input image size was set at (832 × 256), and the depth estimation results
are compiled in Table 6.
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Figure 3. Rotation results. Previous work, SC-SFM [17] over-compensated for rotation, while our
framework under-compensated. In Seq. 10, despite the overall performance improvement, an under
correction occurred in the last trajectory, which affected the absolute evaluation as shown in Table 3.
(a) Seq. 09 odometry result; (b) Seq. 10 odometry result.

Table 5. Switchable Encoder Performance for Classification Task. The switchable encoder was pre-
trained on the ImageNet dataset [80]. Accuracy represents the proportion of correctly classified
instances (both positive and negative) out of the total instances.

Switchable
Encoder

Training Image Size
(ImageNet 1 K)

Classification
Accuracy (%)

ResNet 50 224× 224 79.26
EfficientNetV2-S 128–300 (progressive training) 83.9
MPViT-S 224× 224 83.0
Swin-S 224× 224 83.0

Table 6. Depth estimation result. Comparison of depth estimation performance of the encoder
replacement based on the input image (832 × 256).

Encoders Abs Rel Sq Rel RMSE RMSE Log
Accuracy under a Threshold (δ)
δ1 δ2 δ3

Monodepth2 [27] 0.115 0.882 4.701 0.190 0.879 0.961 0.982
Our (ResNet) [30] 0.113 0.793 4.724 0.187 0.869 0.959 0.983
Our (EfficientNet2) [38] 0.111 0.837 4.703 0.185 0.876 0.961 0.983
Our (MPViT) [52] 0.109 0.848 4.665 0.183 0.881 0.962 0.982
Our (Swin) [51] 0.109 0.765 4.664 0.183 0.878 0.963 0.984

The bolder text represents a comparative advantage.

The objective of this study was to validate the consistency of the learning framework
by examining whether different encoders sustain their performance in the depth prediction
task. This comparative analysis was based on [27], which recently served as a benchmark
learning framework to assess the depth performance of each encoder.

The depth prediction results are displayed in Table 6. In comparison to the ResNet [30]
used in prior experiments, EfficientNet V2 [38] demonstrated superior performance with
only about 73% of the parameters. Additionally, the hybrid method [52], which em-
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ploys convolution in both feature extraction and self-attention blocks, and the Swin Trans-
former [51], which utilizes self-attention, showed enhanced depth prediction performance.

The experiments revealed that the feature extraction performance of the encoder also
impacts the regression task. Visualizations were conducted to compare the characteristics
of the encoder transmitted to the adaptive decoder via the bridge, as illustrated in Figure 4.
Post-learning, we present the receptive field differences for each layer, corresponding to the
specific algorithmic features. These differences serve as input data for the adaptive decoder
we designed. A noticeable pattern emerges towards the final receptive field: the convolu-
tional series displays a collection of local features, whereas the self-attention series focuses
on global features. Further experiments, including visualizations of the encoder’s layers,
final depth prediction results, and depth predictions for each layer of the decoder, facilitate
a thorough comparison of the proposed decoder’s final and layer-by-layer performance.

Additionally, we examined changes in data concentration within each layer by visual-
izing the results of camera pose learning. Although direct evidence was not provided as
input data, Figure 5 shows that, based on the loss function, the emphasis shifts to peripheral
features of the input data, as opposed to the center, where movement is less pronounced.

Interestingly, we noted that the depth prediction results varied based on the family
characteristics of the encoders replaced within our learning framework. Figures 6 and 7
display the depth maps, photometric error masks, and weighting masks for moving objects
predicted with each encoder. The performance outcomes in Table 4 confirmed that encoders
from the convolutional family excelled at extracting local features, such as static and
dynamic objects, while the pure self-attention encoders were superior at capturing global
feature relationships rather than detailed aspects.
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Figure 6. Depth map, validation synthetic data (Mt−1), and geometry synthetic data (Mw). Blue-
dotted squares show a comparison of local features in the image. The convolutional series had a more
detailed description of the local features than the transform series. The red dashed squares show a
comparison for a moving bicycle, showing that the convolutional series focuses on features in the
depth mask. Previous research MonoDeepth2 [27] applies a 2D-based loss function and the weight of
the Mw is constant.
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4.3. Information Reorganization Results

The present experiments investigated whether the high-dimensional feature informa-
tion from the bottleneck of the encoder and the detailed low-dimensional feature informa-
tion from the input data were both retained and effectively reproduced using the decoder.
The findings indicated that our learning framework consistently reconstructed information
for depth estimation, irrespective of the encoder used. Given the challenges of evaluation
with sparse depth data like LiDAR, we opted to compare the results by projecting the depth
map onto a 2D plane. Figures 8 and 9 showcase the depth estimation outputs from the
four encoders, each fed with high-dimensional feature information through the bottleneck
connection B1 to estimate depth. We then compared the final depth map, as predicted
by the pyramid and dense cascade connections, with the feature information conveyed
through the last skip connection (B5). This comparison aimed to ascertain whether the
depth map predicted at the bottleneck was preserved across each layer of the decoder
and whether the local details, not captured by the high-dimensional information, were
accurately integrated to reproduce detailed depth information at the correct locations.

In our experiments, we observed that our learning framework consistently repro-
duced all necessary information for depth prediction in the decoder based on the high-
and low-dimensional feature information from the encoder, even when the encoder was
replaced. This demonstrated that our proposed decoder could adapt to depth estimation
with minimal degradation, even when a new encoder was introduced.
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Figure 8. B1 is the result of the top depth map of the pyramid, and B4 is the final depth map predicted
by combining all feature information before the pyramid. The yellow dotted boxes represent the
details missed by the higher-dimensional information at the right locations in the lower dimensions.
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4.4. Depth Consistency Results

Our final experimental validation focused on the depth consistency of the learning
framework. We compared our results with those of a previous study [27] that trained a
learning framework without explicit constraints on geometric consistency. The conceptual
basis of our experiment was as follows:

- If a significant portion of the data in a series of images featured objects like buildings,
the distribution of depth values would vary with changes in the camera pose;

- Conversely, if the images predominantly depicted roads, the distribution of depth
values would be similar and exhibit depth consistency.
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Figure 10 illustrates the depth values extracted from three consecutive images, com-
pared using distribution plots. We analyzed the depth distribution predicted with the
Swin transformer encoder, known for its effective depth prediction. We then contrasted
these distributions with those from previous studies [27] that did not directly implement
a depth coherence loss function. With alterations in the camera pose, particularly when
moving closer or farther from data like buildings that occupied a large portion of the
image, the distribution of depth values varied. Our learning framework, however, main-
tained depth value consistency even with different encoders. This ensured uniform depth
estimation across a sequence of data, such as videos, proving beneficial for global point-
cloud construction.
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values changes owing to the buildings that make up the majority of the data. The graph on the left
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Figure 11 presents a comparison of depth consistency in images with similar depth
distributions. The benchmark for this comparison was the GT depth data from LiDAR. We
contrasted the depth value distribution between our self-supervised learning framework,
which incorporates a direct geometric loss function, and the findings from the previous
study [27].
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of the performance of the encoder, the depth value distribution of the network trained through our
proposed learning framework showed scale consistency and was more similar to the pattern of the
ground truth than in past research [27].
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Depth consistency not only extends the concept of depth accuracy but is also vitally
linked to future research endeavors in global point-cloud construction, odometry, and object
distance measurements. Ensuring uniformity in the predicted depth scale, in conjunction
with enhancing the performance of the encoder, is crucial for the effective application of
our learning framework.

Through our experiments, we verified that SELF is capable of representing dense
depth and preserving the scale of the depth with a switchable encoder. However, the basic
loss function alone was insufficient to significantly improve the performance of the camera
pose network. Therefore, further research is necessary to develop a precise 3D global point
cloud, leveraging advancements in the self-supervised learning framework.

5. Conclusions

In conclusion, our exploration delved into the self-supervised learning aspects within
the realm of existing monocular depth prediction research, culminating in the introduction
of SELF—an end-to-end learning framework featuring an integrated decoder. The ease
with which the newly proposed artificial intelligence algorithm can function as an encoder
for dense depth prediction tasks, coupled with its compatibility with pre-existing models,
underscores the flexibility of our approach. Notably, the absence of any requirement to
adjust self-supervised learning elements further streamlines the application of our learning
framework. By providing a platform for the objective evaluation of encoder performance,
our framework contributes to the advancement of depth-based studies.

Our approach not only achieves a 7% reduction in learning parameters compared to the
learning frameworks used in recent studies but also enhances depth and pose prediction
performance using the same encoder. Directly applying the newly proposed encoder
to our learning framework results in a 23% reduction in learning parameters and a 5%
improvement in performance, showcasing the framework’s versatility in accommodating
various encoders for depth prediction while maintaining a consistent depth scale.

In this study, we conducted experiments using the KITTI dataset under the same
conditions as previous studies, yielding comparative results in terms of learning and
evaluation. However, despite diverse scenes with buildings and moving objects, our
learned model demonstrates limitations in generalization. The camera model used for data
acquisition and the refined data tailored to artificial intelligence algorithms are suitable
for evaluating performance but pose constraints on accessing the foundational model,
representing the ultimate aim of self-supervised learning.

In light of this study, we contemplate broadening our exploration within the self-
supervised learning framework. Despite the absence of ground truth, we envision extend-
ing preprocessing to re-synthesize input data based on the KITTI camera model, facilitating
the incorporation of a more diverse range of training data. Learning outcomes, even with-
out ground truth, become feasible through leveraging the KITTI dataset. By extending
research in various domains and utilizing the artificial intelligence algorithm validated in
depth prediction evaluations as the backbone through the self-supervised learning frame-
work proposed in this paper, we aim to streamline the research period, reduce learning
time, and enable objective evaluations.
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