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Abstract: The spaceborne Electric Field Detector (EFD) is one of the payloads of the China Seismo-
Electromagnetic Satellite (CSES-01), which can measure electric field data at near-Earth orbit for in-
vestigating fundamental scientific topics such as the dynamics of the top-side ionosphere, lithosphere–
atmosphere–ionosphere coupling, and electromagnetic field emissions possibly associated with
earthquake occurrence. The Extremely Low-Frequency (ELF) waveform shows anomalous step
variations, and this work proposes an automatic detection algorithm to identify steps and analyze
their characteristics using a convolutional neural network. The experimental results show that the
developed detection method is effective, and the identification performance reaches over 90% in
terms of both accuracy and area under the curve index. We also analyze the rate of the occurrence of
steps in the three components of the electric field. Finally, we discuss the stability of the statistical
results on steps and their relevance to the probe’s function. The research results provide a guide-
line for improving the quality of EFD data, and further applications in monitoring the low-Earth
electromagnetic environment.

Keywords: spatial electric field; data step; convolutional neural network; data quality; detection
algorithm

1. Introduction

An increasing number of electromagnetic disturbances possibly associated with earth-
quakes has been discovered by using satellite observations both in case studies and with
statistical analyses [1]. In this framework, a key problem is the cleaning and quality insur-
ance of data in order to reduce spurious effects such as fluctuations of measurements not
induced by the investigated events. For this purpose, an automatic procedure for electro-
magnetic field measurements will be particularly useful in terms of controlling artificial
perturbations, as well as nonphysical background and electromagnetic noise. On the basis
of CSES-01 measurements, Zhang et al. [2] found a correlation between the variation in
multiple parameters, such as electric field, recorded by CSES-01 and the location of the
seismogenic region of a specific Indonesian earthquake. Marchetti et al. [3] integrated CSES
measurements (especially Ne) with those of other anomalies from the lithosphere and atmo-
sphere, as well as Swarm satellite measurements, for large earthquakes in the Indonesian
region. Liu et al. [4] Liu evaluated the data quality of satellite measurements of ionospheric
parameters by comparing them with in situ observations and ionosonde data. Yang et al. [5]
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analyzed used satellite data from the China Seismo-Electromagnetic Satellite to analyze the
geomagnetic polarization of 12 typical earthquakes from December 2018 to January 2023.
Wang et al. [6] investigated the electromagnetic effects of earthquakes and their potential
impact on space weather through analysis of data from the CSES. Guo et al. [7] focused on
the seismo-ionospheric effects related to two earthquakes in Taiwan, which were detected
by the China Seismo-Electromagnetic Satellite. The results suggested that earthquakes in
Taiwan and the surrounding region may have affected the ionosphere through geochemical,
acoustic, and electromagnetic channels.

In addition, data quality verification is an important part of studies on seismo-
electromagnetic monitoring from space, and is key to the data management process in
satellite missions. The main differentiating factor of geophysical investigations performed
by satellite with respect to other ground measurements is that the same observation cannot
be made in situ, and that the method of data quality verification is relatively more complex.
Many authors have conducted in-depth studies on the extraction of features of electric
fields possibly associated with earthquakes, and on the procedures for cleaning data of
possible electromagnetic interferences using combinations of cutting-edge technologies.
Some researchers have attempted the extraction of anomalous electromagnetic disturbances
using techniques based on artificial intelligence, such as applying deep learning directly
to time series, or to spectrograms, etc. Kanarachos et al. [8] proposed a signal processing
algorithm that combines wavelets, neural networks, and Hilbert transformation to detect
anomalies in geoelectric field signals when investigating seismic precursors. Zeren et al. [9]
conducted the exploration of time-corrected cross-calibrating methods using three pay-
loads (EFD, SCM and HPM) onboard a CSES-01. Yan et al. [10] presented two types of
regular features that were observed during LAP on board the CSES-01. The first feature is
characterized by a sudden drop in plasma potential and floating potential data, while the
second one manifests as a spike in the dayside plasma potential and floating potential data.
Wang et al. [11] employed data from five ionosonde stations and one incoherent scatter
radar observatory to validate the radio occultation measurements obtained by the CSES
satellite. Yuan et al. [12] applied algorithms for the automatic recognition of lightning
whistler acoustic waves on search-coil magnetometer (SCM) data from CSES-01; designed
fuzzy and L morphology convolution kernels to identify the characteristics of spectral
and L morphological features of whistlers; and used the SVM classifier to perform feature
classification. Yan et al. [13] demonstrated the reliability of in situ plasma parameters
derived from the China Seismo-Electromagnetic Satellite. Chen et al. [14] showed that
CSES-01 Ne data very effectively reflect solar activity, as the trend in the former is highly
correlated with the trend of variations in sunspot numbers. Liu et al. [15] investigated
potential seismic anomalies related to the Luding Ms6.8 earthquake that occurred on 5
September 2022 by analyzing ionospheric, infrared radiation, atmospheric electrostatic
field, and hot spring ion data, the results suggested that the observed multi-sphere coupling
anomalies were associated with the occurrence of the earthquake. Diego et al. [16] proposed
a direct quantitative validation method based on CSES measurements of plasma param-
eters and the geomagnetic field. Zhao et al. [17] established the seismogenic mechanism
of ELF electromagnetic waves emitted by earthquakes, using ground-based and satellite
observations. Yan et al. [18] analyzed the correlation between electron Ne and Te in the
topside ionosphere, utilizing in situ measurements obtained from four satellites (CSES-01,
Swarm A and B and CHAMP).

The data gathered by CSES-01 are widely used, and the electric field data are full
of information, including not only possible earthquake precursors but also indications
of other disturbances of the near-Earth electromagnetic environment. Yang et al. [19]
developed a complete geomagnetic model for equatorial regions using CSES-01 data, which
provided valuable insights into the Earth’s magnetic field in these areas. In another study,
Ghamry et al. [20] reported the first detection of Pi2 pulsation using CSES-01, which has
implications for understanding plasma wave propagation in the Earth’s magnetosphere.
Furthermore, Gou et al. [21] carried out an examination of plasma bubbles using the
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multiparametric payloads of CSES, which revealed new information about their formation
and dynamics. Marchetti et al. [22] explored the effects of volcanic eruptions on the
ionosphere using CSES-01 data, shedding light on the complex interactions between the
Earth’s atmosphere and its magnetic field. In addition to these examples, Spogli et al. [23]
investigated geomagnetic storms using CSES-01 data, contributing to our understanding of
space weather phenomena and their impact on Earth’s magnetic environment. Compared
with classical machine learning algorithms, deep learning achieves higher recognition
accuracy and a greater generalization ability. Among them, convolutional neural networks
(CNNs) and recurrent neural networks (RNNs) are the two most commonly used and
relevant [24]. CNN is a deep learning neural network, simulating the learning mechanism
of the human brain in order to ensure high accuracy of training samples and test samples,
improve the efficiency of image labeling, and facilitate the management and updating of
the image classification system. Therefore, in the present work, a CNN is proposed to
identify and classify the steps that appear in waveform data of the electric field measured
by the EFD payload of the CSES-01 in order to improve the quality of the data and increase
the applicability of electric field measurements, thus providing reliable observations for
further analyses including those studying seismo-electromagnetic emissions.

2. Overview of EFD

On 2 February 2018, CSES-01 was launched successfully. Its main objectives are to
monitor the near-Earth space environment and to investigate possible EM perturbations.
The satellite undertakes a circular Sun-synchronous orbit at an altitude of approximately
500 km, LTDN at 14:00, with a designed lifetime of 5 years [25].

The Electric Field Detector (EFD) is designed for the measuring electric field in the
space plasma environment, and is one of the main payloads of CSES-01. EFD adopts the
active double-probe detection principle and is conceived for worldwide coverage, thus
providing accurate and complete monitoring when studying electromagnetic perturbations
possibly associated with the occurrence of earthquakes [26]. The electric field is calculated
from the difference in measured potential between two EFD probes. The EFD instrument is
composed of four deployable booms, each of them carrying on their tip a 60 mm-diameter
spherical probe (labeled “A”, “B”, “C”, and “D”, respectively) forming a tetrahedral
structure. The {X, Y, and Z} satellite coordinates system is defined as follows: the X axis is
parallel to the velocity vector of the satellite, Z points in the direction of the nadir, and Y
points towards the point of intersection of Z and Y [27], as shown in Figure 1.
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The intensity of the electric field vector is obtained by measuring—for each of the four
probes—the difference of electric potential between the surface of a probe and the circuit
ground, calculating the three differences of electric potential (dop) between pairs of the
four probes and then dividing the dop between couples of probes for the distance between
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them. The EFD is designed to measure the intensity of the electric field components in
the broad frequency range from DC to 3.5 MHz, subdivided into 4 channels, which are
frequency bands, named: ULF (DC–16 Hz), ELF (6 Hz–2.2 kHz), VLF (1.8 kHz–20 kHz)
and HF (18 kHz–3.5 MHz). According to the different data sampling rates at ULF, ELF,
VLF and HF, the working period (WP) normally lasts 247.808 s. It is equally divided into
121 sub-working periods, each one lasting 2.048 s. The first of the 121 sub-working periods
is called the bias current-corrected period (BCP). The other 120 2.048 s sub-working periods
are called sampling periods (SP), and each SP is divided equally into 50 sub-sampling
periods (SSP) of 40.96 ms. The data products from DPU are different in each of the different
frequency bands. For the ELF frequency band, the sampling rate is 5 kHz and the outputs
are each probe’s voltage values [27].

3. Convolutional Neural Network Model

Convolutional Neural Network is the one of most common and interesting multilayer
architectures used in deep learning. Compared with traditional models, CNNs are suitable
for extracting feature information from images and audio recordings with high accuracy in
recognition and classification [28,29] for image classification, target detection and behavior
recognition, semantic segmentation, etc. Specific applications often require networks with
different structures such as AlexNet, LeNet, VGGNet and ResNet [30–33].

In a CNN, the convolutional layer is the layer one with the role of extracting various
features from the input, increasing the dimensional features by enhancing the useful ones,
and reducing the effect of noise. The process of convolution is implemented through a
convolution kernel, also known as a filter, which represents a feature that can be computed
by sliding it over the input image by means of a sliding window, multiplying the kernel
elements by the elements in the input region, and integrating in order to obtain the features
of the input data [34,35], as follows:

xmi ,ni =
k

∑
a=1

q

∑
b=1

[(
xmi−1+a,ni−1+b

)
· wa,b

]
(1)

where xmi ,ni is the element of the m-row, n-column of the i-layer whose elements are being
convolved, xmi−1+a,ni−1+b denotes the element of the row m + a, column n + b of the i − 1
input layer, and wa,b presents the weight of the a-row, b-column of the kernel.

A convolutional layer usually contains multiple kernels. By computing the input
matrix with different kernels, different features of the input data can be extracted. To
increase the representational power of the model, bias terms are usually also added after
the convolutional computation and the results are fed into a nonlinear activation function
f for nonlinear mapping in order to extract the features Xi of the data, with the follow-
ing equation:

Xi = f

(
bi +

ci

∑
k=1

Xk
i−1 · Wk

i

)
(2)

where b i is the bias term of the i layer, ci is the number of channels of the i layer, Wk
i is the

weight matrix of the i layer of the k channel, which is the convolution kernel, and Xk
i−1 is

the output matrix of the i − 1 layer of the k channel.
To improve the accuracy of image feature acquisition and learning, the number of

layers of convolutional neural networks usually needs to be deepened. Generally, the
pooling layer is placed after the convolutional layer to reduce the amount of data processing
and retain feature information by dimensioning down the convolutional output results to
improve the generalization ability of the model.

The fully-connected layer acts as a “classifier” in a CNN, integrating features from the
convolutional and pooling outputs and outputting classification results through the output
layer. In the image classification task, the fully connected layer determines the class of the
image based on the features extracted from the previous convolutional layers and pooling
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layers. The fully connected layer reshapes and integrates the two-dimensional feature
map to produce the final output results. As for the output layer, a logistic function or a
normalized exponential function is used to activate and release the output predicted values.

4. Experiment Design
4.1. Dataset Selection and Pre-Processing

In this article, we analyze the waveform of an electric field in the ELF band. In order
to study the steps occurring in the electric field data, we consider 50 samples of an SSP data
packet together with 50 samples of the previous SSP to obtain the image of the plot to be
analyzed with the CNN algorithm. There are two types of steps: a straight-down step (that
is a sudden and sharp decrease) and a smooth or gradual step, as shown in Figure 2.
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In signal processing data analysis, it is often necessary to segment data into different
sections. For two adjacent data packets, A and B, we can use the following mathematical
definitions to determine the types of connection between them:

Let MA and MB be the mean values of data packets A and B, respectively, while SA
and SB are their variances, and KA and KB are their respective slopes.

(1) If |MA − MB| > 3SA, then the type of step connection between A and B is “straight-
down”.

(2) If |MA − MB| ≤ 3SA:

(i) If KA × KB > 0, then the type of step connection between A and B is “progres-
sive”;

(ii) If KA × KB < 0, then the type of step connection between A and B is “straight-
down”.

4.2. CNN-Based Method for Detecting Steps Anomalies

The flow chart of the recognition and classification algorithms for steps, based on
CNN, is shown in Figure 3. The main blocks of the process are the loading of the electric
field waveform data; the initialization and hyperparameter tuning optimization of CNN;
model training and testing visualization; algorithm evaluation; the automatic recognition
of electric field steps, and statistical analysis.

The images fed to the CNN algorithm are plots of waveform obtained from the
EFD experiment, which are divided into two categories: straight-down and progressive.
Each class includes 1000 samples with 900 training images and 100 test images. These
samples were manually screened and identified from the ELF band during the period of
November 2019 to November 2020. Specifically, these samples include both straight-down
and progressive types of data steps.
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The training process of the CNN model is as follows:

(1) The fully connected layer of the model is applied to the dataset, and the output layer
is replaced with a Softmax layer and an additional Dropout layer to avoid overfitting;

(2) Set appropriate values of hyperparameters according to the experimental conditions
and dataset size. For example, set the value of batch_size to 32, the value of epoch to
50, and the value of initial learning rate to 0.001;

(3) Input the modified network model into the dataset and retrain it to get the new weights;
(4) Save the trained model and weights.

The testing process of the CNN model is as follows:

(1) Use the trained network model weights;
(2) Start the program to run the test sample through the CNN model layer by layer and

output the results;
(3) Compare the output of the CNN model with the labels of the test samples, determine

whether the output category of each image is correct, and perform statistics on the
classification results;

(4) Repeat steps (2)~(3) until all images in the test set have been tested and classified.

In our study, we employed standard kernels with dimensions of 5 × 5 and 3 × 3.
Specifically, we utilized 96 5 × 5 kernels in the initial and second layer, and finally incorpo-
rated 256 3 × 3 kernels in the third layer. To preserve the spatial resolution of the input
images while extracting hierarchical features through convolutional layers, we employed
zero-padding to ensure consistent spatial dimensions of the input and output feature maps
throughout the network. This allowed us to maintain the original dimensions of the input
images as they progressed through the network, while still enabling the extraction of
increasingly abstract representations at each subsequent layer. In order to optimize the
model, we utilized cross-validation during training to determine the optimal combination
of hyperparameters. We calculated the average accuracy of the model on the test set and
selected the hyperparameter combination that yielded the highest accuracy as the final
training parameters for the model. Table 1 shows the hyperparameters and optimization
methods.

Table 1. The hyperparameters and optimization methods.

Hyperparameter Value Optimization Method

Learning rate 0.001 Stochastic Gradient Descent (SGD)
Batch size 32 SGD

Momentum 0.5 SGD
Weight decay 0.0005 L2 regularization
Dropout rate 0.5 Dropout regularization

Due to the unbalanced number of samples in the categories of the dataset, which
include many normal samples and few anomalous ones, the evaluation metrics of anomaly
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detection are generally more complex and cannot be calculated only for accuracy and loss
values. The most commonly used evaluation index is the Receiver Operating Characteristic
curve (ROC curve), which is more objective than accuracy and can characterize the results
more comprehensively.

4.3. Analysis of Experimental Data

In training the CNN, the images in the dataset are first of all divided and labeled
in categories. In the training process, images are used as input to the CNN for iterative
training to shorten the training time. The accuracy and loss values of the training and test
sets are shown in Figure 4.
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Figure 4. Example of accuracy (left panel) and loss values (right panel) for the training and test sets.

With the augmentation of iterations, there is a noticeable enhancement in the accuracy
of both the training and test sets. With a number of iterations of approximately 50, the rate
of improvement in the accuracy for both sets gradually stabilizes. When the training phase
is complete, the accuracy of the model reaches 95.2% on the training set and 91.1% on the
test set, while the value of the loss function is less than 0.1 on both training and test sets.

To verify the effectiveness of the developed classification algorithm, under different
parameters, we have adopted the ROC curve to calculate the accuracy of each category. The
abscissa of the ROC curve is False Positive Rate (FPR), and the ordinate is True Positive Rate
(TPR), such that the ROC curve describes the equilibrium state of the classifier between TPR
and FPR. The ROC curve has the important property that when the distribution of positive
and negative samples in the test set changes, the ROC curve can remain unchanged, i.e.,
it is insensitive to the positive and negative sample imbalance problem. The closer the
ROC curve is to the upper left corner, the better the performance of the classifier is. If the
classifier’s performance is evaluated by the ROC curve, we can use the area under curve
(AUC) metric, which is the area under the ROC curve, and takes values no more than 1. If
a positive sample and a negative sample are randomly selected, the AUC characterizes the
probability that these two samples are correctly distinguished. An example of ROC curve
is shown in Figure 5.

The ROC curves of Figure 5 show that the CNN algorithm achieved high accuracy in
the classification with AUC metrics higher than 90%. Therefore, the trained model can be
applied to identify the steps of the electric field waveform in EFD data.
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5. Experimental Results

CSES-01 adopts a near-circular Sun-synchronous orbit, and a complete orbit is divided
into ascending (nighttime acquisition, at about 02:00 LT) and descending (daytime acquisi-
tion, at about 14:00 LT) semi-orbits for the satellite path from south to north latitudes, and
vice versa. The CSES-01 revisit time is 5 days. In this article, we study the data of CSES-01
during a seismically quiet period. The orbit number ends with the digit 0 for descending
and 1 for ascending, as per our analysis of the ELF waveform data collected from CSES-01.

To evaluate the performance of our model, we first analyzed four complete orbits
during periods unaffected by external disturbances. Next, we extended our analysis to
cover the revisit cycle of the CSES, which includes approximately 76 orbits, providing
global-scale coverage. This allowed us to understand the regional characteristics of the
data and further validate our model’s accuracy during these quiet periods. The results are
presented in detail in Sections 5.1 and 5.2.

5.1. Statistical Analysis of Steps in Ascending Semi-Orbits

The electric field data in the ELF band analyzed in this article are constituted by the
waveforms of the three components (Ex, Ey, and Ez) evaluated on the basis of the differences
of potential measured between the three pairs of probes ab, cd, and ad, respectively.

We selected the four ascending semi-orbits 26688, 27143, 27163, and 27180 in the
period 16–20 December 2022 and conducted a further analysis on the ascending data within
this revisit cycle. The results are shown in Figure 6, where we provide the distribution
of steps in each single semi-orbit (without distinguishing the step type) (Figure 6a) and
the distribution of straight-down and progressive steps for each electric field component,
accumulated over the revisit cycle (Figure 6b).

According to the statistical results shown in Figure 6a, it can be found that the four
selected ascending semi-orbits show similar distribution between the Ex, Ey, and Ez com-
ponents, while Figure 6b shows that in all components the number of progressive steps
is higher than that of straight-down steps. However, there are some differences: in the
26688 orbit, the total number of both types of steps is 108 (with 25.93% of the straight-down
type and 74.07% of the progressive type); in the 27143 orbit, the total number of both
types of steps is 86 (with 39.53% of the straight-down type and 60.47% of the progressive
type); in the 27163 orbit, the total number of both types of steps is 80 (with 45% of the
straight-down type and 55% of the progressive type); finally, in the 27180 orbit, the total
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number of both types of steps is 86 (with 35.29% of the straight-down type and 64.71% of
the progressive type).
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Figure 6b shows that (i) the numbers of steps over Ex, Ey, and Ez components are
similar, and (ii) the numbers of steps of both the straight-down and progressive types in
the Ex component are higher than those in the Ey and Ez components. The total number
of steps (of both types) in the ascending orbit of the revisit cycle is 6794, and the fraction
of steps in the Ex component is 41.86%, in the Ey component it is 32.56%, and in the Ez
component it is 25.58%.

5.2. Statistical Analysis of Steps in Descending Semi-Orbits

Based on the descending semi-orbits 26688, 27143, 27163, and 27180 in the period
16–20 December 2022, we conducted a further analysis on the descending data within
this revisit cycle. The results are shown in Figure 7, where we provide the distribution
of steps in each single semi-orbit (without distinguishing the step type) (Figure 7a) and
the distribution of straight-down and progressive steps for each electric field component,
accumulated over the revisit cycle of 16–20 December 2022 (Figure 7b).

Figure 7a shows that, as in the ascending semi-orbits, in the descending ones, the
number of steps shows a similar distribution in each of the Ex, Ey, and Ez components, and
the number of steps in the Ex component is again the highest. In addition, the number of
progressive steps is higher than that of straight-down ones, but there are some differences
between different orbits. For example, in the 26688 orbit, the total number of the two
types of steps is 156 (with 27.56% of the straight-down type and 72.44% of the progressive
type); in the 27143 orbit, the total number of two types of steps is 128 (with 41.41% of the
straight-down type and 58.59% of the progressive type); in the 27163 orbit, the total number
of both types of steps is 157 (of which the percentage of straight-down type is 41.40%, while
the percentage of progressive type is 58.60%); finally, in the 27180 orbit, the total number of
both types of steps is 125 (of which the percentage of straight-down type is 42.40%, while
the percentage of progressive type is 57.60%).
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The statistical distribution of steps in descending semi-orbits is shown in Figure 7b:
the numbers of steps in the three components have similar distributions, with the Ex
component showing the greatest difference between the numbers of the two step types
and the highest absolute numbers of steps of both types with respect to the Ey and Ez
components. The total number of steps of both types in the descending semi-orbits of
the revisit cycle is 10,250, with 44.00% occurring in the Ex component, 31.20% in the Ey
component, and 24.80% in the Ez component.

In summary, the number of step anomalies in the Ex component of the ELF electric field
waveform is the highest. The statistical distributions of steps in different components show
similar trends. These results need to be further explored to better understand the nature of
this phenomenon. These findings are relevant to developing a deeper understanding of the
operational state of the CSES-01 satellite, as well as of the data acquisition and data quality
insurance processes.

6. Discussions
6.1. Stability of Statistical Results of Detected Steps

In this analysis, we selected ELF waveform data collected from EFD during a quiet
period. The purpose was to avoid the influence of anomalous steps caused by seismic
activity. A seismically quiet period refers to a specific time frame characterized by minimal
to no earthquake events. More specifically, we define a seismically quiet period as that
without any recorded earthquake events with a magnitude greater than or equal to 5.0 on
the Richter scale. The data were collected in four CSES-01 descending and four ascending
semi-orbits, as shown in the top- and bottom-left panels, respectively, of Figure 8.

In the descending orbits, it can be seen from the ratio of the number of progressive
types to the number of straight-down types that the steps in the Ex and Ez components show
similar behaviors—decreasing first and then increasing, while the ratio of Ey components
is continuously decreasing. In addition, the ratio of the Ex component is the highest
among the three components, indicating that the Ex component has the clearest trend in the
descending semi-orbits. A similar trend is observed for the ascending semi-orbits, where
all the three components show a consistent trend of decreasing and then increasing, with
the Ex component having the highest ratio. By statistically analyzing the data steps during
the quiet period, we find that the results of the data step analysis for individual tracks show
consistency with those of the experimental part of this paper, further verifying the stability
of the experimental results.
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6.2. Steps in Single Probe Signal and in Electric Field Components

The EFD measurements of electric field are obtained by dividing the potential dif-
ference between pairs of probes (a, b, c and d) by the distance between the probes. We
analyzed the steps detected in the waveforms of each of the four probes a, b, c, and d in
order to quantify their performance. The number of steps detected during the revisit period
from 16 to 20 December 2022 is summarized in Figure 9. The results show that the steps
occurred more frequently in probe b, which has a higher noise level than the other sensors.
By analyzing the statistical distribution of the steps data, we obtained a more refined
analysis of the EFD performance, which is useful for studying the noise characteristics of
the probes, and for their optimization. It is worth noting that, even though a difference in
the performance of probe b was found, the exact reason for this behavior is not clear and
needs to be further investigated.

Since probe b is at the end of the boom in the satellite flight direction, that is, the X
direction in the satellite coordinates system, and the step anomalies are more frequent
in the Ex component waveform data, we can hypothesize that the effect on Ex is due to
the measurements from the b sensor that enter into the calculation of Ex. The interaction
between spacecraft and space environment is important for all space missions because the
spacecraft perturbs the plasma around it during its motion, causing a spacecraft charging
and wake effect. When the motion of the plasma relative to the spacecraft is greater than
the ion thermal velocity and less than the electron thermal velocity, it is difficult for the
ions to reach the spacecraft directly downstream, but relatively easy for the electrons to
enter the tail, and a thin trailing region of ions will form downstream of the spacecraft,
i.e., the trailing phenomenon. The trails are negatively charged, and a negative potential
appears in the trails thus forming an electric field [36]. The spacecraft wake effect can cause
perturbations in the surrounding plasma, which can affect the accuracy of the measurement
devices. Therefore, future research work can be addressed at removing the impact of
satellite motion in the plasma from the measurements taken by sensor b.
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7. Conclusions

This paper presents the first attempt at developing a method to automatically identify
the occurrence of steps in electric field waveforms detected by EFD in ELF bands using
CNN. Firstly, the EFD waveform data have been selected and pre-processed; secondly,
the dataset is modeled and the model parameters are adjusted according to the test set
results to obtain the best-performing model; finally, the data step anomalies are detected
and identified automatically based on the model’s results. The experimental results show
that, when using the CNN-based step anomaly detection algorithm, the accuracy and AUC
index are higher than 90%.

The statistical analysis of the step anomalies in the waveform data shows that the
most significant step anomalies are found in the Ex component. This study can provide an
effective method for the automatic processing of waveform data and anomaly detection
in an electric field. In order to avoid the influence of anomalous steps caused by seismic
activity, by statistically analyzing the data steps during the quiet period, we find that the
results of the data step analysis for individual tracks show consistency with those in the
experimental part of this paper, further verifying the stability of the experimental results.
Since the spherical sensor b—that is, the one most affected by step anomalies—is at the
end of the boom in the direction of the satellite’s flight, and the step anomalies are more
frequent in the Ex component waveform’s electric field component, we can hypothesize
that the step anomaly is a trailing effect.

This study further demonstrates the importance of data quality assessment for in-
creasing the effectiveness and optimizing the applicability of electric field data from EFD.
However, it should be noted that the network model needs to be updated regularly accord-
ing to the improvement of the classification system due to its relatively weak generalization
ability. Meanwhile, it is also necessary to further explore how to improve the image recog-
nition effect by refining the image sample design. The application of artificial intelligence
methods to analyze EFD waveform data when detecting anomalies and classification
problems has also been implemented, and this study provides support in exploring and
applying artificial intelligence data analysis techniques in training algorithms for the identi-
fication and classification of typical phenomena. It also provides useful tools and methods
for subsequent research on space electric field data derived via in earthquake monitoring
from space environments.
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