Reconstruction of Daily MODIS/Aqua Chlorophyll-a Concentration in Turbid Estuarine Waters Based on Attention U-NET
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Source and Processing
2.3. Neural Network Architecture
2.3.1. U-Net
2.3.2. Attention Mechanism
3. Results
3.1. Cchla Dataset Description
3.2. Performance of Reconstructed Cchla
4. Discussion
4.1. Attention Gates Evaluation
4.2. Application in Typhoon Footprints
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vantrepotte, V.; Mélin, F. Inter-Annual Variations in the SeaWiFS Global Chlorophyll a Concentration (1997–2007). Deep. Sea Res. Part I Oceanogr. Res. Papers 2011, 58, 429–441. [Google Scholar] [CrossRef]
- Ye, H.; Yang, C.; Tang, S.; Chen, C. The phytoplankton variability in the Pearl River estuary based on VIIRS imagery. Cont. Shelf Res. 2020, 207, 104228. [Google Scholar] [CrossRef]
- Wang, M.; Shi, W. Cloud Masking for Ocean Color Data Processing in the Coastal Regions. IEEE Trans. Geosci. Remote Sen. 2006, 44, 3196. [Google Scholar] [CrossRef]
- Liu, X.; Wang, M. Gap Filling of Missing Data for VIIRS Global Ocean Color Products Using the DINEOF Method. IEEE Trans. Geosci. Remote. Sens. 2018, 56, 4464–4476. [Google Scholar] [CrossRef]
- Pan, G.; Chai, F.; Tang, D.L.; Wang, D.X. Marine phytoplankton biomass responses to typhoon events in the South China Sea based on physical-biogeochemical model. Ecol. Model. 2017, 356, 38–47. [Google Scholar] [CrossRef]
- Lin, S.; Zhang, W.-Z.; Shang, S.-P.; Hong, H.-S. Ocean response to typhoons in the western North Pacific: Composite results from Argo data. Deep. Sea Res. Part I 2017, 123, 62–74. [Google Scholar] [CrossRef]
- Liu, F.; Tang, S. Influence of the interaction between typhoons and oceanic mesoscale eddies on phytoplankton blooms. J. Geophys. Res. Oceans 2018, 123, 2785–2794. [Google Scholar] [CrossRef]
- Bennett, A. Inverse Modeling of the Ocean and the Atmosphere; Cambridge University Press: New York, NY, USA, 2005. [Google Scholar]
- Meng, Q.; Borders, B.; Madden, M. High-resolution Satellite Image Fusion Using Regression Kriging. Int. J. Remote Sens. 2010, 31, 1857–1876. [Google Scholar] [CrossRef]
- Beckers, J.M.; Rixen, M. EOF Calculations and Data Filling from Incomplete Oceanographic Datasets. J. Atmos. Ocean. Technology. 2003, 20, 1839–1856. [Google Scholar] [CrossRef]
- Lin, T.; He, Q.; Zhan, W.; Zhan, H. Persistent data gap in ocean color observations over the East China Sea in winter: Causes and reconstructions. Remote. Sens. Lett. 2020, 11, 667–676. [Google Scholar] [CrossRef]
- Barth, A.; Alvera-Azcárate, A.; Licer, M.; Beckers, J.-M. DINCAE 1.0: A convolutional neural network with error estimates to reconstruct sea surface temperature satellite observations. Geosci. Model Dev. Discuss. 2019, 13, 1609–1622. [Google Scholar] [CrossRef] [Green Version]
- Jouini, M.; Lévy, M.; Crépon, M.; Thiria, S. Reconstruction of satellite chlorophyll images under heavy cloud coverage using a neural classification method. Remote Sens. Environ. 2013, 131, 232–246. [Google Scholar] [CrossRef]
- Patil, K.; Deo, M.C. Prediction of daily sea surface temperature using efficient neural networks. Ocean Dyn. 2017, 67, 357–368. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional networks for biomedical image segmentation. In Medical Image Computing and Computer-Assisted Intervention 2015; IEEE MICCAI: Munich, Germany, 2015; pp. 234–241. [Google Scholar]
- Oktay, O.; Schlemper, J.; Folgoc, L.L.; Lee, M.; Heinrich, M.; Misawa, K.; Mori, K.; McDonagh, S.; Hammerla, N.Y.; Kainz, B.; et al. Attention U-Net: Learning Where to Look for the Pancreas. arXiv 2018, arXiv:1804.03999. [Google Scholar]
- Ye, H.B.; Chen, C.Q.; Yang, C.Y. Atmospheric correction of Landsat-8/OLI imagery in turbid estuarine waters: A case study for the Pearl River estuary. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 252–261. [Google Scholar] [CrossRef]
- Son, Y.; Kim, H. Empirical ocean color algorithms and bio-optical properties of the western coastal waters of Svallbard Arctic. ISPRS J. Photogram Remote Sen. 2018, 139, 272–283. [Google Scholar] [CrossRef]
- Zheng, G.; DiGiacomo, P.M. Uncertainties and applications of satellite-derived coastal water quality products. Prog. Oceanogr. 2017, 159, 45–72. [Google Scholar] [CrossRef]
- Ye, H.; Tang, S.; Yang, C. Deep learning for Chlorophyll-a concentration retrieval: A case study for the Pearl River estuary. Remote Sens. 2021, 13, 3717. [Google Scholar] [CrossRef]
- Welschmeyer, N. Fluorometric analysis of chlorophyll a in the presence of chlorophyll b and pheopigments. Limnol. Oceanogr. 1994, 38, 1985–1992. [Google Scholar] [CrossRef] [Green Version]
- Ying, M.; Zhang, W.; Yu, H.; Lu, X.; Feng, J.; Fan, Y.; Zhu, Y.; Chen, D. An overview of the China Meteorological Administration tropical cyclone database. J. Atmos. Oceanic Technol. 2014, 31, 287–301. [Google Scholar] [CrossRef] [Green Version]
- Evers-King, H.; Martinez-Vicente, V.; Brewin, R.J.W.; Dall’Olmo, G.; Hickman, A.E.; Jackson, T.; Kostadinov, T.S.; Krasemann, H.; Loisel, H.; Röttgers, R.; et al. Validation and Intercomparison of ocean color algorithms for estimating particulate organic carbon in the oceans. Front. Mar. Sci. 2017, 4, 251. [Google Scholar] [CrossRef]
- Shi, X.; Chen, Z.; Wang, H.; Yeung, D.-Y.; Wong, W.; Woo, W. Convolutional LSTM Network: A Machine Learning Approach for Precipitation Nowcasting. Adv. Neural Inf. Process. Syst. 2015, 28, 802–810. [Google Scholar]
- Maas, A.L.; Hannun, A.Y.; Ng, A.Y. Rectifier nonlinearities improve neural network acoustic models. In Proceedings of the 30th International Conference on Machine Learning, Atlanta, GA, USA, 16–21 June 2013; pp. 16–21. Available online: http://robotics.stanford.edu/~amaas/papers/relu_hybrid_icml2013_final.pdf (accessed on 18 November 2022).
- Li, S.Y.; Dong, M.; Du, G.M.; Mu, X.M. Attention Dense-U-Net for Automatic Breast Mass Segmentation in Digital Mammogram. IEEE Access 2019, 7, 59037–59046. [Google Scholar] [CrossRef]
- Zhang, W.W.; Li, J.; Hua, Z. Attention-Based Tri-UNet for Remote Sensing Image Pan-Sharpening. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 3719–3732. [Google Scholar] [CrossRef]
- Bahdanau, D.; Cho, K.; Bengio, Y. Neural machine translation by jointly learning to align and translate. arXiv 2014, arXiv:1409.0473, preprint. [Google Scholar]
- Luong, M.T.; Pham, H.; Manning, C.D. Effective approaches to attention-based neural machine translation. arXiv 2015, arXiv:1508.04025, preprint. [Google Scholar]
- Alvera-Azcárate, A.; Barth, A.; Sirjacobs, D.; Beckers, J.-M. Enhancing temporal correlations in EOF expansions for the reconstruction of missing data using DINEOF. Ocean. Sci. 2009, 5, 475–485. [Google Scholar] [CrossRef] [Green Version]
- Ebert, E.; Wilson, L.; Weigel, A.; Mittermaier, M.; Nurmi, P.; Gill, P.; Göber, M.; Joslyn, S.; Brown, B.; Fowler, T.; et al. Progress and challenges in forecast verification. Meteorol. Appl. 2013, 20, 130–139. [Google Scholar] [CrossRef]
- Wang, Y.T. Composite of Typhoon-Induced Sea Surface Temperature and Chlorophyll-a Responses in the South China Sea. J. Geophys. Res. Ocean. 2020, 125, e2020JC016243. [Google Scholar] [CrossRef]
- Wang, Y.; Xiu, P. Typhoon footprints on ocean surface temperature and chlorophyll-a in the South China Sea. Sci. Total Environ. 2022, 840, 156686. [Google Scholar] [CrossRef]
- Simpson, R.H.; Saffir, H. The hurricane disaster-potential scale. Weatherwise 1974, 27, 169–186. [Google Scholar]
- Babin, S.M.; Carton, J.; Dickey, T.D.; Wiggert, J.D. Satellite evidence of hurricane induced phytoplankton blooms in an oceanic desert. J. Geophys. Res. 2004, 109, C03043. [Google Scholar] [CrossRef]
Index | Parameter Name | |
---|---|---|
Input | 1 | Cchla anomalies scaled by the inverse of the error variance (zero if the data is missing) |
2 | Inverse of the error variance (zero is the data is missing) | |
3–4 | Scaled Cchla anomalies and inverse of the error variance of the previous day | |
5–6 | Scaled Cchla anomalies and inverse of the error variance of the next day | |
7 | Longitude (scaled linearly between −1 and 1) | |
8 | Latitude (scaled linearly between −1 and 1) | |
9 | Cosine of the day of the year divided by 365.25 | |
10 | Sine of the day of the year divided by 365.25 | |
Output | 1 | Cchla scaled by the inverse of the expected error variance |
2 | Logarithms of the inverse of the expected error variance |
N | RMSD | Bias | R2 | Slope | Intercept | |
---|---|---|---|---|---|---|
Reconstructed | 81 | 0.12 | −0.08 | 0.78 | 0.99 | 0.08 |
Satellite-derived | 9 | 0.06 | −0.02 | 0.83 | 0.79 | 0.13 |
Passing Time | Maximum Wind Speed (m/s) | Central Pressure Level (hPa) | Radius of 30 kn Wind Speed (km) | Translation Distance (km) | Average Translation Speed (km/h) | |
---|---|---|---|---|---|---|
Imbudo | 24–25 July 2003 | 50 | 935 | 280 | 4232 | 22.8 |
Higos | 18–19 August 2020 | 28 | 992 | 40 | 889 | 21.2 |
Haima | 21 October 2016 | 59 | 900 | 190 | 3846 | 23.7 |
Along-Track | Estuary | |||||
---|---|---|---|---|---|---|
Pre-Typhoon | Post-Typhoon | Anomaly | Pre-Typhoon | Post-Typhoon | Anomaly | |
Imbudo | 0.54 | 1.24 | 0.51 | 5.45 | 4.35 | −1.23 |
Higos | 0.40 | 0.63 | 0.15 | 5.28 | 4.97 | −0.01 |
Haima | 1.37 | 1.59 | 0.13 | 3.56 | 3.63 | 0.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ye, H.; Tang, S.; Yang, C.; Chen, C. Reconstruction of Daily MODIS/Aqua Chlorophyll-a Concentration in Turbid Estuarine Waters Based on Attention U-NET. Remote Sens. 2023, 15, 546. https://doi.org/10.3390/rs15030546
Ye H, Tang S, Yang C, Chen C. Reconstruction of Daily MODIS/Aqua Chlorophyll-a Concentration in Turbid Estuarine Waters Based on Attention U-NET. Remote Sensing. 2023; 15(3):546. https://doi.org/10.3390/rs15030546
Chicago/Turabian StyleYe, Haibin, Shilin Tang, Chaoyu Yang, and Chuqun Chen. 2023. "Reconstruction of Daily MODIS/Aqua Chlorophyll-a Concentration in Turbid Estuarine Waters Based on Attention U-NET" Remote Sensing 15, no. 3: 546. https://doi.org/10.3390/rs15030546
APA StyleYe, H., Tang, S., Yang, C., & Chen, C. (2023). Reconstruction of Daily MODIS/Aqua Chlorophyll-a Concentration in Turbid Estuarine Waters Based on Attention U-NET. Remote Sensing, 15(3), 546. https://doi.org/10.3390/rs15030546