Evaluating the Value of CrIS Shortwave-Infrared Channels in Atmospheric-Sounding Retrievals
Abstract
:1. Introduction
2. Background
2.1. Operational Use of CrIS Radiances in Retrievals
2.2. Comparison of the Shortwave and Longwave CrIS Bands
2.2.1. Signal and Noise
2.2.2. Non-Local Thermal Equilibrium
2.2.3. Advantages and Disadvantages of Using the SW Band
3. Evaluating Information Content from Radiance Measurements
4. Deriving Information Content from NUCAPS Retrievals
4.1. Methods
4.2. Results
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Collard, A.D.; McNally, A.P. The Assimilation of Infrared Atmospheric Sounding Interferometer Radiances at ECMWF. Q. J. R. Meteorol. Soc. 2009, 135, 1044–1058. [Google Scholar] [CrossRef]
- Collard, A.D. Selection of IASI Channels for Use in Numerical Weather Prediction. Q. J. R. Meteorol. Soc. 2007, 133, 1977–1991. [Google Scholar] [CrossRef]
- Yin, M. Bias Characterization of CrIS Shortwave Temperature Sounding Channels Using Fast NLTE Model and GFS Forecast Field. J. Geophys. Res. Atmos. 2016, 121, 1248–1263. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Han, Y.; van Delst, P.; Weng, F. Assessment of Shortwave Infrared Sea Surface Reflection and Nonlocal Thermodynamic Equilibrium Effects in the Community Radiative Transfer Model Using IASI Data. J. Atmos. Ocean. Technol. 2013, 30, 2152–2160. [Google Scholar] [CrossRef]
- DeSouza-Machado, S.G.; Strow, L.L.; Hannon, S.E.; Motteler, H.E.; Lopez-Puertas, M.; Funke, B.; Edwards, D.P. Fast Forward Radiative Transfer Modeling of 4.3 Μm Nonlocal Thermodynamic Equilibrium Effects for Infrared Temperature Sounders. Geophys. Res. Lett. 2007, 34, 1. [Google Scholar] [CrossRef]
- Maddy, E.S.; Barnet, C.D.; Gambacorta, A. A Computationally Efficient Retrieval Algorithm for Hyperspectral Sounders Incorporating A-Priori Information. IEEE Geosci. Remote Sens. Lett. 2009, 6, 802–806. [Google Scholar] [CrossRef]
- Smith, N.; Barnet, C.D. Uncertainty Characterization and Propagation in the Community Long-Term Infrared Microwave Combined Atmospheric Product System (CLIMCAPS). Remote Sens. 2019, 11, 1227. [Google Scholar] [CrossRef] [Green Version]
- Susskind, J.; Blaisdell, J.M.; Iredell, L. Improved Methodology for Surface and Atmospheric Soundings, Error Estimates, and Quality Control Procedures: The Atmospheric Infrared Sounder Science Team Version-6 Retrieval Algorithm. J. Appl. Remote Sens. 2014, 8, 084994. [Google Scholar] [CrossRef]
- Pagano, T.S.; Abesamis, C.; Andrade, A.; Aumann, H.; Gunapala, S.; Heneghan, C.; Jarnot, R.; Johnson, D.; Lamborn, A.; Maruyama, Y.; et al. CubeSat Infrared Atmospheric Sounder Technology Development Status. J. Appl. Remote Sens. 2019, 13, 1. [Google Scholar] [CrossRef]
- Glumb, R.J.; Jordan, D.C.; Mantica, P. Development of the Crosstrack Infrared Sounder (CrIS) Sensor Design. In Proceedings of the Infrared Remote Sensing IX, San Diego, CA, USA, 29 July–3 August 2001; Volume 4486. [Google Scholar] [CrossRef]
- Han, Y.; Revercomb, H.; Cromp, M.; Gu, D.; Johnson, D.; Mooney, D.; Scott, D.; Strow, L.; Bingham, G.; Borg, L.; et al. Suomi NPP CrIS Measurements, Sensor Data Record Algorithm, Calibration and Validation Activities, and Record Data Quality. J. Geophys. Res. Atmos. 2013, 118, 12734–12748. [Google Scholar] [CrossRef]
- Aumann, H.H.; Chahine, M.T.; Gautier, C.; Goldberg, M.D.; Kalnay, E.; McMillin, L.M.; Revercomb, H.; Rosenkranz, P.W.; Smith, W.L.; Staelin, D.H.; et al. AIRS/AMSU/HSB on the Aqua Mission: Design, Science Objectives, Data Products, and Processing Systems. IEEE Trans. Geosci. Remote Sens. 2003, 41, 253–264. [Google Scholar] [CrossRef] [Green Version]
- Chalon, G.; Astruc, P.; Hébert, P.; Blumstein, D.; Buil, C.; Carlier, T.; Clauss, A.; Siméoni, D.; Tournier, B. IASI Instrument: Technical Description and Measured Performances. In Proceedings of the International Conference on Space Optics—ICSO 2004, Toulouse, France, 30 March–2 April 2004; Volume 10568, p. 1056806. [Google Scholar] [CrossRef] [Green Version]
- Eresmaa, R.; Letertre-Danczak, J.; Lupu, C.; Bormann, N.; McNally, A.P. The Assimilation of Cross-Track Infrared Sounder Radiances at ECMWF. Q. J. R. Meteorol. Soc. 2017, 143, 3177–3188. [Google Scholar] [CrossRef]
- Fourrié, N.; Thépaut, J.-N. Evaluation of the AIRS Near-Real-Time Channel Selection for Application to Numerical Weather Prediction. Q. J. R. Meteorol. Soc. 2003, 129, 2425–2439. [Google Scholar] [CrossRef]
- Gelaro, R.; McCarty, W.; Suárez, M.J.; Todling, R.; Molod, A.; Takacs, L.; Randles, C.A.; Darmenov, A.; Bosilovich, M.G.; Reichle, R.; et al. The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). J. Clim. 2017, 30, 5419–5454. [Google Scholar] [CrossRef] [PubMed]
- Guidard, V.; Fourrié, N.; Brousseau, P.; Rabier, F. Impact of IASI Assimilation at Global and Convective Scales and Challenges for the Assimilation of Cloudy Scenes. Q. J. R. Meteorol. Soc. 2011, 137, 1975–1987. [Google Scholar] [CrossRef]
- Li, J.; Han, W. A Step Forward toward Effectively Using Hyperspectral IR Sounding Information in NWP. Adv. Atmos. Sci. 2017, 34, 1263–1264. [Google Scholar] [CrossRef] [Green Version]
- Martinet, P.; Lavanant, L.; Fourrié, N.; Rabier, F.; Gambacorta, A. Evaluation of a Revised IASI Channel Selection for Cloudy Retrievals with a Focus on the Mediterranean Basin. Q. J. R. Meteorol. Soc. 2014, 140, 1563–1577. [Google Scholar] [CrossRef]
- McCarty, W.; Jedlovec, G.; Miller, T.L. Impact of the Assimilation of Atmospheric Infrared Sounder Radiance Measurements on Short-Term Weather Forecasts. J. Geophys. Res. 2009, 114. [Google Scholar] [CrossRef]
- Rabier, F.; Järvinen, H.; Klinker, E.; Mahfouf, J.-F.; Simmons, A. The ECMWF Operational Implementation of Four-Dimensional Variational Assimilation. I: Experimental Results with Simplified Physics. Q. J. R. Meteorol. Soc. 2007, 126, 1143–1170. [Google Scholar] [CrossRef]
- Reale, O.; Susskind, J.; Rosenberg, R.; Brin, E.; Liu, E.; Riishojgaard, L.P.; Terry, J.; Jusem, J.C. Improving Forecast Skill by Assimilation of Quality-Controlled AIRS Temperature Retrievals under Partially Cloudy Conditions. Geophys. Res. Lett. 2008, 35, 8. [Google Scholar] [CrossRef] [Green Version]
- Reale, O.; McGrath-Spangler, E.L.; McCarty, W.; Holdaway, D.; Gelaro, R. Impact of Adaptively Thinned AIRS Cloud-Cleared Radiances on Tropical Cyclone Representation in a Global Data Assimilation and Forecast System. Weather Forecast. 2018, 33, 909–931. [Google Scholar] [CrossRef]
- Wang, G.; Zhang, J. Generalised Variational Assimilation of Cloud-Affected Brightness Temperature Using Simulated Hyper-Spectral Atmospheric Infrared Sounder Data. Adv. Space Res. 2014, 54, 49–58. [Google Scholar] [CrossRef]
- Berndt, E.B.; Smith, N.; Burks, J.; White, K.; Esmaili, R.; Kuciauskas, A.; Duran, E.; Allen, R.; LaFontaine, F.; Szkodzinski, J. Gridded Satellite Sounding Retrievals in Operational Weather Forecasting: Product Description and Emerging Applications. Remote Sens. 2020, 12, 3311. [Google Scholar] [CrossRef]
- Esmaili, N.; Smith, N.; Schoeberl, M.; Barnet, C.D. Evaluating Satellite Sounding Temperature Observations for Cold Air Aloft Detection. Atmosphere 2020, 11, 1360. [Google Scholar] [CrossRef]
- Smith, N.; White, K.D.; Berndt, E.B.; Zavodsky, B.T.; Wheeler, A.; Bowlan, M.A.; Barnet, C.D. NUCAPS in AWIPS–Rethinking Information Compression and Distribution for Fast Decision Making. In Proceedings of the American Meteorological Society Annual Meeting, Austin, TX, USA, 6–11 January 2018. [Google Scholar]
- Smith, N.; Berndt, E.B.; Barnet, C.D.; Goldberg, M.D. Why Operational Meteorologists Need More Satellite Soundings. In Proceedings of the 99th American Meteor Society Annual Meeting, Phoenix, AZ, USA, 6–10 January 2019; Available online: https://ams.confex.com/ams/2019Annual/mediafile/Manuscript/Paper355319/AMS2019_Paper3.7_Extended_Abstract_NadiaSmith.pdf (accessed on 5 October 2022).
- Weaver, G.; Smith, N.; Berndt, E.B.; White, K.D.; Dostalek, J.F.; Zavodsky, B.T. Addressing the Cold Air Aloft Aviation Challenge with Satellite Sounding Observations. J. Oper. Meteorol. 2019, 7, 138–152. [Google Scholar] [CrossRef]
- Weisz, E.; Smith, N.; Smith, W.L. The Use of Hyperspectral Sounding Information to Monitor Atmospheric Tendencies Leading to Severe Local Storms. Earth Space Sci. 2015, 2, 369–377. [Google Scholar] [CrossRef] [Green Version]
- Goldberg, D.G.; Qu, Y.; McMillim, L.M.; Wolf, W.; Zhou, L.; Divakarla, G. AIRS Near-Real-Time Products and Algorithms in Support of Operational Numerical Weather Prediction. IEEE TGRS 2003, 41, 379–389. [Google Scholar] [CrossRef]
- Liu, X.; Zhou, D.K.; Larar, A.; Smith, W.L.; Mango, S.A. Case-Study of a Principal-Component-Based Radiative Transfer Forward Model and Retrieval Algorithm Using EAQUATE Data. Q. J. R. Meteorol. Soc. 2007, 133, 243–256. [Google Scholar] [CrossRef]
- Weisz, E.; Smith, W.L.; Smith, N. Advances in Simultaneous Atmospheric Profile and Cloud Parameter Regression Based Retrieval from High-Spectral Resolution Radiance Measurements. J. Geophys. Res. Atmos. 2013, 118, 6433–6443. [Google Scholar] [CrossRef]
- Smith, W.L.; Weisz, E.; Kireev, S.V.; Zhou, D.K.; Li, Z.; Borbas, E.E. Dual-Regression Retrieval Algorithm for Real-Time Processing of Satellite Ultraspectral Radiances. JAMC 2012, 51, 1455–1476. [Google Scholar] [CrossRef]
- Wu, W.; Liu, X.; Yang, Q.; Zhou, D.K.; Larar, A.; Zhao, M.; Zhou, L. All Sky Single Field of View Retrieval System for Hyperspectral Sounding. In Proceedings of the IGARSS 2019–2019 IEEE International Geoscience and Remote Sensing Symposium, IEEE, Yokohama, Japan, 28 July–2 August 2019. [Google Scholar] [CrossRef]
- Crevoisier, C.; Chedin, A.; Scott, N.A. AIRS Channel Selection for CO2 and Other Trace-Gas Retrievals. Q. J. R. Meteorol. Soc. 2003, 129, 2719–2740. [Google Scholar] [CrossRef]
- Smith, N.; Barnet, C.D. CLIMCAPS Observing Capability for Temperature, Moisture, and Trace Gases from AIRS/AMSU and CrIS/ATMS. Atmos. Meas. Tech. 2020, 13, 4437–4459. [Google Scholar] [CrossRef]
- Susskind, J.; Blaisdell, J.M.; Iredell, L.; Keita, F. Improved Temperature Sounding and Quality Control Methodology Using AIRS/AMSU Data: The AIRS Science Team Version 5 Retrieval Algorithm. IEEE Trans. Geosci. Remote Sens. 2011, 49, 883–907. [Google Scholar] [CrossRef] [Green Version]
- Chang, S.; Sheng, Z.; Du, H.; Ge, W.; Zhang, W. A Channel Selection Method for Hyperspectral Atmospheric Infrared Sounders Based on Layering. Atmos. Meas. Tech. 2020, 13, 629–644. [Google Scholar] [CrossRef] [Green Version]
- Coopmann, O.; Guidard, V.; Fourrié, N.; Josse, B.; Marécal, V. Update of Infrared Atmospheric Sounding Interferometer (IASI) Channel Selection with Correlated Observation Errors for Numerical Weather Prediction (NWP). Atmos. Meas. Technol. 2020, 13, 2659–2680. [Google Scholar] [CrossRef]
- Fourrié, N.; Rabier, F. Cloud Characteristics and Channel Selection for IASI Radiances in Meteorologically Sensitive Areas. Q. J. R. Meteorol. Soc. 2004, 130, 1839–1856. [Google Scholar] [CrossRef] [Green Version]
- Rabier, F.; Fourrié, N.; Chafaï, D.; Prunet, P. Channel Selection Methods for Infrared Atmospheric Sounding Interferometer Radiances. Q. J. R. Meteorol. Soc. 2002, 128, 1011–1027. [Google Scholar] [CrossRef]
- Ventress, L.; Dudhia, A. Improving the Selection of IASI Channels for Use in Numerical Weather Prediction. Q. J. R. Meteorol. Soc. 2014, 140, 2111–2118. [Google Scholar] [CrossRef]
- Gambacorta, A.; Barnet, C.D. Methodology and Information Content of the NOAA NESDIS Operational Channel Selection for the Cross-Track Infrared Sounder (CrIS). IEEE Trans. Geosci. Remote Sens. 2013, 51, 3207–3216. [Google Scholar] [CrossRef]
- Cañas, C.; Pagano, T.S.; Rafol, S.B. Radiometric Performance Characterization of the CubeSat Infrared Atmospheric Sounder (CIRAS) High Operating Temperature-Barrier Infrared Detectors (HOT-BIRD). In Proceedings of the CubeSats and SmallSats for Remote Sensing IV, Online Only USA, 23 August 2020; Norton, C.D., Pagano, T.S., Babu, S.R., Eds.; SPIE: Bellingham, WA, USA, 2020; p. 6. [Google Scholar]
- Li, Z.; Li, J.; Schmit, T.J.; Wang, P.; Lim, A.; Li, J.; Nagle, F.W.; Bai, W.; Otkin, J.A.; Atlas, R.; et al. The Alternative of CubeSat-Based Advanced Infrared and Microwave Sounders for High Impact Weather Forecasting. Atmos. Ocean. Sci. Lett. 2019, 12, 80–90. [Google Scholar] [CrossRef]
- Kaplan, L.D.; Chahine, M.T.; Susskind, J.; Searl, J.E. Spectral Band Passes for a High Precision Satellite Sounder. Appl. Opt. 1977, 16, 322. [Google Scholar] [CrossRef] [PubMed]
- Huang, A.; Gumley, L.; Strabala, K.; Mindock, S.; Garcia, R.; Martin, G.; Cureton, G.; Davies, J.; Bearson, N.; Braum, J.; et al. Community Satellite Processing Package from Direct Broadcast: Providing Real-Time Satellite Data to Every Corner of the World. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), IEEE, Beijing, China, 10–15 July 2016; pp. 5532–5535. [Google Scholar] [CrossRef]
- Nalli, N.R.; Tan, C.; Warner, J.; Divakarla, M.; Gambacorta, A.; Wilson, M.; Zhu, T.; Wang, T.; Wei, Z.; Pryor, K.; et al. Validation of Carbon Trace Gas Profile Retrievals from the NOAA-Unique Combined Atmospheric Processing System for the Cross-Track Infrared Sounder. Remote Sens. 2020, 12, 3245. [Google Scholar] [CrossRef]
- Nalli, N.R.; Gambacorta, A.; Liu, Q.; Barnet, C.D.; Tan, C.; Iturbide-Sanchez, F.; Reale, R.; Sun, B.; Wilson, M.; Borg, L.; et al. Validation of Atmospheric Profile Retrievals From the SNPP NOAA-Unique Combined Atmospheric Processing System. Part 1: Temperature and Moisture. IEEE Trans. Geosci. Remote Sens. 2018, 56, 180–190. [Google Scholar] [CrossRef]
- Nalli, N.R.; Gambacorta, A.; Liu, Q.; Tan, C.; Iturbide-Sanchez, F.; Barnet, C.D.; Joseph, E.; Morris, V.R.; Oyola, M.; Smith, J.W. Validation of Atmospheric Profile Retrievals from the SNPP NOAA-Unique Combined Atmospheric Processing System. Part 2: Ozone. IEEE Trans. Geosci. Remote Sens. 2018, 56, 598–607. [Google Scholar] [CrossRef]
- Sun, B.; Reale, A.; Tilley, F.H.; Pettey, M.E.; Nalli, N.R.; Barnet, C.D. Assessment of NUCAPS S-NPP CrIS/ATMS Sounding Products Using Reference and Conventional Radiosonde Observations. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 2499–2509. [Google Scholar] [CrossRef]
- Kalluri, S.; Barnet, C.; Divakarla, M.; Esmaili, R.; Nalli, N.; Pryor, K.; Reale, T.; Smith, N.; Tan, C.; Wang, T.; et al. Validation and Utility of Satellite Retrievals of Atmospheric Profiles in Detecting and Monitoring Significant Weather Events. Bull. Am. Meteorol. Soc. 2022, 103, E570–E590. [Google Scholar] [CrossRef]
- Susskind, J.; Barnet, C.D.; Blaisdell, J.M. Retrieval of Atmospheric and Surface Parameters from AIRS/AMSU/HSB Data in the Presence of Clouds. IEEE TGRS 2003, 41, 390–409. [Google Scholar] [CrossRef]
- Chahine, M.T.; Pagano, T.S.; Aumann, H.H.; Atlas, R.; Barnet, C.D.; Blaisdell, J.; Chen, L.; Divakarla, M.; Fetzer, E.J.; Goldberg, M.; et al. AIRS: Improving Weather Forecasting and Providing New Data on Greenhouse Gases. Bull. Am. Meteorol. Soc. 2006, 87, 911–926. [Google Scholar] [CrossRef] [Green Version]
- Barnet, C.D.; Divakarla, M.; Gambacorta, A.; Iturbide-Sanchez, F.; Tan, C.; Wang, T.; Warner, J.; Zhang, K.; Zhu, T. NOAA Unique Combined Atmospheric Processing System (NUCAPS) Algorithm Theoretical Basis Document; National Oceanic and Atmospheric Administration: Washington, DC, USA, 2021; p. 110.
- Strow, L.L.; Hannon, S.E.; De Souza-Machado, S.; Motteler, H.E.; Tobin, D. An Overview of the AIRS Radiative Transfer Model. IEEE Trans. Geosci. Remote Sens. 2003, 41, 303–313. [Google Scholar] [CrossRef] [Green Version]
- Barnet, C.D.; Blaisdell, J.M.; Susskind, J. An Analytical Transformation for Use in Computation of Interferometric Spectra for Remote Sensing Applications. IEEE TGRS 2000, 38, 169–183. [Google Scholar]
- Chahine, M.T. Remote Sensing of Cloud Parameters. J. Atmos. Sci. 1982, 39, 159–170. [Google Scholar] [CrossRef]
- Rothman, L.S.; Gamache, R.R.; Goldman, A.; Brown, L.R.; Toth, R.A.; Pickett, H.M.; Poynter, R.L.; Flaud, J.-M.; Camy-Peyret, C.; Barbe, A.; et al. The HITRAN Database: 1986 Edition. Appl. Opt. 1987, 26, 4058. [Google Scholar] [CrossRef] [PubMed]
- Gordon, I.E.; Rothman, L.S.; Hill, C.; Kochanov, R.V.; Tan, Y.; Bernath, P.F.; Birk, M.; Boudon, V.; Campargue, A.; Chance, K.V.; et al. The HITRAN2016 Molecular Spectroscopic Database. J. Quant. Spectrosc. Radiat. Transf. 2017, 203, 3–69. [Google Scholar] [CrossRef]
- Andrews, D.G.; Leovy, C.B.; Holton, J.R.; Marshall, J.; Plumb, R.A. Middle Atmosphere Dynamics; Elsevier Science & Technology: Saint Louis, MO, USA, 1987; ISBN 978-0-08-051167-2. [Google Scholar]
- Tobin, D.; Revercomb, H.; Knuteson, R.; Taylor, J.; Best, F.; Borg, L.; DeSlover, D.; Martin, G.; Buijs, H.; Esplin, M.; et al. Suomi-NPP CrIS Radiometric Calibration Uncertainty. J. Geophys. Res. Atmos. 2013, 118, 10589–10600. [Google Scholar] [CrossRef]
- Zavyalov, V.; Esplin, M.; Scott, D.; Esplin, B.; Bingham, G.; Hoffman, E.; Lietzke, C.; Predina, J.; Frain, R.; Suwinski, L.; et al. Noise Performance of the CrIS Instrument. J. Geophys. Res. Atmos. 2013, 118, 13108–13120. [Google Scholar] [CrossRef] [Green Version]
- UW-Madison Space Science and Engineering Center: Hank Revercomb; UMBC Atmospheric Spectroscopy Laboratory: Larrabee Strow. Suomi NPP CrIS Level 1B Full Spectral Resolution V2. Greenbelt, MD, Goddard Earth Sciences Data and Information Services Center (GES DISC). Available online: https://doi.org/10.5067/9NPOTPIPLMAW (accessed on 17 November 2022). [CrossRef]
- Iturbide-Sanchez, F.; Strow, L.; Tobin, D.; Chen, Y.; Tremblay, D.; Knuteson, R.O.; Johnson, D.G.; Buttles, C.; Suwinski, L.; Thomas, B.P.; et al. Recalibration and Assessment of the SNPP CrIS Instrument: A Successful History of Restoration After Midwave Infrared Band Anomaly. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–21. [Google Scholar] [CrossRef]
- Smith, J.A.; Taylor, J.P. Initial Cloud Detection Using the EOF Components of High-Spectral-Resolution Infrared Sounder Data. J. Appl. Meteorol. 2004, 43, 196–210. [Google Scholar] [CrossRef]
- Antonelli, P.; Revercomb, H.E.; Sromovsky, L.A.; Smith, W.L.; Knuteson, R.O.; Tobin, D.C.; Garcia, R.K.; Howell, H.B.; Huang, H.-L.; Best, F.A. A Principal Component Noise Filter for High Spectral Resolution Infrared Measurements: Principal Component Noise Filter. J. Geophys. Res. Atmos. 2004, 109, D23. [Google Scholar] [CrossRef]
- Pagano, T.S.; Johnson, D.L.; McGuire, J.P.; Schwochert, M.A.; Ting, D.Z. Technology Maturation Efforts for the Next Generation of Grating Spectrometer Hyperspectral Infrared Sounders. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 2929–2943. [Google Scholar] [CrossRef]
Scene BT | LW NEΔN | LW NEΔT | MW NEΔN | MW NEΔT | SW NEΔN | SW NEΔT |
---|---|---|---|---|---|---|
200 K | 0.05 | 0.09 | 0.03 | 0.65 | 0.0046 | 9.7 |
250 K | 0.05 | 0.04 | 0.03 | 0.12 | 0.0046 | 0.5 |
300 K | 0.05 | 0.03 | 0.03 | 0.04 | 0.0046 | 0.07 |
Variable | CrIS LW Band (~15 μm) | CrIS SW Band (4.3 μm) |
---|---|---|
Interfering gases in CO2 bands | H2O, O3, HNO3 | None |
Vertical sounding range | 1 hPa to surface | 20 hPa to surface |
Influence of solar radiation | Negligible | Must handle non-LTE and surface reflection |
Planck function linearity | First order linearity | Highly nonlinear |
Sensitivity of the Jacobian to scene temperature | Low | High |
Tropospheric vertical resolution | 4 km | 2 km |
Channel Configuration | Line in Figure 5 | Nc | DOFS |
---|---|---|---|
LW + MW + SW | Solid black | 2211 | 100 |
LW + MW | Solid blue | 1578 | 85 |
MW + SW | Solid red | 1498 | 65 |
LW-only | Dashed blue | 713 | 65 |
MW-only | (not shown) | 865 | 60 |
SW-only | Dashed red | 633 | 35 |
LW (690–790 cm−1) | Dotted black | 161 | 30 |
MW + LW (690–790 cm−1) | Dashed black | 1026 | 65 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barnet, C.D.; Smith, N.; Ide, K.; Garrett, K.; Jones, E. Evaluating the Value of CrIS Shortwave-Infrared Channels in Atmospheric-Sounding Retrievals. Remote Sens. 2023, 15, 547. https://doi.org/10.3390/rs15030547
Barnet CD, Smith N, Ide K, Garrett K, Jones E. Evaluating the Value of CrIS Shortwave-Infrared Channels in Atmospheric-Sounding Retrievals. Remote Sensing. 2023; 15(3):547. https://doi.org/10.3390/rs15030547
Chicago/Turabian StyleBarnet, Chris D., Nadia Smith, Kayo Ide, Kevin Garrett, and Erin Jones. 2023. "Evaluating the Value of CrIS Shortwave-Infrared Channels in Atmospheric-Sounding Retrievals" Remote Sensing 15, no. 3: 547. https://doi.org/10.3390/rs15030547
APA StyleBarnet, C. D., Smith, N., Ide, K., Garrett, K., & Jones, E. (2023). Evaluating the Value of CrIS Shortwave-Infrared Channels in Atmospheric-Sounding Retrievals. Remote Sensing, 15(3), 547. https://doi.org/10.3390/rs15030547