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Abstract: Lakes are an important part of the Earth’s surface. Poyang Lake is China’s largest freshwater
lake with complex hydrological relationships and unique rhythmic changes. There is no systematic
understanding of the relationship between lake watershed area and river–lake connectivity. In this
study, using remote sensing imagery, hydrological data, meteorological data, and land use surveys,
we investigated changes in the Poyang Lake water area from 1977–2021. In addition, we examined
the relationship between the lake water area and potential impact factors and analyzed the influence
of river–lake interactions on the lake water area. The results showed that the water area of Poyang
Lake decreased during the study period. River runoff and sediment load changes in the Poyang
Lake basin are the main factors affecting the lake water area. Additionally, the Three Gorges Dam
water impoundment situated in the upper reaches of the Yangtze River weakened and eliminated
the block and reverse flow of the Yangtze River into the Poyang Lake, causing the water area to
decrease toward the end of the flood season in 2005 and in the dry season in 2003. Changes in the
lakebed elevation caused by sedimentation and anthropogenic activities have also accelerated the
shrinkage of the water area. Overall, the results of this study indicate that variations in the river–lake
interactions are the primary cause of the significant changes observed in the Poyang Lake water area
in the last five decades.

Keywords: the Poyang Lake; Landsat; water area; anthropogenic influence; river–lake interaction

1. Introduction

Lakes are natural reservoirs formed by the collection of stagnant water in surface
depressions. The broad expanse of water and slow currents that are characteristic of lakes
play an important role in Earth’s hydrologic cycle [1]. In addition, lakes provide water
to surrounding areas and influence river flow regulation and groundwater levels. The
ecosystems formed by lakes also provide an essential living habitat for a range of organisms.
Therefore, it is essential to maintain a stable state of lakes to ensure ecological balance [2–4].
In recent years, global warming and frequent human activity have substantially impacted
major lakes and their surrounding environments worldwide. Several scholars have ana-
lyzed the characteristics of global lake changes and have confirmed that changes to the
lake area affect the overlying atmosphere and lake–air interactions, impacting the regional
climate [5–8]. As a result of these impacts and the important role that lakes play in ecosys-
tems and regional climate change stability, there is an urgent need to understand lake
changes, which are occurring relatively quickly.

Lake Poyang, the largest freshwater fluvial lake in China, is located in China’s most
important economic development region, the middle-lower Yangtze Plain (Figure 1). As the
largest lake connected to the Yangtze River, Poyang Lake is an alternately inflow–outflow
lake with complex hydrological relationships and unique rhythmic changes [9]. In the
flood season, Poyang Lake is a lake landscape when the Poyang Basin and Yangtze River
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flow combine creating the lake. In the dry season, Poyang Lake is a river landscape,
Poyang Basin runoff flows through the lake berth into the Yangtze River [10]. Hydrological
monitoring revealed that the interval between the flood and dry season has decreased,
seasonal drought events have intensified, and floods have occurred more frequently in
the last 22 years [11–13]. Dramatic changes in the lake’s hydrological cycle have had
negative environmental effects [14]. Several scholars have recommended the construction
of a dam at the estuary of Poyang Lake to artificially regulate the interaction between
the Yangtze River and Poyang Lake and decrease the severity of disaster events [15].
However, there is a lot of debate about this idea. Opponents contend that climate change
and human activity have a significant impact on the Poyang Lake basin and that erecting
dams would further worsen the effects of the broken hydrological connection [16–18].
Therefore, having a comprehensive grasp of the changes and their causes of Poyang Lake
is necessary. Monitoring lake water areas help us more intuitively understand the true
condition of lakes, especially big lake systems. Earlier, the detection of water areas relied
on field measurements or grid method for estimation, which had low accuracy and large
errors [19]. With the development of remote sensing technology, it is possible to acquire
images of the study area by remote sensing satellites, interpret the spectral information of
the images on the computer, and the outline of the waters will be automatically extracted
from the images to obtain the size of the water body area. Furthermore, the extraction
results meet the accuracy requirements and are highly efficient [20].
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The water area of Poyang Lake interacts with the environment, and as the water
level and area of the lake increase, it will make the local temperature and the near-surface
atmosphere stable [21]. Due to the significant seasonality of the lake’s inundation area,
the lake water area is extremely variable, coupled with the impoundment of the Three
Gorges Dam in the upper reaches of the Yangtze River in 2003, which affects the river–
lake connection relationship of Poyang Lake, the change of lake water body area is more
complicated [22–24]. It has been found that the area of lake water bodies has been reduced
in recent years [25], but there is no systematic understanding of the influence mechanism
between the lake water area and the river–lake connectivity. In this study, historical images
of Poyang Lake from the last 40 years were used to extract water area data for flood
and dry seasons. Combined with basin hydrology, meteorology, and land use data and
using statistical methods, the impact of climate change and anthropogenic activities on
the hydrological relationship of the Poyang Lake were studied. Based on this research, we
expected to reveal the importance of the hydrological connectivity of connected lakes and
provide a theoretical basis for water resource management of connected lakes.

2. Study Area and Data
2.1. Study Area

We considered a portion of the Poyang Lake basin as the study area, which occurs
on the south bank of the middle Yangtze Proper and connects with the Yangtze River
(28◦22′–29◦45′N and 115◦47′–116◦45′E); the basin covers an area of 162,225 km2. The
Poyang Lake basin is characterized by five rivers, namely the Ganjiang, Fuhe, Xinjiang,
Raohe, and Xiushui Rivers; these rivers flow into Poyang Lake. Upon inflow storage, the
lake water flows into the Yangtze River via the estuary of the lake, which in turn receives
the Yangtze River runoff.

The Poyang Lake basin is characterized by a subtropical monsoon climate, with in-
tense solar radiation. The average annual temperature is 11.7 degrees Celsius. The average
annual precipitation is 551.6 mm, with 70% of the precipitation occurring in summer
(July–September). Due to the highly variable precipitation in the basin, the seasonal vari-
ation of runoff into the lake of the five major rivers is substantial, with the precipitation
received during this period accounting for 75% of the annual precipitation. During the
dry season, from November–February, the area of the lake shrinks and part of the lakebed
remains bare.

2.2. Data Collection

Remote sensing images were obtained for the Poyang Lake basin from the Landsat
series (MSS, TM, ETM+, OLI) for the 1977–2021 period (Figure 2) and downloaded from
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the United States Geological Survey website (https://earthexplorer.usgs.gov/ (accessed
on 20 February 2022)). Remote sensing images will have cloud distribution, which will
impact the extraction of image information. Therefore, we select images with less than
30% cloud coverage and appropriate extraction effect for high-quality images for analysis.
Overall, a total of 328 images were selected for the flood period (June to September) and
the dry period (November to February) from 1977 to 2021 by excluding missing data from
1980, 1982, 1985, 1994, and 2009. In addition, historical high-resolution satellite images
of the Poyang Lake obtained by the US Department of Defense (13 December 1967) were
compared with earlier periods characterized by less anthropogenic disturbance. The image
was downloaded from the fifth generation of Key-Hole spy satellites, the first generation of
U.S. photo intelligence satellites, and the image was taken in December 1967. The satellite
acquired the photos from space and sent the film back to Earth for processing and analysis,
and the CIA (Central Intelligence Agency) processed the film for publication. The spatial
resolution of the image used was 1.8 m.
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Figure 2. Remote sensing temporal data distribution.

We selected river runoff, river sediment, and land use in the watershed to represent
the impact of human activities. Precipitation and pan evaporation in the basin are chosen
to represent the influence of climate. The runoff and sediment load data were obtained
from the Hydrological Information Yearbook published by the Ministry of Water Resources
and Electricity of the People’s Republic of China. The measured annual runoff data and
annual sediment load data from six hydrological stations of “Wuhe” and “Hukou” in the
Poyang Lake basin were selected. Among them, “inflow” is the total runoff of “five rivers”
in the basin. The “net outflow” is the sum of runoff from “Five Rivers” minus the runoff
from “Hukou Station” (Figure 1) (runoff data distribution period: 1977–2020; sediment
load data distribution period: 1980–2020). The precipitation and pan evaporation data
of the Poyang Lake basin from 1977–2020 were obtained from 23 meteorological stations
with actual measurements (Figure 1), and the data were downloaded from the China
Meteorological Data Website (http://data.cma.cn/ (accessed on 11 September 2021)) [26].
Data from 23 sites were averaged for analysis. Finally, land use data for the Poyang Lake
basin were obtained from the China National Land Use Database and classified using a
secondary classification system for the following years: 1980, 1995, 2000, 2005, 2010, 2015,
and 2020. All measured data used in this study were verified and rated as good quality.

https://earthexplorer.usgs.gov/
http://data.cma.cn/
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3. Methods
3.1. Extraction Method of Water Area

The multi-band pixel value comparison method was used to extract water information
and calculate the water area. In addition, the spectral characteristics of the water images
were used to set thresholds, extract lake water data, and calculate the mean area of the
annual flood and dry seasons. The image information is pre-processed before extraction.
Atmospheric correction and radiation correction are performed on the ENVI software
platform to reduce the errors of image spectral information. After pre-processing, we
extract the spectral feature values of the lake water bodies by manually visually ticking the
water bodies of the lake. The spectral features of the water body image are set as thresholds,
and the image is spectrally analyzed to extract the area of the lake water. The result was
consistent with the pixel values of adjacent pixels. After manual visual verification, the
extracted water data were deemed accurate.

3.2. Statistical Analysis

The Mann–Kendall mutation test was used to detect the change point year of data and
the Mann–Kendall trend method was used to identify temporal trends in the data series.
The Mann–Kendall test is a widely used method for nonparametric statistical analysis. Its
characteristic advantage is that the data samples do not need to obey any specific distri-
bution pattern and are not disturbed by a few outliers. In addition, the test is commonly
used to predict long-term trends in meteorological time series data such as temperature,
precipitation, and runoff [27–29]. In this paper, correlation analysis and principal compo-
nent analysis were also performed on the relationship between lake area and influencing
factors such as net lake outflow, sediment load, rainfall, and temperature [30,31]. Principal
component analysis (PCA) was used to identify the significant components or factors that
explained most of the variance of the system [32,33]. PCA has the great advantage of
reducing the number of variables used to explain hydrological behavior and retaining
only those principal components that explain the most significant part of the variance of
the data. It has been applied to hydrology [34]. Finally, the cross-tabulation matrix and
change in terms of the percent of the landscape were used to assess the total change of
land categories [35]. The results of the image comparisons revealed the characteristics and
influencing mechanisms of water area change in the Poyang Lake basin.

4. Results
4.1. Trends and Change Point of Lake Water Area

From 1977–2021, the water area during the flood season displayed a significant down-
ward trend (MK trend test Z = −1.67, passing the 95% test), with an annual decrease rate of
–9.14 km2 (Figure 3). The largest lake area recorded for this period was 4662.05 km2 in 1998,
and the smallest was 2139.37 km2 in 2006. The MK mutation test showed that the change
point year was 2005.

In the dry season of the 1977–2021 period, the lake water area showed a notable down-
ward trend (MK test Z =−3.09, passing the 99% test), with a decrease rate of−17.52 km2/a.
The largest area recorded was 3202.91 km2 in 1997 and the smallest area was 775.41 km2 in
2019. In addition, the MK mutation test showed that the change point year was 2003, post
which, the declining rate of the water area increased (Figure 3).

4.2. Analysis of Lake Water Area Impact Factor

The Poyang Lake is a classical river-connected drain lake. Figure 4 indicates the
complex hydrological relationships that exist in this lake. The hydrological factors con-
sidered in this study were runoff, precipitation, pan evaporation, and water utilization.
Groundwater was not considered, as the complexity of the exchange relationship of this
resource is beyond the scope of this research. In the analysis, inflow and net outflow were
used to express the influence of runoff, with net outflow indicating the total runoff of the
rivers into the lake minus the runoff from the lake estuary. Selected sediment loads were
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analyzed to investigate variations in the lakebed, and land use was studied to investigate
water utilization.
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Figure 4. (a) Hydrological relationship diagram of the Poyang Lake. (b) Schematic diagram of the
hydrological cycle of the lake.

4.2.1. Changes in the Lake Flow

Figure 5 indicates the increasing trend characterizing the annual inflow of Poyang
Lake from 1977–2020. However, the MK trend test indicated that the increasing trend was
insignificant (Z = 1.10). In addition, the MK mutation test showed that the change point
was in 1992 and 2003. Pearson’s linear correlation coefficient analysis was used to test the
relationship between lake area and inflow of water, and the coefficient was 0.38 in the flood
season and 0.08 in the dry season, and the correlation coefficient in the flood season passed
the 99% significance test.
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Figure 6 also indicates a net increasing trend for the annual net outflow of Poyang
Lake from 1977–2020. The MK trend test confirmed that the increasing trend was lower
than the inflow runoff (correlation coefficient = 0.54). In addition, the MK mutation test
revealed that the change point was insignificant, and the results of Pearson’s analysis
revealed correlation coefficients of 0.09 and 0.48 for lake area and outflow in the dry and
flood seasons.
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4.2.2. Changes in the Poyang Lake Sediment Load

From 1980–2020, the total sediment load received from the five major rivers into the
Poyang Lake showed a significant downward trend (Figure 7), with a decrease rate of
−33.5 × 104 t/a (MK trend test Z = −1.67, >95%); however, the change point was not
significant. Pearson analysis was used to determine the correlation between the annual
sediment load and lake water area in the flood and dry seasons. The results revealed
coefficients of 0.29 and 0.26 in the flood and dry seasons, respectively, with both coefficients
being significant at the 95% confidence level. These results demonstrate a close association
between the lake area and lake sediment load.
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4.2.3. Changes in the Pan Evaporation and Precipitation in the Poyang Lake

From 1977–2020, the pan evaporation rate during the dry season showed an insignifi-
cant increasing trend (Z = 0.56), whereas pan evaporation during the flood season showed
a significant downward trend (Z = −2.14), with a decrease rate of 4.62 × 10−1 mm/a and
change point in 1992. In addition, the Pearson analysis test indicated no correlation between
pan evaporation and lake area. The correlation coefficients were 0.11 and 0.06 in the dry
and flood seasons, respectively (Figure 8).
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From 1977–2020, the flood season precipitation was characterized by an insignificant
downward trend (Z = −0.41), whereas dry season precipitation significantly increased
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0.31 at a 99% confidence level. In the dry season, the correlation coefficient was insignificant.
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4.2.4. Results of Principal Component Analysis

The PCA extracted 2 main factors affecting the area of the lake water area, and the
results reflect that the area of lake water bodies during the flood and dry periods is mainly
affected by runoff and sediment load (Table 1).
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Table 1. Component matrix.

Flood Season
Variable Factor1 Factor2

Inflow 0.86 −0.02
Net outflow 0.85 0.03

Sediment 0.83 −0.02
Precipitation −0.55 0.77
Evaporation 0.58 0.72

Dry Season
Variable Factor1 Factor2

Net outflow 0.88 0.03
Inflow 0.77 0.56

Sediment 0.72 0.03
Evaporation −0.48 0.47
Precipitation −0.29 0.82

4.2.5. Land Use Changes in the Poyang Lake

The transfer matrix was used to calculate the transfer amount of different land fea-
tures from 1980–2020 and showed clear changes in the different regions. Primarily, we
determined that changes in land features in Poyang Lake mainly occurred after 2000, while
the amount of land surface conversion in the early stage was not noticeable. “Swap change”
means a transformation of land use from its original state to other features. After 2000, the
most significant land use changes included an increase in the area of croplands and water,
a decrease in the area of forest and grasslands, and a 1.53% expansion in the settlement
area (Table 2).

Table 2. Land use change information of 1980–2020 (%).

Gain Loss Total
Change Swap Absolute Value

of Net Change

1980–2000

Cropland 0.40 0.49 0.89 0.81 0.08
Forest 0.43 0.51 0.94 1.02 −0.08

Grassland 0.29 0.24 0.53 0.58 −0.04
Other 0.13 0.10 0.23 0.26 −0.03

Settlement 0.14 0.00 0.14 0.00 0.14
Water 0.27 0.32 0.60 0.65 −0.05

2000–2020

Cropland 12.04 12.77 24.81 24.09 0.73
Forest 11.82 52.94 64.76 65.58 −0.81

Grassland 3.00 3.47 6.47 6.49 −0.02
Other 0.14 0.54 0.67 0.42 0.25

Settlement 2.78 0.76 3.55 2.02 1.53
Water 2.08 3.06 5.14 4.89 0.25

Figures 10 and 11 show a comparison of the images, indicating that the urban area
expanded significantly after 2000. In addition, the transfer matrix analysis verified an
apparent conversion relationship between settlement and cropland, and a substantial
conversion relationship between the “water” and “other” land use categories was also
observed (Table 3). Moreover, compared with the 1980s image, the “other” land use
category in the Ganjiang river estuary was replaced by “cropland”, and “settlement” was
replaced with “cropland” in the year 2020. The significant increase in the “settlement” and
“cropland” categories indicates an increase in former water area utilization in the basin.
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Table 3. Land transfer matrix of 1980–2020 (%).

Relative Difference (Increase)
2020

Cropland Forest Grassland Other Settlement Water

1980

Cropland 0.00 0.07 0.04 −0.43 1.26 0.08
Forest −0.10 0.00 0.01 −0.94 −0.55 −0.31

Grassland 0.26 0.38 0.00 −0.60 −0.25 −0.45
Other −0.44 −0.93 −0.60 0.00 −0.52 10.79

Settlement 2.36 −0.48 −0.13 0.38 0.00 −0.04
Water 0.44 −0.58 −0.35 17.87 0.25 0.00

Relative Difference (Reduced)
2020

Cropland Forest Grassland Other Settlement Water

1980

Cropland 0.00 −0.15 0.18 −0.50 2.24 0.28
Forest 0.06 0.00 0.39 −0.94 −0.22 −0.57

Grassland 0.10 −0.02 0.00 −0.69 −0.05 −0.16
Other −0.53 −0.95 −0.61 0.00 −0.41 17.93

Settlement 1.54 −0.68 −0.24 −0.06 0.00 0.50
Water 0.87 −0.56 −0.02 21.12 1.39 0.00

5. Discussion

Poyang Lake is a classical river-connected drain lake characterized by complex hydro-
logical relationships. Due to its connection with the Yangtze River, changes in the Yangtze
River runoff impact the water exchange in the lake estuary, leading to different influence
mechanisms of lake area change in the Poyang Lake [20].

5.1. Influence Mechanism of Lake Water Area Change in Flood Season

The prophase analysis revealed a significant correlation between lake area and flow
in the flood season. Numerous studies have also confirmed that during the flood season,
the Poyang Lake water area is affected by runoff from the five major rivers in the Poyang
Basin as well as the Yangtze River. This runoff is exchanged and interplayed at the lake
estuary [10,21,23]. The interaction between the Yangtze River and Poyang Lake can be
divided into three stages:

1. The Poyang Lake basin’s dominant inflow period is from December–March, whereby
runoff into the Poyang Lake basin increases and the lake water level rises.

2. The river–lake interaction period is from April–August when the mainstream of the
Yangtze River begins to rise and the water level in Poyang Lake is also high. The
high water level of the Yangtze River causes a blocking effect on the outflows from
the Poyang Basin. Runoff from the Poyang Basin cannot flow out, resulting in flood
stagnation in the lake and water area expansion.

3. The Yangtze River runoff dominant period is from September–November, wherein,
influenced by the upstream Yangtze River, runoff from the Yangtze River increases
and the water level rises. The runoff from the Yangtze River flows into the Poyang
Lake through the estuary.

Poyang Lake maintains a high water area, even at the end of the flood season in
the years 1983, 2020, and 2021 (Figure 12a). Combined with hydrological records, it was
determined that the mainstream of the Yangtze River experienced flood events in September.
In 2020, record floods occurred in the Yangtze River Basin, and this resulted in record-
breaking water levels in Poyang Lake [36,37]. Figure 12b shows that the average water area
in September in 2011 and 2019 was ~1255.40 km2; however, the hydrological records show
that the lowest net outflow was recorded in 2018. Of note, serious drought events occurred
simultaneously in the Poyang Lake basin and Yangtze River Basin. Drought events in the
Poyang Lake basin result in a decrease in the flow of the five major rivers [11,38]. Moreover,
droughts lead to a lowered water level in the Yangtze River, eliminating the block or reverse
flow from the Yangtze River into Poyang Lake, thus reducing the water area. It should be
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noted that during the flood season, changes in the water area are closely related to changes
in the river–lake interaction.
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5.2. Influence Mechanism of Lake Water Area Change in Dry Season

In the dry season, pan evaporation and sediment load significantly correlated with
the lake area. Furthermore, the PCA results show that evaporation is positive in the wet
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season and negative in the dry season. Comparing annual images of the region in the
dry season indicates that changes in the water area are concentrated in the Ganjiang river
estuary and Poyang Lake estuary (Figure 13). In 1991, 2004, 2006, 2010, 2013, 2017, 2019,
and 2021, the water area at the estuary of the Ganjiang River decreased. In 1991, 2006, 2004,
2006, 2010, 2013, 2019, and 2021, the water area at the Poyang Lake estuary decreased and,
consequently, the lakebed was visible. Overall, the dry season resulted in a significant
decreasing trend in the sediment load of the five major areas during these years. From
1980–1990, the high sediment load of these rivers caused higher sedimentation in the
river estuary, and this siltation phenomenon was primarily evident in the Ganjiang river
estuary. However, several studies have indicated that the elevation of the lake estuary
decreased significantly during this period and this decrease was related to the factors
such as continuous sand mining and current scouring. Apart from lake currents, the wind
is an important form of natural disturbance in driving sediment load; attributed to the
geographical location, Poyang Lake experiences notable wind impacts [39–41].

The MK mutation test confirmed that the change point year was 2003. The average
water area was 2300 km2 in the early dry season of the 1990s; however, after 2003, the
average water area decreased to 1500 km2. Further, sediment load and temperature did
not alter drastically during these periods. Meanwhile, some scholars found that after 2000
the changing stage of annual lake level variations is evident, and the average onset time of
the lake dry season has advanced [42]. There is an obvious synchronization between area
change and water level change during the dry season, some studies have confirmed the
relationship between water level and area during the dry season [43]. Several researchers
have suggested that the Three Gorges Dam (TGD) water impoundment in 2003 signifi-
cantly exacerbated the water level and runoff decline from late September to November,
weakening the Yangtze River’s blocking effect on outflows of the Poyang Lake through the
estuary [44–46]. Changes in the Yangtze River runoff impact the interrelationship between
the Yangtze River and Poyang Lake, disturbing the hydrological processes in the lake.

Given the above discussion, an apparent linkage between the sediment load of the
five major rivers and the change in the water area during the dry season is evident. In
addition, it is likely that the TGD water impoundment affected the river–lake interaction,
eventually leading to the premature flow of water from the Poyang Lake into the Yangtze
River. This would have resulted in decreases in the lake area at the end of the flood season,
with changes in the lakebed topography also causing the water to flow more rapidly into
the Yangtze River.

5.3. Implications for Water Management in the Poyang Lake

The rhythmic variation of Poyang Lake waters is the natural fluctuation of hydrology,
and it affects the quality and quantity of biological habitats in the Poyang Lake basin.
Some studies show that the wetland produced by Poyang Lake during the flood to dry
period is an important habitat for millions of overwintering waterfowl species. The early
reduction in water area during the dry season has severely affected the main food source
and habitat conditions for migratory birds [47]. Therefore, it is ecologically important to
maintain the hydrological rhythm of Poyang Lake stably. Although building a dam at the
mouth of the lake can directly regulate the water volume of Poyang Lake and change the
water area of the lake, it will break the free interaction between the lake and Yangtze River,
affect the connectivity between the habitats in the basin, and intensify the habitat loss and
fragmentation. This is highly not recommended. Influenced by the river–lake connection,
the changes of Poyang Lake are easily affected by the runoff of the Yangtze River main
stream, and the previous study has confirmed that the Three Gorges storage project of
the Yangtze River main stream has influenced the natural fluctuation of hydrology in
Poyang Lake. Therefore, water resources management can take advantage of the connected
relationship between rivers and lakes to maintain the hydrological rhythm of Poyang Lake
by artificially managing the water level of the Yangtze River. Some scholars recommended
that the minimum water level should be maintained above 12 m in the low-water period
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to ensure that minimum connectivity is obtained. The water level should be above 16 m
and kept stable in the peak migration period (July–November), to ensure the quality of the
migratory habitat [48].
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6. Conclusions

Based on a comparative analysis of the water area of Poyang Lake in the past 42 years,
the following conclusions can be drawn:

1. During the flood seasons of the study period, the lake water area showed a significant
decreasing trend, with an average annual size decrease of −9.14 km2. In the dry
season, the lake water area showed a significant downward trend, measuring a
decrease rate of −17.52 km2/a. In addition, it was determined that the change point
years of the flood season and dry season water areas were 2005 and 2003, respectively.

2. Lake runoff, sediment load, and precipitation significantly correlate with the flood
season water area. In the dry season, the sediment load significantly correlates with
the water area.

3. The analysis of satellite imagery confirmed a direct correlation between the change
in the water area and the change in the net outflow of the lake in the flood season,
and the net outflow is affected by the river–lake interactions. The Poyang Lake is a
classical river-connected drain lake. Flood or drought events in the mainstream of the
Yangtze River will affect the blocking or reversing of the Yangtze River on the Poyang
Lake estuary, impacting the net outflow of the lake and altering the water area.

4. In the dry season, the sediment load deposition at the elevation of the estuarine
entrance lakebed was raised, especially at the Ganjiang river estuary, affecting the
water’s body shape. However, after 2000, the TGD water impoundment operation on
the upper Yangtze River affected the runoff of the lower reaches of the Yangtze River
at the end of the flood season. This impacted the river–lake interaction and decreased
the area of Poyang Lake.

Overall, the results indicate that the variation in the Poyang Lake water area is affected
by the runoff of the Poyang Lake basin as well as the runoff from the Yangtze River
and the sediment load in the Poyang Lake basin. Although our findings contributed
significantly to our knowledge of the hydrological dynamics of the Poyang Basin, the
effects of groundwater were not considered here, which can be accounted for as a limitation
of this study. Therefore, water resource utilization in the Poyang Lake basin needs to
consider the changes in the lake basin and the runoff outside the basin in future studies.
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