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Abstract: This study provides a solution for multiple group/extended target tracking with an arbi-
trary shape. Many tracking approaches for extended/group targets have been proposed. However,
these approaches make assumptions about the target shape, which have limitations in practical appli-
cations. To address this problem, in this work, an extended/group target tracking algorithm based
on B-spline is proposed. Specifically, the extension of an extended or a group target was modeled as a
spatial probability distribution characterized by the control points of a B-spline function that was
then jointly propagated with the measurement rate model and kinematic component model over time
using the Poisson multi-Bernoulli mixture (PMBM) filter framework. In addition, an amplitude-aided
measurement partitioning approach is proposed to improve the accuracy caused by distance-based
approaches. The simulation results demonstrate that the extension, shape and orientation of tar-
gets can be estimated better by the proposed algorithm, even if the shape changes. The tracking
performance is also improved by about 10% and 13% compared to the other two algorithms.

Keywords: extended/group target tracking; B-spline; Poisson multi-Bernoulli mixture filter; amplitude;
measurement partition

1. Introduction

With the increase in human space activities, the number of space targets, including
debris, abandoned spacecraft, missiles, and so forth is also increasing, thus affecting the
safety of human space activities. This study focuses on tracking space targets based on
space-based infrared sensors. Tracking problems related to space targets are part of the
multi-target tracking problem. Multi-target tracking (MTT) is a hot topic both in military
and civilian fields [1,2]. Most traditional tracking algorithms are based on the assumption
that each target produces at most one measurement per time step limited by the resolution
of the traditional sensors. However, with the rapid development of sensors, the resolution
and accuracy have been greatly improved. Thus, the assumption no longer holds; that
is, a target may generate multiple measurements at a given time. In this case, the target
is preferably treated as an extended target [3] with a specific size, shape and orientation.
When targets are close enough, they form an invisible group target, which acts as an
extended target; therefore, the tracking of a group target can be regarded as the tracking
of an extended target [4]. Generally, the tracking process of multiple group/extended
targets contains three steps. Firstly, the target state is modeled. Secondly, the data received
from sensors are processed, which involves partitioning the measurements, and data are
associated with the measurements and the targets. Lastly, the iterative state parameters
containing the predictions and updated processes of the parameters are outlined. The
discussion that follows focuses on extended target tracking, which can also be applied to
group targets.

There are two models that can be considered for extended targets: (1) a model of
the number of measurements generated by each extended target and (2) a model of the
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spatial distribution of the targets. Generally, the number of measurements generated by
the extended target is modeled using the Poisson distribution, whose rate parameter is
modeled as a gamma distribution [5]. As for the target extension, it is critical for target
identification in the tracking scenario and is the focus of the present study. It has been the
subject of many studies.

When it comes to target extension, there are two assumptions in the literature: (1) the
assumption that there are some general parameters that can describe the shape of the
targets, such as an ellipse, rectangle [6], line [7], and so on, and (2) the assumption of an
arbitrary shape. For the former, an ellipse is the most frequently used, and there are several
approaches for ellipse modeling, such as random matrix (RM) [8] theory, which models
the extension as a symmetric positive definite matrix. Generally, the gamma Gaussian
inverse–Wishart (GGIW) distribution [5,9–11] is adapted. In these cases, the extended
target is assumed to be elliptical. These methods are effective and have been applied to
many scenarios [9]. However, their performance suffers when the shape is not elliptical. To
estimate the non-elliptical extended target, [4,12] modeled the extension of the arbitrary
shape using multiple ellipses (Em) and achieved the tracking of non-elliptical extended
targets. However, a priori knowledge of the number of ellipses is needed. When the actual
shape is unknown, it is challenging to choose an appropriate number of ellipses. To more
accurately estimate the shape of the targets, random hypersurface models (RHMs) [13]
were proposed by Baum. The shape constraint (i.e., elliptical constraint, star-convex
constraint and level-set constraint) needs to be set to describe the target-extended state.
That is, the extension can be obtained by estimating the parameters of the shape constraint.
RHMs outperform RM models and can estimate extended targets with an irregular shape
when using accurate preset shape constraints, but the computational complexity is higher.
Many scholars have made great improvements based on these models. However, these
methods all require assumptions about the shape of the target. In addition, some scholars
have proposed other methods to estimate the shapes of extended targets. The extension–
deformation approach [14] was proposed by Xiaorong to obtain the estimated shapes
of targets. An extended target is considered to have a reference extension with control
points on the boundary [14]. Then, the extension is estimated by moving some of the
control points. The reference extension and the control points are a priori, which limits
their application in practical scenarios due to the varying number of control points. Yulan
Han applied an algorithm based on the level set and Gaussian surface fitting to extended
target tracking [15]. Some researchers also use a B-spline curve to fit the shape [16,17]. A
B-spline curve can be fitted to arbitrary shapes by adjusting the control points to estimate
the shape of the extended target shape [17] assumed that the measurement points are
generated using an edge, which is not applicable for some targets, especially group targets.
In addition, non-uniform rational B-splines (NURBS) surfaces which can be considered as
an extension of B-spline have been successfully applied to estimate a 3-dimensional (3D)
target extension [18,19]. However, although NURBS is more flexible, it needs extra storage
to define traditional curves and surfaces. In addition, weights have a significant impact on
the shape estimation. Improper weights can cause shape distortion [20].

In addition, measurement partitioning is another important part of extended target
tracking. Whether the measurement subset of each group target can be correctly divided at
each specific moment determines the estimation accuracy of the group target state’s esti-
mation accuracy and the tracking performance of the algorithm. Thus, distance partition,
k-means ++ partition [21], prediction partition [22] and expectation maximization (EM)
partition [21], DBSCAN [23] are proposed and successfully applied. However, the value
of the distance threshold is difficult to determine. In addition, the distance information is
insignificant in infrared images. For k-means ++, a priori knowledge of the selection and
number of cluster centers is required. While the prediction information at the previous mo-
ment is inaccurate, such as the target maneuvering, the prediction partition and expectation
maximization (EM) partition fail. For DBSCAN, the choice of two parameters is a challenge,
and different parameter combinations have a significant effect on clustering. In addition,
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the performance degrades when the density of the sample set is not uniform. [23] proposed
a grid-based DBSCAN algorithm which can deal with the non-equidistant sampling density
and improve the performance. For infrared images, amplitude information is introduced to
the partition measurements in this study.

Once models are defined, a multi-target filter is needed to implement the estimation
of the target state, number and shape. To track multiple extended targets, random finite
sets (RFSs) that model targets and measurements as random sets can provide an effective
solution for data association and have received a great deal of attention in the literature.
PMBM [24] and the Delta-generalized labeled multi-Bernoulli (δ-GLMB) [25] are two well-
established MTT conjugate priors that have better performance than others. Meanwhile,
the simulation results show that PMBM filters outperform δ-GLMB filters both in terms
of their performance and computation cost [5,26]. Inspired by [16] and [5], in this study,
a multiple extended target tracking algorithm based on B-spline and the PMBM filter is
proposed. In addition, the amplitude-aided method is used for the measurement portioning
part. Specifically, the target state is modeled in three parts. The first part denotes the
number of measurements generated by an extended target, which is modeled using Poisson
distribution, and the Poisson rate is modeled using gamma distribution. The second part is
the kinematic state of the extended target center and is modeled using Gaussian distribution.
The last part represents the extension of the extended targets and is modeled using a spatial
probability distribution characterized by control points of a B-spline function. Then, the
single target state is propagated by iterating parameters of models. Lastly, multi-target
tracking is implemented under the PMBM filter.

This study focuses on tracking the multiple non-ellipsoidal targets based on the PMBM
filter. There are three contributions of this work, which are as follows:

(1) The B-spline is applied to model the extension of extended targets, thus solving the
inaccurate modeling of targets with an arbitrary shape. In addition, the performance
is also improved using this algorithm.

(2) The amplitude information is introduced to partition the measurement, which can
accurately partition the measurement set, especially when the targets are close.

(3) The updated prediction and likelihood formulas of the algorithm based on the B-spline
model are derived.

The remainder of the paper is organized as follows. In Section 2, the background
of the proposed algorithm is provided. Section 3 provides the implementation of the
proposed algorithm. Section 4 presents the numerical simulation to verify the proposed
algorithm, and several methods are compared with the proposed algorithm. Section 5
provides the conclusion.

2. Background

This section provides the background on the implementation of the proposed algorithm.

2.1. PMBM Density

Once the models of kinematic state and extension and the number of measurements
generated by an extended target are defined, the multiple extended target tracking algo-
rithm can be proposed based on the models and the PMBM filter. The PMBM filter is a
promising filter that models the undetected targets and the detected targets using a Poisson
point process (PPP) and multi-Bernoulli mixture (MBM) process, respectively. Thus, the set
of targets can be divided into two-joint subsets [27]:

Xk = Xu
k ∪ Xd

k , (1)

where Xu
k denotes the undetected targets and Xd

k is the detected targets at time k. The
density can be expressed as

fk|k(Xk|Zk) = ∑Xu
k ]Xd

k
f P
k|k(Xu

k ) f mbm
k|k

(
Xd

k

)
, (2)
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f P
k|k(Xu

k ) = e−〈D
u ;1〉∏x∈Xu

k
Du = e−µ(x) ∏x∈Xu

k
µ f (x), (3)

f mbm
k|k

(
Xd

k

)
= ∑j∈J ωj ∑]

i∈Ij Xi=Xd
k
∏|Ij |

i=1 f j,i
(
Xi), (4)

where f P
k|k
(
Xu

k
)

denotes the Poisson density, Du denotes the intensity function of PPP, µ is

the Poisson rate, f (x) represents the spatial distribution, and Du = µ f (x). f mbm
(

Xd
)

is a mixture of multi-Bernoulli denoting the potential targets that are detected at least
once. J and Ij are an index set for the multi-Bernoullis (MBs) in the MBM and an index
set for the Bernoullis in the jth MB, respectively. |J| is the number of MB components in
the MBM, and

∣∣ Ij
∣∣ is the number of Bernoulli components in the jth component. ωj is

the hypothesis weight, and ∑ ω j,i = 1, f j,i
(
Xi) denotes the ith Bernoulli density in the jth

global hypothesis, which is defined by

f j,i

(
Xi
)
=


1− rj,i Xi = ∅

rj,i f j,i(x) Xi = {x}
0

∣∣Xi
∣∣ ≥ 2

(5)

with rj,i denoting the probability of existence of the Bernoulli component and f j,i(x) denot-
ing the corresponding density.

2.1.1. Standard Extended Target Measurement Model

Zk denotes the set of measurements at time k and includes clutter and targets. Clutter
and targets are assumed to be independent. The clutter at time k is modeled using PPP,
the Poisson rate is λ, and the spatial distribution is expressed as c(z); thus, the intensity
of clutter PPP is κ(z) = λc(z). A target with state xk can be detected at time k with the
probability pD(xk). Generally, the measurements generated by an extended target are
modeled using PPP, and the intensity is expressed as γ(xk)φ(zk|xk) if a target is detected,
where γ(xk) is the Poisson rate and φ(zk|xk) is the Poisson density.

Assuming that the set of measurements at time k is non-empty, that is, |Zk| > 0, the
measurement likelihood lz(xk) of the extended target can be denoted by the product of
detection probability and PPP density.

lz(xk) = pD(xk)p(Zk|xk) = pD(xk)e−γ(xk) ∏z∈Zk
γ(xk)φ(zk|xk), (6)

The Poisson probability that an extended target with state xk will generate at least one
measurement at time k is 1− e−γ(xk); thus, the effective detection probability of an extended
target is pD(xk)

(
1− e−γ(xk)

)
. Accordingly, the probability of not being detected is

qD(xk) = 1− pD(xk) + pD(xk)e−γ(xk), (7)

In addition, the likelihood of an empty set of measurements is l∅(xk) = qD(xk).

2.1.2. Standard Extended Target Dynamic Model

The targets survive from time k− 1 to time k with the probability ps(ξk−1), which is
called the survival probability and moves with a single target transition density fk|k−1(ξ

∣∣∣ζ)
of state ξ given ζ, where ξ is an extended state of the extended target consisting of kinematic
state and extension. The newly born target is modeled using a PPP with the intensity Db

k(ξ).

2.1.3. Amplitude-Aided Measurement Partitioning

The traditional algorithm used to partition the measurements is based on the distance.
However, the distance threshold setting presents challenges. Setting the threshold too large
will affect the estimation of the number of targets, and setting it too small will increase
the complexity. Figure 1 gives the partitioning results, corresponding to three different
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distance thresholds. The left column, that is, (a), (c) and (e), is the original image, the right
column, that is, (b), (d) and (f), is a partial enlargement of the image.
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Figure 1. The partitioning results, corresponding to three different distance thresholds. (a) the original
image (partition distance/pixel: 2.5); (b) the enlarged image of (a); (c) the original image (partition
distance/pixel: 4.5); (d) the enlarged image of (c); (e) the original image (partition distance/pixel: 8.2);
(f) the enlarged image of (e).

Extended targets are presented as multiple adjacent pixels in the infrared image
plane with connectivity. Thus, the measurement partitioning of the infrared image can
use the characteristics of connectivity and amplitude. As shown in Figure 2a, there are
extended targets and clutter. Figure 2b is the enlarged local image which shows the details
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of the measurements. Figure 2c gives the amplitude of these clusters, which shows the
difference between targets and clutter. Clearly, clutter occupies small areas and has a low
amplitude. Thus, the extended target measurements can be obtained. In this study, all
the measurements with an area smaller than 3 pixel × 3 pixel are eliminated. Additionally,
those with an amplitude less than τ = 20 are also eliminated. The partitioning steps are
as follows.
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Figure 2. (a) Infrared image of extended targets; (b) Enlarged image of two close extended targets;
(c) The amplitude of targets and clutter.

Step 1: The Hoshen–Kopelman (H-K) [28] algorithm is used to detect the connected
regions in the image plane. The results are shown in Figure 3a,b. Figure 3a is the partitioning
results of the 36th frame; Figure 3b is the enlarged image of two close extended targets which
shows that the blue ellipse contains multiple local maxima, which can be further divided.

Step 2: Detect the local maxima in the clusters generated by H-K algorithm. As
shown in Figure 2c, when the targets are close, the amplitude is superimposed, and wave
peaks are formed. Thus, if there are multiple local maxima, each local maximum and its
neighborhood contains at least one extended target.

Step 3: The clusters containing multiple local maxima are further partitioned using
the k-means algorithm to produce new clusters. The results of partitioning are shown in
Figure 3c,d. Figure 3c presents the partitioning results of frame 36 based on H-K with
k-means; Figure 3d is an enlarged image of two close extended targets (H-K with k-means).

2.1.4. PMBM Filter for Extended Target

The recursion of the PMBM filter for the extended target is presented, which includes
the prediction process and updated process. The PMBM RFS is given in the Ref. [5] for
multiple extended targets and in the Ref. [27] for multiple point targets. According to these
studies, the density is propagated by Du

k ,
{

ω
j
k,
{

rj,i
k , f j,i

k

}
i∈ Ij

}
j∈J

.

A. Prediction process

Given the posterior PMBM density at time k− 1 is Du
k−1,

{
ω

j
k−1,

{
rj,i

k−1, f j,i
k−1

}
i∈ Ij

}
j∈J

and the dynamic model in Section 2.1.2, the predicted parameters at time k can be ex-
pressed as

Du
k|k−1 = Db

k +
∫

Du
k−1(ξ)ps fk|k−1(ξ|ζ)dξdζ, (8)

rj,i
k|k−1 = rj,i

k−1

∫
f j,i
k−1(ζ)psdζ, (9)

f j,i
k|k−1 =

∫
fk|k−1(ξ|ζ)ps f j,i

k−1(ζ)dζ∫
ps f j,i

k−1(ζ)dζ
, (10)
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ω
j
k|k−1 = ω

j,i
k|k−1, (11)

and the detailed proof process can be found in the Ref. [24].
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Figure 3. Results of measurement partitioning based on the amplitude of the infrared image. (a) the
partitioning result of the frame 36th using H-K algorithm; (b) the enlarged image of (a); (c) the further
divided result using k-means; (d) the enlarged image of (c).

B. Updated process

Assuming that the predicted density is Du
k|k−1,

{
ω

j
k|k−1,

{
rj,i

k|k−1, f j,i
k|k−1

}
i∈Ij

k|k−1

}
j∈Jk|k−1

, the

measurement model and measurement set is given as Section 2.1.2, and the updated PMBM
density is also in PMBM form.

fk|k(Xk|Zk) = ∑Xu
k ]Xd

k
f P
k|k(Xu

k ) f mbm
k|k

(
Xd

k

)
, (12)

f P
k|k(Xu

k ) = e−〈D
u ;1〉∏x∈Xu

k
Du, (13)

f mbm
k|k

(
Xd

k

)
= ∑j∈J ωj ∑]

i∈Ij Xi=Xd
k
∏|Ij |

i=1 f j,i
(
Xi), (14)

where for the undetected targets,

Du
k|k = qDDu

k|k−1(ζ), (15)
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and for the detected targets (including the first detected targets, the missed detected targets
and the targets detected in all the steps),

rj
k|k =



1 C ∩ Ij = ∅, |Cc| > 1∫
Du

k|k−1(ζ)lCc dζ

κCc+
∫

Du
k|k−1(ζ)lCc dζ

C ∩ Ij = ∅, |Cc| = 1

rj,i
k|k−1

∫
f j,i
k|k−1(ζ)qDdζ

1−rj,i
k|k−1+rj,i

k|k−1

∫
f j,i
k|k−1(ζ)qDdζ

C ∩ Ij 6= ∅, |Cc| = ∅

1 C ∩ Ij 6= ∅, |Cc| 6= ∅

, (16)

f j,i
k|k =



lCc Du
k|k−1(ζ)∫

Du
k|k−1(ζ)lCc dζ

C ∩ Ij = ∅

qD f j,i
k|k−1(ζ)∫

f j,i
k|k−1(ζ)qDdζ

C ∩ Ij 6= ∅, |Cc| = ∅

lCc f j,i
k|k−1(ζ)∫

f j,i
k|k−1(ζ)lCc dζ

C ∩ Ij 6= ∅, |Cc| 6= ∅

, (17)

ω
j
k|k,A =

ω
j
k|k−1 ∏c∈A Lc

∑∪j∈Jk|k−1
∑A∈Aj ω

j
k|k−1 ∏c∈A Lc

, (18)

Lc =


κCc +

∫
Du

k|k−1(ζ)lCc dζ C ∩ Ij = ∅, |Cc| = 1∫
Du

k|k−1(ζ)lCc dζ C ∩ Ij = ∅, |Cc| > 1

1− rj,i
k|k−1 + rj,i

k|k−1

∫
f j,i
k|k−1(ζ) qDdζ C ∩ Ij 6= ∅, |Cc| = ∅

rj,i
k|k−1

∫
f j,i
k|k−1(ζ) lCc dζ C ∩ Ij 6= ∅, |Cc| 6= 1

, (19)

where lCc is the predicted likelihood, and Cc denotes the measurement cell which corre-
sponds to the data association c. |Cc| is the number of measurements in Cc. ω

j
k|k,A represents

the hypothesis weight. κCc is the clutter intensity. Aj is the space of all data associations A
for the jth predicted MB. C ∈ A denotes non-empty cells, which contains measurements
from a source (either clutter or a single target).

2.2. B-Spline

A B-spline is a piecewise polynomial function which can describe the shape of any
curve by adjusting the location of the control points. More information on the B-spline can
be found in the Refs. [29,30]. The B-spline curve with l order can be described as

s(t) = ∑n
i=1 ci Ni,l(t), (20)

where ci ∈ C = [c1, c2, . . . cn] is a control point, n denotes the total number of control
points and Ni,l(t) is the B-spline basis function, which is defined over a knot vector. The
mathematical expression is as follows:

Ni,l(t) =
t− ti

ti+l−1 − ti
Ni,l−1(t) +

ti+l − t
ti+l − ti+1

Ni+1,l−1(t), (21)

Ni,1(t) =
{

1 ti ≤ t ≤ ti+1
0 otherwise

, (22)

where the variables ti are knot elements.
Generally, the B-spline curve is open, as Figure 4a shows, and a close curve can be

obtained by repeating the first three control points, as Figure 4b shows. The B-spline used
in this study is a closed curve, and the order is 3, that is, l = 3. The B-spline approach has
been used in target tracking applications [16,17,31–33] in a continuous state space.
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In this study, the control points are obtained as in the Ref. [16]. As shown in Figure 5 [34],
suppose that Z̃k is a pseudo-measurement set. More information on the construction of
the pseudo-measurement set can be found in the Ref. [16]. The mean of Z̃k is taken as
the coordinates’ origin, and [0, 2π] is divided into n equal angles. Thus, the pseudo-
measurement set can be divided by these angles. Let Wk,i be the measurement set in the
area of the ith partition at time k, which can be calculated by

Wk,i =
{

zk,j

∣∣∣dLi,1

(
zk,j

)
< d, C

(
zk,j

)
= true

}
, (23)

dLi,1

(
zk,j

)
=
‖b1z(1)k,j + b2z(2)k,j ‖√

b12 + b22
, (24)

C
(

zk,j

)
=


true Li,2 : a1z(1)k,j + a2z(2)k,j > 0, θi ∈ (0, π]

or Li,2 : a1z(1)k,j + a2z(2)k,j < 0, θi ∈ [π, 2π]

f alse otherwise

, (25)

where zk,j is the measurement in Z̃k, z(1)k,j and z(2)k,j , denoting the position of the x- and
y-coordinates at time k. d gives the width of a partition. Li,1 (the red dotted line) is the line
which goes through the origin of the coordinate and along the ith partition angle direction;
it is defined as Li,1 : b1x + b2y = 0, where b1

b2 = − tan(θi). Li,2 (the blue dotted line) is the
line which is perpendicular to line Li,1 and also goes through the orign of the coordinate.
Li,2 is defined as a1x + a2y = 0, where a2

a1 = tan(θi).
Let ρi and θi denote the polar radius and polar angles, respectively. ρi can be ob-

tained by

ρi =
2∣∣Wk,i
∣∣ ∑|Wk,i |

j

‖a1z(1)k,j + a2z(2)k,j ‖√
a12 + a22

, (26)

and thus, the matrix of control points can be expressed by Mk =
{
(ρk,i, θk,i)

}n
i=1, which

can describe the shape of the targets. The matrix of control points is updated and predicted
by implementing a one-dimensional Kalman filter. The specific equations can be found
in the Ref. [16] (Equations (13)–(15)). The target shape can be estimated according to
Mk. First, convert the control points to Descartian coordinates, then fit the shape using a
B-spline curve.

Pk,i = [ρk,i· cos(θk,i), ρk,i· sin(θk,i)]
T , (27)

s(t) =
n

∑
i=1

Pk,i Ni,l(t), (28)
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where Pk,i is the control point positon in Descatian coordinates, and let Ck =
{

Pk,i
}n

i . In
addition, to obtain the closed curve, add three points Pk,n+1, Pk,n+2, Pk,n+3, and make them
equal to Pk,1, Pk,2 and Pk,3, respectively.
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3. Proposed Algorithm

The proposed algorithm is presented in Figure 6, which can be divided into three
steps: (1) amplitude-aided measurement partitioning; (2) shape modeling based on the
control points of the B-spline; and (3) a multi-target tracking algorithm based on the PMBM
filter. Step 1 can be implemented based on Section 2.1.3. Step 2 is performed in 2.2.

3.1. Single Extended Target

An extended target state ξk at time k is modeled as ξk = (γk, xk, Ek), where γk is the
Poisson measurement rate parameter, xk is the kinematic state of the group center and
Ek denotes the shape state. As in the Ref. [5], the density of the rate parameter and kinematic
state was modeled using the gamma distribution and Gaussian distribution, respectively.
The shape state was modeled using a spatial probability distribution characterized by the
control points of a B-spline. Thus, the target state distribution based on this model is a
gamma-Gaussian-spline (GGS) and is denoted as

fk(ξk) = G(γk; αk, βk)N (xk; mk, Pk + ∆k)S(Ek; Ck), (29)

where αk and βk are parameters of gamma distribution, mk and Pk denote the mean and
covariance of Gaussian distribution, ∆k is the covariance of the shape and Ck denotes
control points.

The measurement likelihood for a single measurement zk at time k is expressed as

φ(zk|ξk) = N (zk; Hkxk, Xk), (30)

where Hk is a known measurement model. The updated process and prediction process of
the parameter are given in Tables 1 and 2, respectively.
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Table 1. Updated GGS parameters of a single extended target.

Input ξk|k−1 and set of detection Zk

ξk|k =



αk|k = αk|k−1 + |Zk|
βk|k = βk|k−1 + 1

mk|k = mk|k−1 + Kk|k−1

(
zk − Hkmk|k−1

)
Pk|k = Pk|k−1 + Kk|k−1HkPk|k−1

Ck|k = Ck|k−1 + Kk|k−1

(
Zk − HCk|k−1

)
where

zk = 1
|Zk | ∑

zk∈Zk

zk

Kk|k−1 = Pk|k−1HT
k

(
Sk|k−1

)−1

Sk|k−1 = HkPk|k−1HT
k + ∆k

|Zk |
∆k = 1

|Zk |−1 ∑
zk∈Zk

(zk − zk)(zk − zk)
T

Likelihood:

Lk = 1
|Zk |!

Γ(αk|k)(βk|k−1)
αk|k−1

Γ(αk|k−1)(βk|k)
αk|k

Output: ξk|k and likelihood

Table 2. Predicted GGS parameters of a single extended target.

Input: ξk−1

ξk|k−1 =



αk|k−1 = αk−1
η

βk|k−1 =
βk−1

η

mk|k−1 = Fk−1mk−1

Pk|k−1 = Fk−1Pk−1(Fk−1)
T + Q

Ck|k−1 = Fk−1Ck−1 + ωk−1
Output: ξk|k−1

where Fk−1 = ∇x f (x)|x=mk−1
is the transition matrix and Q is the process noise.
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3.2. GGS-PMBM Filter

The multiple extended target tracking algorithm is proposed based on the models
presented above and the PMBM filter. The recursion is based on the following assumptions:
(1) the survival probability is state-independent, that is, ps,k(ξ) = ps,k; (2) the detection
probability is state-independent, that is, pd,k(ξ) = pd,k; and (3) the density of new targets at
time k is in GGS form.

The prediction process and updated process of the parameters of PPP components
and Bernoulli components are given in the following:

Prediction step: Given the posterior GGS-PMBM density at time k − 1 as

Du
k−1,

{
ω

j
k−1,

{
rj,i

k−1, f j,i
k−1

}
i∈ Ij

}
j∈J

, Du
k−1 = ∑

Nu
k

j=1 ω
(u,j)
k−1 GGS

(
ξ; ζ

(u,j)
k−1

)
,

f j,i
k−1 = ∑

Nu
k

j=1 ω
(u,j)
k−1 GGS

(
ξ; ζ

(u,j)
k−1

)
.

Undetected targets: Poisson rate of predicted PPP:

µu
k|k−1 = µb

k + µu
k−1 ∑

Nu
k|k−1

j=1 ω
(u,j)
k−1 ps, (31)

The predicted spatial distribution is

f u
k|k−1

(
ξk|k−1

)
=

µb
k

µb
k+µu

k−1 ∑
Nu

k−1
j=1 ω

(u,j)
k−1 ps

∑
Nb

k
j=1 ω

(b,j)
k GGS(ξk; ζ

(b,j)
k )

+
µu

k−1

µb
k+µu

k−1 ∑
Nu

k−1
j=1 ω

(u,j)
k−1 ps

∑
Nu

k
j=1 ω

(u,j)
k−1 psGGS

(
ξ; ζ

(u,j)
k|k−1

) (32)

where the predicted parameters ζ
(u,j)
k|k−1 are computed as in Table 2. ζ

(b,j)
k is the parameter

of new targets. µb
k and µu

k−1 are the Poisson rate of birth targets and undetected targets,
respectively. Nb

k and Nu
k are the number of birth targets and undetected targets, respectively.

Detected targets: Prediction weights and number of components are unchanged. The
probability of existence and spatial distribution are

rj,i
k|k−1 = psr

j,i
k−1 (33)

f j,i
k|k−1

(
ξk|k−1

)
= GGS(ξ; ζ

j,i
k|k−1)

where the parameters ζ
j,i
k|k−1 can be obtained using Table 2.

Updated step: Suppose that the predicted parameters are given as Du
k|k−1,{

ω
j
k|k−1,

{
rj,i

k|k−1, f j,i
k|k−1

}
i∈Ij

k|k−1

}
j∈Jk|k−1

, Du
k|k−1 = ∑

Nu
k +Nb

k
j=1 ω

(u,j)
k|k−1GGS

(
ξ; ζ

(u,j)
k|k−1

)
,

f j,i
k|k−1 = GGS(ξ; ζ

j,i
k|k−1).

The updated parameters for the detected targets and undetected targets are obtained
using the following:

Undetected targets:

µu
k|k = µu

k|k−1 ∑
Nu

k|k−1
j=1 qu,j

D , (34)

where qu,j
D is the probability that the target is not detected, and is defined as

qu,j
D = 1− pD

(
ξ
(u,j)
k|k−1

)
+ pD

(
ξ
(u,j)
k|k−1

) β
(u,j)
k|k−1

β
(u,j)
k|k−1 + 1

α
(u,j)
k|k−1

. (35)

The updated density is
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f u
k|k(ξ) =

∑
Nu

k|k−1
j=1

(
1−pD

(
ξ
(u,j)
k|k−1

))
ω
(u,j)
k|k−1

∑
Nu

k|k−1
j′=1

qu,j′
D ω

(u,j)
k|k−1

GGS
(

ξk; ζ
(u,j)
k|k

)
+

∑
Nu

k|k−1
j=1 pD

(
ξ
(u,j)
k|k−1

) β
(u,j)
k|k−1

β
(u,j)
k|k−1+1

α
(u,j)
k|k−1

ω
(u,j)
k|k−1

∑
Nu

k|k−1
j′=1

qu,j′
D ω

(u,j)
k|k−1

×G
(

γk; α
(u,j)
k|k−1, β

(u,j)
k|k−1 + 1

)
×N

(
xk; m(u,j)

k|k−1, P(u,j)
k|k−1

)
× S

(
Ek; C(u,j)

k|k−1

) (36)

where ω
(u,j)
k|k−1 = ω

(u,j)
k−1 ps. There are two parts to the density. The first part corresponds to

the detection process modeled using pD, which means missed detection. The second means
that the Poisson random number of detections is zero.

Targets detected for the first time: A target is detected for the first time, and the set
of detection is denoted by D. The existence probability and spatial distribution can be
expressed as

rD =

{
1 |D| > 1
LD

κD+LD
|D| = 1 (37)

fD(ξ) =
∑

Nu
k|k−1

j=1 ω
u,j
k|k−1L

(u,j,D)
k pDGGS

(
ξ; ξ

(u,j,D)
k|k

)
∑

Nu
k|k−1

j=1 ω
u,j
k|k−1L

(u,j,D)
k pD

, (38)

where

LD =


∑

Nu
k|k−1

i=1 pDω
u,j
k|k−1L

(u,j,D)
k |D| > 1

∑
Nu

k|k−1
i=1 pDω

u,j
k|k−1L

(u,j,D)
k + κD |D| = 1

, (39)

ξ
(u,j,D)
k|k and L(u,j,D)

k are obtained using Table 1.
Targets detected in all steps: The Bernoulli component that exists all the time can be

updated by a non-empty measurement set V. The probability of existence is

rj,i,V
k|k = 1, (40)

and the spatial distribution can be expressed as

f j,i,V
k|k (ξ) = GGS

(
ξ; ξ

j,i,V
k|k

)
, (41)

LV = rj,i
k|k−1L

j,i,V
k , (42)

ξ
j,i,V
k|k and Lj,i,V

k are computed in Table 1.
Targets that missed detection: If the measurement set used to update the ith Bernoulli

in jth MB components is empty, that is, V = ∅, the existence probability is

rj,i,V
k|k =

rj,i
k|k−1qj,i

D

1− rj,i
k|k−1 + rj,i

k|k−1qj,i
D

, (43)

where

qj,i
D = 1− pD

(
ξ
(j,i)
k|k−1

)
+ pD

(
ξ
(j,i)
k|k−1

) β
(j,i)
k|k−1

β
(j,i)
k|k−1 + 1

α
(j,i)
k|k−1

. (44)

The updated spatial distribution is
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f j,i,V
k|k (ξ) =

1−pD

(
ξ
(j,i)
k|k−1

)
qj,i

D

GGS
(

ξk; ζ
(j,i)
k|k−1

)
+

pD

(
ξ
(j,i)
k|k−1

) β
(j,i)
k|k−1

β
(u,j)
k|k−1+1

α
(j,i)
k|k−1

qj,i
D

× G
(

γk; α
(j,i)
k|k−1, β

(j,i)
k|k−1 + 1

)
×N

(
xk; m(j,i)

k|k−1, P(j,i)
k|k−1

)
× S

(
Ek; C(j,i)

k|k−1

) (45)

L∅ = 1− rj,i
k|k−1 pD

(
ξ
(j,i)
k|k−1

)
+ rj,i

k|k−1 pD

(
ξ
(j,i)
k|k−1

) β
(j,i)
k|k−1

β
(j,i)
k|k−1 + 1

α
(j,i)
k|k−1

(46)

There are also two parts to this formula: the first part corresponds to the case in which
the target is not detected, while the second part denotes that the target does not generate
a measurement.

For multimodal density, mixture reduction [35,36] can be used to reduce this to a
unimodal density.

4. Results

To demonstrate the performance of the proposed algorithm, two long-wave infrared
scenarios were simulated using a Satellite Tool Kit (STK) to demonstrate the performance
of the proposed algorithm. The image size was 512 × 512 pixels, and there were 224 frames
in total. The first scenario contains four targets, and there is no cross-trajectory. There are
two targets in the second scenario. The details can be found in the following.

4.1. Scenario 1 (No-Crossing Track)

Figure 7 shows the real trajectories of the extended targets. All four extended targets
appear in the first frame and disappear in frame 122, frame 138, frame 224 and frame 224.
The target state ξk = (γk, xk, Ek), where xk =

(
px, vx, py, vy

)
, concludes the position and

velocity. The initial state in which targets are born is listed in Table 3. The initial control
points are defined as Mk = {(ρ0,i, θ0,i)}12

i=1, where ρ0,i = 10 and θ0,i =
i−1

6 π. The sampling
time is T = 1. The detection probability is pD = 0.95, and the survival probability is
ps = 0.99. The transition matrix F and the process noise covariance matrix Q are defined as:

F = Id ⊗
(

1 T
0 1

)
, Q = qI2 ⊗

(
T3

3
T2

2
T2

2 T

)
(47)

where ⊗ denotes the Kronecker product, q = 0.01. The proposed algorithm is compared to
the approach based on RM and the approach based on multiple ellipses, which are denoted
by GGIW-PMBM and Em-PMBM, respectively. In addition, the prior of the multiple
ellipses, including the number, size and direction of the ellipses, needs to be given for the
Em-PMBM-AP filter. The initial set of multiple ellipses is shown in Figure 8.

To demonstrate the effect of the measurement partition method on tracking perfor-
mance, three methods are compared in this study: the amplitude-aided method (AP), the
distance-based method (DP) and grid-based DBSCAN (GBDBSCAN) algorithm for which
the density criterion was set to be a comparison of the mean amplitude in the search area to
an amplitude threshold [23]. The modified optimal sub-pattern (mOSPA) [4,17] assignment
metric was employed to assess the performance. If we suppose that the true state of an
extended target is ξt

k =
(
γt

k, xt
k, Xt

k
)

and the estimated state is ξe
k =

(
γe

k, xe
k, Xe

k
)
, the mOSPA

is defined as
d
(
ξt

k, ξe
k
)
,

wγ

cγ
d(cγ)

t,e +
wx

cx
d(cx)

t,e +
wX
cX

d(cX)
t,e (48)

where ξt
k and ξe

k are the true target state and the estimated target state, respectively, and

wγ + wx + wX = 1 (49)
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
d(cγ)

t,e = min
(
cγ,
∣∣γt

k − γe
k

∣∣)
d(cx)

t,e = min
(
cx, ‖xt

k − xe
k‖2
)

d(cX)
t,e = min(cX , 1

M ∑M
∣∣r(Xt

k
)
− r
(
Xe

k
)∣∣2) (50)

where cγ, cx and cX were chosen to satisfy the maximum expected error for the measure-
ment rate, kinematic state and extension state, respectively. r(·) is a radial function that
maps an angle to the radius of an arbitrary shape from its centroid (from 0 to 2π; M is the
number of points that r(·) was evaluated at). The details can be found in the Ref. [17].

The effectiveness of the extension estimation of the proposed algorithm (GGS-PMBM-
AP), the PMBM filter based on GGIW distribution with amplitude-aided partitioning
(GGIW-PMBM-AP) and the PMBM filter based on multiple ellipses with amplitude-aided
partitioning (Em-PMBM-AP) are demonstrated in Figures 9 and 10, which present the
images of frames 36 and 90, and have been plotted using green, blue and black lines,
respectively. The truth shape is shown using a red line. It can be concluded from the
results that the extension, shape and orientation of the targets can be estimated better
by the GGS-PMBM-AP filter even if the shape changes. This is due to the application of
the B-spline model, which can accurately fit the shape by changing the position of the
control points.
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Figure 7. True trajectories of the targets. The orange line denotes the trajectory of the first target. The
yellow line denotes the trajectory of the second target. The blue line denotes the trajectory of the third
target. The purple line denotes the trajectory of the fourth target.

Table 3. The initial states of the targets.

Target State Survival Time (Frame)

1 [268.5; 0; 216.5; 0] [1, 224]
2 [284.5; 0; 210.5; 0] [1, 224]
3 [260.5; 0; 334.5; 0] [1, 122]
4 [332.5; 0; 304.5; 0] [1, 138]
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Figure 9. The extension estimation of extended targets under different algorithms for frame 36.
(a) estimation of extension; (b) enlarged image of target 1 and target 2; (c) enlarged image of target 3;
(d) enlarged image of target 4.
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Figure 10. The extension estimation of extended targets under different algorithms for frame 90.
(a) the estimation of extension; (b) enlarged image of target 1 and target 2; (c) enlarged image of
target 3; (d) enlarged image of target 4.

Figures 11 and 12 show the averaged results over 100 Monte Carlo (MC) runs, corre-
sponding to the performance metrics on mOSPA error and the number of targets. As can be
seen in Figure 11a, the averaged mOSPA over 224 steps is 1.235572, 1.386461 and 1.425068
of the GGS-PMBM-AP filter, Em-PMBM-AP filter and GGIW-PMBM-AP filter, respectively.
The GGS-PMBM-AP filter outperforms the Em-PMBM-AP filter and GGIW-PMBM-AP
filter by 10% and 13%, respectively. This is due to the fact that the proposed B-spline model
can more accurately estimate the extension even if the shape changes. Additionally, the
Em-PMBM-AP filter offers better tracking accuracy than the GGIW-PMGM-AP filter due
to its application of multiple ellipses. Figure 11b shows that the measurement partition
method also has an impact on tracking accuracy, where the GGS-PMBM-AP filter outper-
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forms the GGS-PMBM-DP filter and GGS-PMBM-GBDBSCAN filter. Since the amplitude
threshold of the GBDBSCAN method is difficult to determine, the performance of the latter
two methods is similar. Combining Figures 11b and 13, it can be seen that the larger the
number error, the worse the performance. Figure 12 shows the averaged number and
number errors of all three filters. This error shows the difference between the estimated and
true number of multiple extended targets. It can be seen that all filters are able to estimate
the number of targets with minimal error.
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Figure 11. Averaged mOSPA. (a) the performance of different tracking algorithm based on the same
measurement partition method; (b) the performance of different measurement partition methods
based on the same tracking algorithm.
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Figure 12. Averaged cardinality and cardinality error of the GGS-PMBM-AP filter, Em-PMBM-AP
filter and GGIW-PMBM-AP filter over 100 Monte Carlo runs. (a) Estimated number of targets,
(b) cardinality error of targets estimation.

The filters were run separately on an AMD Core 3.20 GHz CPU PC with 16 GB RAM
and MATLAB R2021b. The computational complexity is illustrated by comparing the
cost time. Based on 100 Monte Carlo runs, the average computational times of the filters
are shown in Table 4. It can be seen that the computational complexity of GGS-PMBM-
DP is slightly higher than the GGS-PMBM-AP filter, proving that the amplitude-aided
measurement portioning method is more effective than the method based on distance.
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The GGS-PMBM-GBDBSCAN algorithm has the smallest running time, which is due to
the faster running speed of the clustering algorithm. In addition, the GGS-PMBM-AP
filter takes more time to tackle the multiple control points. Thus, the complexity of the
GGS-PMBM-AP filter is the highest.
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GGS−PMBM−GBDBSCAN over 100 Monte Carlo runs.

Table 4. Average computational times.

Filter GGS-PMBM-AP Em-PMBM-AP GGIW-PMBM-AP GGS-PMBM-DP GGS-PMBM-GBDBSCAN

Time 10.07 s 9.95 s 9.91 s 10.34 s 9.57s

4.2. Scenario 2 (Crossing Tracks)

There are two extended targets, the trajectories of which are shown in Figure 14. In
this scenario, tracks cross at step 102. The initial state is as in Table 5. Other parameters are
the same as Scenario 1. The target shape is simulated as in Figure 8b.

Table 5. The initial states of targets.

Target State Survival Time (Frame)

1 [100; 0; 40; 0] [1, 398]
2 [130; 0; 215.5; 0] [1, 235]

Figure 15 shows the averaged mOSPA over 100 MC runs. There is a peak when
the tracks cross. The difference in performance remains consistent with Scenario 1, thus
demonstrating the effectiveness of the proposed algorithm.
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filter and GGIW−PMBM−AP filter over 100 Monte Carlo runs. (a) Estimated number of targets,
(b) cardinality error of targets estimation.

5. Discussion

An amplitude-aided PMBM filter based on B-spline has been proposed for tracking
multiple extended targets. As observed in Section 4, it can be concluded that the proposed
algorithm can estimate the shape of targets more accurately compared to the other two
methods. This is mainly because the control points can be adjusted in real time according
to the estimated parameters, which will help to fit the real shape.
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In addition, although the original intention was to estimate the shape of the target
more accurately, the proposed algorithm shows better performance on the kinematic state.
This can be attributed to the inherent coupling relationship between shape and motion.
Because the target is captured accurately, there is an obvious improvement in the estimation
performance of the kinematic state. Conversely, an accurate estimation of the target position
will help to describe the shape of the target. This also explains why an accurate estimation
of the shape can also improve the performance of the kinematic state. Meanwhile, the
introduction of the amplitude information further contributes to the improvement of
performance due to the accurate partitioning of measurement data.

6. Conclusions

A new tracking algorithm of multiple infrared non-ellipsoidal extended targets,
namely GGS-PMBM, was proposed in this study to estimate the shape of the extended
target. This algorithm utilizes the PMBM framework in order to implement the tracking
of multiple targets. For the state of the extended target, a B-spline was employed to fit
the shape by iterating control points. In addition, the measurement partition was also
improved using the infrared image characteristic. Specifically, the local maximum of am-
plitudes in the connected domain was used as the clustering center, and clustering was
performed. To verify the algorithm, a scenario using STK was simulated, and a series of
infrared images were obtained. The two different scenario simulation results showed that
the proposed algorithm can accurately estimate the shape of targets, and outperformed the
Em-PMBM filter and the GGIW-PMBM filter. This algorithm can also be applied to group
target tracking with slight modifications. In future work, it would be worthwhile to verify
these findings using real data. In addition, the splitting and merging of group targets and
track management issues were not addressed in this study, which are of great importance
in practical scenarios.
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