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Abstract: Accurate estimation of root-zone soil moisture (SM) is of great significance for accurate
irrigation management. This study was purposed to identify planted-by-planted mapping of root-zone
SM on three critical fruit growth periods based on UAV multispectral images using three machine
learning (ML) algorithms in a kiwifruit orchard in Shaanxi, China. Several spectral variables were
selected based on variable importance (VIP) rankings, including reflectance Ri at wavelengths 560, 668,
740, and 842 nm. Results indicated that the VIP method effectively reduced 42 vegetation indexes (VIs)
to less than 7 with an evaluation accuracy of root-zone SM models. Compared with deep root-zone
SM models (SM40 and SM60), shallow root-zone SM models (SM10, SM20, and SM30) have better
performance (R2 from 0.65 to 0.82, RRMSE from 0.02 to 0.03, MAE from 0.20 to 0.54) in the three fruit
growth stages. Among three ML algorithms, random forest models were recommended for simulating
kiwi root-zone SM during the critical fruit growth period. Overall, the proposed planted-by-planted
root-zone SM estimation approach can be considered a great tool to upgrade the toolbox of the growers
in site-specific field management for the high spatiotemporal resolution of SM maps.

Keywords: root-zone soil moisture; digital mapping; UAV multispectral data; machine learning;
kiwifruit

1. Introduction

The cultivation of kiwifruit, one of the world’s major cash crops, helps promote economic
development in northwest China, northeast New Zealand, and Italy [1]. In recent years, the
kiwifruit industry has grown to become the dominant agricultural industry and the second-
largest fruit industry in Shaanxi, NW China [2]. The soil moisture (SM) measurement provides
information about the available water for tree roots, which is crucial for determining plant
growth [3,4]. For accurate irrigation management, timely and accurate SM estimation can be
helpful in monitoring soil moisture status of kiwi during the critical growth season [5]. In
order to assess the drought situation in the orchard and measure water movement in the soil,
it is crucial to determine the high-precision spatial mapping of root-zone SM according to the
orchard irrigation unit. Meanwhile, it is also an essential prerequisite for timely and accurate
monitoring of orchard irrigation and fruit growth management throughout the growing
period. Therefore, a precise planted-by-planted high-resolution spatial mapping of root-zone
SM is essential for monitoring kiwifruit canopy water content and canopy vitality, estimating
production, and planning irrigation.

The current traditional method for measuring SM in the field is to dry soil samples
and then calculate their water content in the lab. They will, however, destroy the roots of
trees at a high cost and with low efficiency [6]. Furthermore, laboratory-based SM relies
on point measurements that ignore spatial and temporal variability as opposed to field
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measurements as remote sensing (RS) technology, high-precision sensors, and multiple-
sensor integrated system advance, unmanned aerial vehicles (UAVs) offer a practical way
to describe virtually every aspect of plant physiology accurately and nondestructively. By
combining various spectral bands, vegetation indexes (VIs) are derived, which are com-
monly used for estimating vegetation structure or agronomic parameters [7–10]. Several
researchers have also conducted numerous constructive investigations into the sensitivity
of SM and spectral reflectance [7,11–13]. In most of these studies, however, the surface soil
water content of farmland or underlying areas was estimated. Cheng et al. [14] evaluated
the SM simulated by multimodal data fusion and confirmed that VIs based on multispectral
(MS) data could obtain high-accuracy estimates of SM. In Romero et al.’s [15] paper, VIs
calculated from MS imagery were used to estimate vine water status using a pattern recogni-
tion algorithm, and results indicated that optimized soil-adjusted vegetation index (OSAVI)
was an outstanding predictor of vine water status. Furthermore, a few studies focused on
estimating root-zone SM in a kiwi orchard using pure kiwi canopy reflectance. Through
pretreatment, external noise is eliminated, pure canopy spectral features are enhanced,
nonlinear relationships are boosted, and specific target model accuracy is improved [16–18].
By using the variable projection importance (VIP) function from the partial least squares
(PLS) method to optimize pure kiwi canopy spectral indices, more feature VIs could be
detected, and the correlation between root-zone SM of kiwifruit and spectral characteristics
of a target could be improved.

Several mainstream models of machine learning (ML) algorithms, such as decision
trees, neural networks, support vector machines (SVMs), and clustering, have made it
possible to estimate SM from spectral reflectance data [19–21]. ELM is one of the simplest
and fastest neural network algorithms, and it is excellent at generalizing and migrating [22].
Peng et al. [23] found that ELM had the best overall performance among the three ML
models for predicting nutrients in the grape canopy. In the meantime, numerous studies
have been conducted that the SVMs and the RF method are excellent ensemble-learning
algorithms with fewer input training parameters and higher robustness [24–26]. These
algorithms have good evaluation performance on plant conditions, such as the nutritional
status [27,28], canopy water content [29,30], biomass [31], and chlorophyll content [32].
However, few studies have estimated root-zone SM in kiwi trees based on UAV MS data.
Moreover, the majority of studies ignore various spectral information of red-edge bands in
favor of measuring only the usual spectral variable before making predictions. Therefore,
multiple sensitive vegetation indices with the red-edge band, as well as commonly used
three efficient ML methods, were adopted in this study to improve UAV MS imagery
diagnoses of root-zone SM in the kiwifruit orchard.

Crop mapping data were traditionally collected via statistical reports, inventory
records, or in-person field inspections. Remote sensing (RS) now significantly simpli-
fies this labor- and time-consuming task. With the advancement of RS technology, the UAV
field has grown rapidly, providing high spatial-resolution images. Furthermore, UAVs
are versatile enough to contribute to a wide range of data collection operations without
specific climate limitations [33]. The benefit of using UAVs to map crop areas is that it
allows farmers to check their fields on a regular basis. Furthermore, UAV imagery analytics
provide more information on farmlands than just cultivated crop types and field acreage. In
precision agriculture, UAVs equipped with various sensors are commonly used to report on
vegetation health, such as plant structure, chlorophyll content, and soil properties [34]. In
spite of several studies that have estimated vegetation or soil attributes from UAV images,
the orchard planting scale is rarely used to estimate the root-zone SM of kiwi trees.

This study aims to implement planted-by-planted spatiotemporal monitoring of root-
zone SM on three critical fruit growth periods in the kiwifruit orchard, as well as to provide
a new idea for precise irrigation decision-making during the entire fruit growth period of
kiwi. Overall, the primary goals of this research are to (a) assess the root-zone SM through
VIs calculated from SVM-extracted pure kiwifruit canopy MS data fusion and three ML
algorithms, including RF, SVM and ELM; (b) determine whether the VIP sensitive variable
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selection method can reduce the input VI variables while ensuring the inversion accuracy
of SM model; (c) investigate how critical period of fruit growth and soil depth affect the
accuracy of SM estimation; (d) carry out planted-by-planted high-precision spatial mapping
of root-zone SM combined with kiwi planting units.

2. Materials and Methods
2.1. Test Site and Experimental Setup

We conducted UAV-based surveys over three hectares of Actinidia chinensis var.
deliciosa ‘Xuxiang’ at the kiwifruit orchard (34.241◦N 108.164◦E, 400 m above the sea
level) of Wugong County, Xianyang City, Shaanxi Province, NW China (Figure 1A,B). This
8-year-old orchard was planted under a pergola of 2 × 4 m with drip irrigation (Figure 1C).
In this region, the average temperature in July is 27.1 ◦C, with the coldest month being
January at 1.65 ◦C. The average precipitation is 552.60–663.9 mm per year.
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Figure 1. The geographical location of Wugong County and the distribution of sampling sites.
(A) Shaanxi’s position in China. (B) Wugong County. (C) Sampling point schematic.

Due to the higher water requirements of kiwifruit throughout its entire growing season,
we planned to conduct inversion studies on the root-zone SM during three critical kiwifruit’s
growth seasons: the young fruit stage (Stage I), the fruit expansion stage (Stage II), and the
mature fruit stage (Stage III). According to the analysis of soil texture, the soil of 0–40 cm in the
study area is medium loam, and the soil below 40 cm is heavy loam, which has strong water
retention and poor permeability. The soil bulk density of 0–30 cm, 30–40 cm, and 40–60 cm
were 1.50 ± 0.02 g/cm3, 1.56 ± 0.05 g/cm3, and 1.70 ± 0.03 g/cm3, respectively. The field
water capacities (θfc, the soil volumetric water content) of kiwifruit trees was 34.70± 0.15% at
the 0–60 cm soil layer in 2021. Irrigation was limited to 65–70% (65% at Stages I and II, 70% at
Stage III) and 95% θfc, respectively. Data from this study were all collected 1–2 days before
each irrigation. Figure 2 depicts the meteorological data collected during the sampling period.
The average temperature was 20.7 ◦C (range:16.7–24.1 ◦C), 25.6 ◦C (range: 17.1–31.2 ◦C), and
21.5 ◦C (range:17.8–25.3 ◦C) at Stage I, Stage II, and Stage III in 2021, respectively. Meanwhile,
no irrigation events occurred on May 20, August 15, and September 9, and the precipitation
was 35.8 mm, 23.2 mm, and 8 mm, respectively. The irrigation amounts of Stage I, Stage
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II, and Stage III were 60.7 mm/hm2 (1 time), 377.4 mm/hm2 (7 times), and 60.7 mm/hm2

(1 time), respectively.
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Figure 2. The meteorological data during the sampling period. (Tmin, Tavg, and Tmax are the primary
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Stage III were represented by blue, yellow, and red boxes, respectively, in 2021. Note data from the
Weather station in the orchard).

2.2. Data Acquisition

Kiwifruit requires more water than other fruit trees since its low drought tolerance.
Thus, it is required to manage the irrigation time of kiwifruit in the correct period of
scientific irrigation. Furthermore, the root zone of kiwifruit was mainly distributed in the
depth of 0–60 cm. As a result, at Stage I, Stage II, and Stage III, we collected five depths
of root-zone SMs with 0–10 (SM10), and 10–20 (SM20). 20–30 (SM30), 30–40 (SM40), and
40–60 (SM60) cm, as well as UAV MS images.

2.2.1. SM Field Data Collection

We set 100 fixed-point monitoring points (2.0 m * 4.0 m in Figure 1) according to the
planting unit for synchronous data collection with the UAV flights. The 0–60 cm is the main
distribution area and water absorption area of the kiwi root, so the sampling depth was
determined to be 0–60 cm. The soil is stratified and sampled, which is divided into 5 layers
(0–10 cm, >10–20 cm, >20–30 cm, >30–40 cm, >40–60 cm). The SM data were measured by
FDR-TRIME (IMKO micromodtechnik GmbH, Leeds, Germany). One to three pre-buried
tubes were set up in three positions within the 90 cm horizontal range of the kiwifruit
tree (Figure 3a), with a total of 172. Furthermore, the mean of multiple measuring tubes
at the same sampling point was taken as the measured value. The FDR-TRIME needs to
manually extend the instrument into the pre-buried tube measurement. However, some
of the pre-buried tubes were damaged and not measured during the UAV fighting time.
The effective data sets with complete root-zone SM data of each layer at Stage I, Stage II,
and Stage III were 90, 91, and 85 groups, respectively. The data measured by FDR-TRIME
were calibrated by the drying method and converted into soil volumetric water content
according to bulk density. Therefore, the SM data we finally used were the calibrated
FDR-TRIME volumetric water content data.
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Figure 3. UAV systems and SM sampling in different growth stages. (a) DJI M600pro platform and
SM sampling method; (b) Red Edge-MX Dual multispectral camera; (c) Ground control point (GCP);
(d) Radiative calibration of calibration board; (e) Stage I—Young fruit stage (20 May 2021); (f) Stage
II—Fruit expansion stage (15 August 2021) and (g) Stage III—Fruit maturity stage (9 September 2021).

2.2.2. UAV Multispectral Image Acquisition and Preprocessing

To collect kiwi MS images in this study, we used a six-rotor DJI Matrice 600 pro UAV
(Dajiang Innovation Technology Co.; Ltd.; Shenzhen, China) equipped with a ten-channel
Red-Edge MX Dual camera (Mica Sense, Seattle, WA, USA) (Figure 3a,b). The multispectral
camera had ten bands (see Table 1) and a resolution of 1280 × 960 pixels. At three critical
growth stages, we conducted all UAV campaigns in clear skies and with no wind (between
10:30 and 13:30) (Figure 3e–g). In order to ensure successful image reconstruction, we set
the image overlap rate at 50 m flight altitude as 80%. Besides, the real-time kinematic (RTK)
system was used to measure the coordinates of ground control points installed at the test
site (Figure 3c). In order to calibrate the UAV MS data, the reflectance values of ten targets
(calibrated reflectance panel, Mica Sense, Seattle, WA, USA) were measured prior to each
flight (Figure 3d). The ten bands of scattered RS images were computer synthesized to
produce multipage images after the data collection process (.TIF) (Figure 3e–g).

Table 1. Technical details of Red-Edge MX Dual camera bands.

Band Band Name Spectral Wavelength
(nm) Bandwidth (nm) Function

B1 Blue444 444 28 Strong absorption of chlorophyll a and carotenoids.
B2 Blue 475 32

B3 Green531 531 14 Strong absorption of chlorophyll and phycoerythrin
absorption peak.

B4 Green 560 27 Phycoerythrin absorption peak.

B5 Red650 650 16 Strong absorption of chlorophyll and phycoerythrin
absorption peak.

B6 Red 668 14 Strong absorption of chlorophyll, absorption trough of most
vegetation.

B7 Red-edge705 705 10 Red edge region
B8 Red-edge 717 12
B9 Red-edge740 740 18 Strong absorption of chlorophyll

B10 NIR 842 57 High reflection of vegetation and the top of red
edge region
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2.3. Canopy Spectral Information Extraction

Identifying stump locations and determining canopy boundaries can be extremely
challenging when conducting in-field UAV surveys over kiwi vines for the following
reasons: (1) training systems for pergolas produce a flat, dense canopy, making it impossible
to identify stumps; (2) two neighboring plants’ canopies overlap due to disordered growth
of their shoots [35]; and (3) there are a variety of weeds, bare soil, and other ground object
types in the UAV MS imagery, causing the problem mixed pixels in each sampling cells.
For these reasons, a workflow diagram of kiwi canopy spectral information extraction and
reflectance matrix of mean values rasterize extraction was applied to each single-band UAV
MS orthomosaic (Figure 4a,b). In (a) Step I, the SVM classifier was employed to identify
kiwifruit canopy, weeds, shadow, and bare soil in the UAV MS data. Create a mask layer of
the kiwi canopy to exclude weeds, shadow, and bare soil pixels from all spectral features of
UAV imagery (Table 2) for further processing. According to (b) Step II, the pure kiwi canopy
MS data were clipped with rectangular masks (2 * 4 m), which were placed perpendicular
to the planting line. To reduce the data in MS data, planted-based kiwi canopy reflectance
values were averaged within the masked region, and the results were stored in a matrix
associated with the masking center coordinates. Then in (c) Step III, these zonal statistics of
masked MS images were utilized to calculate 42 VIs correlated with SM.
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Figure 4. A workflow diagram of data processing, VIs extraction, and modeling. In (a) Step I, the
SVM classification algorithm was used to classify the UAV multi-spectral data to obtain the pure
kiwifruit canopy reflectance; in (b) Step II, details of the segmentation process are depicted: starting
with mask positioning along planting lines, proceeding with rectangular shape mask extraction; and
then in (c) Step III, VIs based on the 2D PLSR-VIP-Rank chart with the measured SM data, were input
into RF, SVM, and ELM models, and then obtaining root-zone SM map at three growth stages based
on the optimal models.

Table 2. Common spectral indices.

No. Index Formulation Formula for on Red-Edge MX Dual Camera Reference

1 NDVI R840−R680
R840+R680

B10−B6
B10+B6 [36]

2 NDRE R840−R705
R840+R705

B10−B7
B10+B7 [37]

3 SCCCI NDRE
NDVI / [38]

4 RVI R840
R680

B10
B6 [39]

5 NDCI R762−R527
R762+R527

B9−B3
B9+B3 [40]

6 GNDVI R840−R705
R840+R705

B10−B7
B10+B7 [41]
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Table 2. Cont.

No. Index Formulation Formula for on Red-Edge MX Dual Camera Reference

7 OSAVI1 (1+0.16)×(R840−R670)
R840+R670+0.16

(1+0.16)×(B10−B6)
B10+B6+0.16

[42]

8 OSAVI2 (1+0.16)×(R740−R670)
R740+R670+0.16

(1+0.16)×(B9−B6)
B9+B6+0.16

(This study)

9 VOG1 R740
R720

B9
B8 [43]

10 CARI R700−R670
0.2×(R700+R670)

B7−B6
0.2×(B7+B6) [44]

11 CARI717 R717−R670
0.2×(R717+R670)

B8−B6
0.2×(B8+B6) (This study)

12 CARI740
R740−R670

0.2×(R740+R670)
B9−B6

0.2×(B9+B6) (This study)
13 MTVI1 1.2× [1.2× (R840 + R550)− 2.5× (R670 − R550)] 1.2× [1.2× (B10 + B4)− 2.5× (B6− B4)] [45]
14 TVI 0.5× [120× (R750 + R550)− 2.5× (R670 − R550)] 0.5× [120× (B9 + B4)− 2.5× (B6− B4)] [46]
15 DVI R840 − R680 B10− B6 [47]
16 RDVI R840−R670√

R840−R670

B10−B6√
B10−B6

[48]

17 SPVI 1.48× (R840 − R670)− 1.2× |R530 − R670| 1.48× (B10− B6)− 1.2× |B3− B6| [44]
18 EVI1 2.5×(R840−R670)

R840−6×R670−7.5×R475+1
2.5×(B10−B6)

R840−6×B6−7.5×B2+1
[37]

19 EVI2 2.5×(R840−R670)
R840+2.4×R670+1

2.5×(B10−B6)
B10+2.4×B6+1

[49]

20 EVI3 2.5×(R840−R670)
R840−2.4×R670+1

2.5×(B10−B6)
B10−2.4×B6+1

[50]

21 MSAVI1
0.5× (2× R840 + 1−

[(2× R840 + 1)2 − 8×
√

R840 − R670]
0.5
)

0.5× (2× B10 + 1−
[(2× B10 + 1)2 − 8×

√
B10− B6]

0.5
)

[47]

22 MSAVI2
0.5× (2× R740 + 1−

[(2× R740 + 1)2 − 8×
√

R740 − R670]
0.5
)

0.5× (2× B9 + 1−
[(2× B9 + 1)2 − 8×

√
B9− B6]

0.5
)

(This study)

23 REP1 700+[40×(R668+R842)×0.5−R705 ]
R740−R705

700+[40×(B6+B10)×0.5−B7]
B9−B7

(This study)

24 PRI R531−R570
R531+R570

B3−B4
B3+B4 [51]

25 MTVI2 1.5×[1.2×(R840−R550)−2.5×(R670−R550)]

[(2×R840+1)2−(6×R840−5×
√

R670)−0.5]
0.5

1.5×[1.2×(B10−B4)−2.5×(B6−B4)]

[(2×B10+1)2−(6×B10−5×
√

B6)−0.5]
0.5 [48]

26 TCARI1 3× [R840 − R705 − 0.2× (R840 − R550)× (R840 − R705)]
3× [B10− B7− 0.2× (B10− B4)× (B10−

B7)] (This study)

27 TCARI2 3× [R750 − R705 − 0.2× (R750 − R550)× (R750 − R705)] 3× [B9− B7− 0.2× (B9− B4)× (B9− B7)] [52]
28 TCARI1

OSAVI1 / / [52]
29 TCARI2

OSAVI2 / / (This study)
30 MCARI [(R700 − R670)− 0.2× (R700 − R550)× (R700/R670)] [(B7− B6)− 0.2× (B7− B4)× (B7/B6)] [53]
31 TCAR1 3× [(R700 − R670)− 0.2× (R700 − R550)× (R700/R670)] 3× [(B7− B6)− 0.2× (B7− B4)× (B7/B6)] [53]
32 MCARI

OSAVI1 / / [54]
33 MCARI

OSAVI2 / / (This study)
34 COSRI (R527+R550)×( R840−R670)

(R670+R840)
2

(B2+B4)×(B10−B6)
( B6+B10)2 [55]

35 SAVI R840−R670
(1+0.16)×(R840+R670+0.16)

B10−B6
(1+0.16)×(B10+B6+0.16) [37]

36 VARI R550−R670
R550+R670−R527

B4− B6
B4+ B6−B2 [56]

37 GLI 2×R550−R527−R670
2×R550+R527+R670

2×B4−B2−B6
2×B4+B2+B6 [57]

38 IPVI R840
R840+R670

B10
B10+B6 [58]

39 NNIR R840
R840+R670+R550

B10
B10+B6+B4 [59]

40 GCI (R840/R670)− 1 (B10/B6)− 1 [60]
41 RECI (R740/R670)− 1 (B9/B6)− 1 [60]
42 WDRVI 0.12×R840−R670

0.12×R840+R670

0.12×B10−B6
0.12×B10+B6 [61]

Note: where Ri is the spectral reflectance of i, which was arbitrarily acquired within the operating range of the
remote sensing sensor used in previous research.

2.4. The Calculation of Spectral Indices

In addition to eliminating environmental noise, spectral index methods have a higher
sensitivity than single bands. We chose several vegetation indices (VIs) which have been
shown to correlate with SM in the literature (Table 2). Furthermore, various combinations
of red-edge bands from the Red-Edge MX Dual camera (B7 and B9, see Table 1) were
calculated to generate potential VIs (Table 2, VIs in this study are shown in red) as input
variables for SM prediction; 42 VIs were selected in total, as shown in Table 2.

2.5. The Feature Selection of Vegetation Indices

Since the effects of different VIs on the predicted SM can be different, it is critical
to rank the relative importance of individual parameters to the SM. We used the vari-
able importance in projection (VIP) variable screening method, which is based on partial
least squares (PLS), to select the top 7 characteristic vegetation indices. In this method,
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two principal components were extracted based on the PLS principle, and variables with
larger contributions were retained. Then, the VIP values of each component are obtained by
calculating the mean of the sum of squares of the predicted residual. The higher the score,
the greater the contribution to covariance and the greater the importance. The following is
the calculation formula for VIP:

VIP =

√√√√m
i

∑
k=1

b2
k w2

jk/
i

∑
k=1

b2
k (1)

where Wjk is the j-th entry of vector, bk is the regression weight of the k-th hidden variable,
bk= uT

k tk.

2.6. SM Prediction Model Calibration and Validation

The 42 VIs in Table 2 were extracted from 100 sampling plots (Figure 1C) as a mask
layer and then matched with the field-measured root-zone SM of each experimental plot.
After removing the anomalies and missing SM values, we selected 90, 91, and 85 data sets
with complete SM values at each layer at Stage I, Stage II, and Stage III, respectively. In
total, 450, 455, and 425 root soil data were obtained for each of the three periods.

The fold cross-validation method has been widely used to evaluate ML models because
it effectively prevents over-learning and under-learning. In this study, SM data of each
layer were separated and divided into three groups randomly by using the randperm
function. The last group was used for testing, while the other two were used for training
the three ML models. The accuracy of the average estimate value was then calculated as the
final result. For further evaluation of ML models, we used the input combination screened
based on the VIP strategy to construct RF, SVM, and ELM models for estimating the SM of
each layer.

2.6.1. RF Model

The RF is a multivariable, nonlinear statistical method which obtains several random
samples through repeated bootstrapping, followed by decision-making trees. Based on these
decision-making trees, we can predict the value of the dependent variable for regression
problems. In order to perform regression simulation of this algorithm, we set the number of
decision trees (ntree) at 100 and the number of random variables per node (mtry) at 5.

2.6.2. SVM Model

SVMs is a generalized linear classifier that classifies data according to supervised
learning; Its decision boundary is the maximum-margin hyperplane for solving the learning
sample. In our model, the penalty factor (c) and radial basis function parameter (g) were
4 and 0.8, respectively. Moreover, we chose the radial basis function (RBF) as SVM’s kernel
function, and then this suitable support vector is used to construct the prediction model.

2.6.3. ELM Model

ELM is designed by Huang et al. [62] as a feedforward neural network algorithm with
a single hidden layer and is mostly used for regression and classification. Unlike a general
neural network, the weights of the ELM input layer and hidden layer nodes are randomly
or artificially given. There is only one thing left to determine: the threshold of the hidden
neurons. We chose the sigmoid function for activation, and there were 15 hidden layer
nodes in this study.

2.6.4. Model Calibration and Evaluation

The determination coefficient (R2), relative root mean square error (RRMSE), mean
absolute error (MAE), and global performance indicator (GPI) were used to assess the
accuracy of the RF, SVM, and ELM model predictions. The higher values of R2 and the
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lower values of RRMSE and MAE indicate a better imitative effect and accuracy of the
model in predicting SM. The following is the formula for the evaluation index:

R2= 1−

n
∑

i=1
(yi − ŷi)

2

n
∑

i=1
(yi − yi)

2
(2)

RMSE =

√√√√√ n
∑

i=1
(ŷi−yi)

2

n
(3)

RRMSE =
RMSE

y
× 100% (4)

MAE =

n
∑

i=1
|ŷi−yi|

n
(5)

GPI =
m

∑
j=1

αj(CIj − CImedian) (6)

where yi, and ŷi are the measured values and predicted values, respectively, of the SM (%);
y is the mean value of the measured values; n is the number of samples. CImedian is the
median of the corresponding parameter; m is the number of statistical indicators; αj it is
equal to 1 for R2 and equal to −1 for RRMSE and MAE.

3. Results
3.1. Changes of Root-Zone Soil Moisture in Fruit Growth Stages

In Figure 5, the different root-zone SM values are shown for three key growth stages
of the kiwifruit from May to September 2021. The distribution trend of SM characteristics
in each layer of root-zone SM during the critical fruit growth period is relatively consistent,
as can be seen. The SM increased and then decreased as the depth of the soil increased,
reaching a maximum value of 21.98–27.61% at SM40. After reaching its peak, the SM60
(21.91–26.54%) remained relatively stable until the end of the critical fruit growing season.
As a result, the deeper SM of kiwi is relatively less disturbed by the external environment,
and the SM is basically saturated, where-as the soil water in the surface 0–20 cm changes
significantly. Furthermore, results indicated that the difference of shallow root-zone SM
(0–30 cm) value is large at Stage III, whereas it is relatively stable at Stage I and II, pre-
sumably due to the influences of irrigation, rainfall, and evapotranspiration during the
critical kiwifruit growth season (from Figure 2). Stage III values ranged from 16.67–20.54%,
18.05–22.56%, and 21.14–25.44% for SM10, SM20, and SM30, respectively, while Stage I
and Stage II values ranged from 20.49–24.75%, 22.34–26.44%, and 23.42–27.50% for SM10,
SM20, and SM30, respectively. This suggested that there are differences in root-zone SM
data applied in shallow root systems collected from three critical fruit growth seasons due
to precipitation and other environmental influences.

3.2. Appropriate Spectral Indices for Soil Moisture Estimation

Several of the 42 spectral indices extracted from mask layers (Figure 4c) have mul-
ticollinearity, resulting in unstable analyses and incorrect predictions. Therefore, it was
necessary to diagnose the relationship between the VIs and root-zone SM at various depths
before training the models. In order to improve the stability of prediction, the VIP analysis
was used in this study to reduce the dimensionality of the VIs (Figure 6). Our analysis
was based on the calculated VIP value, and the top seven features (VIP > 1) were chosen
as input parameters (Figure 6 and Table 3). According to our findings, the VIP ranking
of SM at different depths at Stage I fluctuated significantly, similarly to Stage II and III.
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The results may be similar to the inversion of SM according to canopy VIs, while canopy
growth would affect the inversion results. Thus, when canopy growth was slow at Stage I,
SM at different depths had different sensitive VIs due to external influences. In Stage I, soil
characteristic variables differ from layer to layer, as shown in Figure 6 and Table 3, but the
selected variables are mostly related by CARI, TCARI, SAVI, OSAVI and MSAVI, MTVI
and EVI, all of which were developed based on B4, B6, B9, and B10. In spite of that, each
layer’s first seven indicators are still distinct at Stage II. It is noteworthy that the feature VIs
selected by each layer are similar, such as EVI (EVI, EVI2, EVI3), MTVI (MTVI1 and MTVI2),
and MSAVI (MSAVI1 and MSAVI2). As of Stage III, there were seven sensitive VIs per soil
layer, including MTVI1, DVI, SPVI, EVI1, EVI3, TCARI2, and TVI. A notable finding was
that CARI740 (referring to the conceptual framework of CARI, R740 was replaced by R700)
appeared in the selected sensitive parameters for both SM60 and SM40.
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Figure 5. The violin plots of root SM (SM10, SM20, SM30, SM40, and SM60) values at different
kiwifruit key growth stages ((a) Stage I—the young fruit stage, (b) Stage II—the fruit expansion stage
and (c) Stage III—the fruit maturity stage).

Table 3. Appropriate VIs for SM10, SM20, SM30, SM40, and SM60 estimation.

Growth
Stage

Response
Variables

The Top 7 VIs

1 2 3 4 5 6 7

Stage I

SM10 CARI740 MSAVI2 MTVI1 OSAVI2 MTVI2 TVI EVI3
SM20 MSAVI1 RVI RDVI EVI1 IPVI OSAVI1 VARI
SM30 TCARI/OSAVI2 OSAVI2 TCARI2 EVI3 SAVI NDRE NDCI
SM40 GLI EVI1 TCAR1 VARI NDVI MSAVI2 MCARI
SM60 CARI740 EVI1 MSAVI2 MTVI1 MTVI2 PRI DVI

Stage II

SM10 TCARI/OSAVI1 TCAR1 NNIR MTVI2 VARI GLI RDVI
SM20 EVI3 SCCCI NDRE VOG1 NDCI EVI1 OSAVI1
SM30 EVI2 RDVI MTVI2 MSAVI2 SAVI MSAVI1 OSAVI1
SM40 TVI EVI3 MTVI1 MSAVI2 DVI SPVI CARI740
SM60 TVI CARI740 MSAVI2 EVI1 MTVI1 EVI3 DVI

Stage III

SM10 MTVI1 DVI SPVI EVI1 EVI3 CARI740 TVI
SM20 MTVI1 DVI SPVI EVI3 EVI1 TCARI2 TVI
SM30 MTVI1 DVI SPVI EVI1 EVI3 TCARI2 TVI
SM40 MTVI1 DVI SPVI EVI3 EVI1 TCARI2 TVI
SM60 CARI740 MTVI1 TVI EVI1 DVI SPVI TCARI2



Remote Sens. 2023, 15, 646 11 of 22

Remote Sens. 2023, 15, 646 11 of 22 
 

 

results may be similar to the inversion of SM according to canopy VIs, while canopy 
growth would affect the inversion results. Thus, when canopy growth was slow at Stage 
I, SM at different depths had different sensitive VIs due to external influences. In Stage I, 
soil characteristic variables differ from layer to layer, as shown in Figure 6 and Table 3, 
but the selected variables are mostly related by CARI, TCARI, SAVI, OSAVI and MSAVI, 
MTVI and EVI, all of which were developed based on B4, B6, B9, and B10. In spite of that, 
each layer’s first seven indicators are still distinct at Stage II. It is noteworthy that the 
feature VIs selected by each layer are similar, such as EVI (EVI, EVI2, EVI3), MTVI (MTVI1 
and MTVI2), and MSAVI (MSAVI1 and MSAVI2). As of Stage III, there were seven sensi-
tive VIs per soil layer, including MTVI1, DVI, SPVI, EVI1, EVI3, TCARI2, and TVI. A no-
table finding was that CARI740 (referring to the conceptual framework of CARI, R740 was 
replaced by R700) appeared in the selected sensitive parameters for both SM60 and SM40. 

 
Figure 6. The rank of VIP between spectral variables and the SM10, SM20, SM30, SM40, and SM60 
at three key growth stages ((a) Stage I, (b) Stage II, and c. Stage III). Note: Redder colors indicate 
better model performance and higher rankings. Bluer colors indicate worse model performance and 
lower rankings. 

Table 3. Appropriate VIs for SM10, SM20, SM30, SM40, and SM60 estimation. 

Growth 
Stage 

Response  
Variables 

The Top 7 VIs 
1 2 3 4 5 6 7 

Stage I 

SM10 CARI740 MSAVI2 MTVI1 OSAVI2 MTVI2 TVI EVI3 
SM20 MSAVI1 RVI RDVI EVI1 IPVI OSAVI1 VARI 
SM30 TCARI/OSAVI2 OSAVI2 TCARI2 EVI3 SAVI NDRE NDCI 
SM40 GLI EVI1 TCAR1 VARI NDVI MSAVI2 MCARI 
SM60 CARI740 EVI1 MSAVI2 MTVI1 MTVI2 PRI DVI 

Stage II 
SM10 TCARI/OSAVI1 TCAR1 NNIR MTVI2 VARI GLI RDVI 
SM20 EVI3 SCCCI NDRE VOG1 NDCI EVI1 OSAVI1 

Figure 6. The rank of VIP between spectral variables and the SM10, SM20, SM30, SM40, and SM60
at three key growth stages ((a) Stage I, (b) Stage II, and (c) Stage III). Note: Redder colors indicate
better model performance and higher rankings. Bluer colors indicate worse model performance and
lower rankings.

According to the results, we found that kiwi canopy growth affects the canopy re-
sponse characteristic when using the VI extracted from the canopy spectrum to recover
root-zone SM. Generally, when a canopy grows strongly, each soil layer’s sensitive VIs
become more consistent. Furthermore, the sensitive VI associated with SM at each stage
was primarily CARI740, TCARI2, SAVI, OSAVI and MSAVI, MTVI (MTVI1 and MTVI2),
EVI (EVI1 and EVI3) and TVI index, which were developed on the basis of B4, B6, B9, and
B10 (Tables 1 and 2).

The accuracy evaluation of the three ML models for predicting root-zone SM (from
SM10 to SM60) during three critical fruit growth periods is provided in Figure 7. These
graphs showed the accuracy evaluation indexes of the SVM, RF, and ELM models under
eight different input VI combinations. In each subgraph, it is indicated that the VIP variable
selection method can effectively reduce the number of 42 VIs feature indices (R2 0.21–0.82)
to less than 7 (R2 0.25–0.82) under the premise of ensuring the estimation accuracy of the
SM model.
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Figure 7. Statistical values of the SVM, RF, and ELM models with a different number of input VIs 
to estimate (a) SM10, (b) SM20, (c) SM30, (d) SM40, and (e) SM60 at Stage I, II and III. Note: The 
number of input VIs is 42 (all VIs in this study), 7 (appropriate VIs in Table 3), and 6, 5, 4, 3, 2, 1 (The 
top 6, 5, 4, 3, 2, 1 VIs in Table 3); the red histogram shows 42 input VIs, and the number of input VIs 
decreases as the color becomes lighter. The blue values under the line represent the rank of the GPI 

Figure 7. Statistical values of the SVM, RF, and ELM models with a different number of input VIs to
estimate (a) SM10, (b) SM20, (c) SM30, (d) SM40, and (e) SM60 at Stage I, II and III. Note: The number
of input VIs is 42 (all VIs in this study), 7 (appropriate VIs in Table 3), and 6, 5, 4, 3, 2, 1 (The top 6, 5,
4, 3, 2, 1 VIs in Table 3); the red histogram shows 42 input VIs, and the number of input VIs decreases
as the color becomes lighter. The blue values under the line represent the rank of the GPI value (the
higher the value, the higher the rank). Best input VIs among all models are marked in blue bold,
while the rank of GPI is 1.
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Moreover, among the 45 optimal models (ranked based on GPI), it is clearly indicated
that the accuracy of the root-zone SM models applied at different root depths was in order
of the shallow SM (SM10, SM20, and SM30)> the deeper SM (SM40 > SM60). The median
R2 values for the SM10, SM20, SM30, SM40, and SM60 models were 0.67 (range: 0.54–0.82),
0.70 (range: 0.61–0.76), 0.72 (range: 0.61–0.79), 0.56 (range: 0.38–0.71) and 0.38 (range:
0.25–0.50), respectively, during the entire key growth season. The simulation error of the
five models throughout the whole critical growth stage, with median RRMSE values of
0.03 (range: 0.01–0.04), 0.02 (range: 0.02–0.04), 0.02 (range: 0.02–0.04), 0.03 (range: 0.02–0.05)
and 0.03 (range: 0.01-0.06), respectively. In addition, the median MAE values of each
SM model were 0.41 (range: 0.20–0.59), 0.42 (range: 0.31–0.71), 0.44 (range: 0.32–0.74),
0.52 (range: 0.20–0.85) and 0.52 (range: 0.27–1.07), respectively.

In addition, we also found that the inversion accuracy of root-zone SM models
decreased at the progressive growth stage, while the inversion accuracy of SM20 and
SM30 remained relatively stable throughout each growth period. Specifically, the median
R2 values for the models at Stage I, Stage II, and Stage III were 0.69 (range: 0.50–0.82),
0.58 (range: 0.27–0.79), and 0.55 (range: 0.25–0.73), respectively. Moreover, the median
RRMSE values of the models at three fruit growth stages were 0.02 (range: 0.01–0.02),
0.02 (range: 0.02–0.03), and 0.04 (range: 0.03–0.06), respectively. Comparisons of the MAE
values also resulted in a similar conclusion, where the median MAE values 0.30 (range:
0.20–0.39), 0.44 (range: 0.34–0.60), and 0.65 (range: 0.49–1.07) during three critical growth
periods, respectively. It is worth noting that the monitoring accuracy of SM10, SM20, and
SM30 on the entire key fruit growth period was more accurate (R2 > 0.6, RRMSE < 0.032,
MAE < 0.5), while the best monitoring period of SM40 and SM60 was only at Stage I, with
R2, RRSME, MAE of 0.71, 0.02, 0.35, and 0.54, 0.01, 0.27, respectively.

Next, we examined the effect of the SVM, RF, and ELM algorithms on the different
SM models during these critical fruit growth periods (Tables 4–6). Compared to SVM and
ELM models, we found that the RF models exhibited relatively stronger robustness for
SM prediction. At Stage I (Table 4), the R2 values for SM10, SM20, SM30, SM40, and SM60
models with the RF algorithm were increased by 4.05–7.32%, −0.81–3.86%, −6.54–8.33%,
0.0–20.92%, and 4.06–7.39%, respectively, compared with other two algorithms. Meanwhile,
the R2 values for SM10, SM20, SM30, SM40, and SM60 models with the RF algorithm
in Stage II were increased by 14.77–18.57%, 4.85–5.29%, −10.41–2.92%, 9.28–11.61%, and
7.36–18.45%, respectively (Table 5). At Stage III (Table 6), the R2 values for these five SM
models with the RF algorithm were increased by 6.56–12.69%, 12.48–13.21%, 7.99–18.89%,
−13.85–27.97% and −20.25–29.15% than other two algorithms, respectively. It is further
found that the performance of RF algorithms only in a few SM models is unfavorable to
ELM and SVM algorithms. However, the error values for the median RRMSE and MAE
of SM models with RF, SVM, and ELM algorithms were 0.02, 0.03, 0.03, and 0.44, 0.45,
and 0.51, respectively, during the critical fruit growth period. These data are consistent
with the notion that the RF algorithms outperformed the other two models in terms of
SM prediction robustness, with lower RRMSE and MAE, indicating heterosis performance
across different root-zone SM.

Table 4. Statistical analysis of root zone SM models based on the number of the best VIs at Stage I.

Model Response
Variables

Number of VIs (No. of
VIs) Predictive Input VIs R2 RRMSE MAE GPI Rank

SVM

SM10 5 (12, 22, 13, 8, 25) CARI740, MSAVI2, MTVI1, OSAVI2,
MTVI2 0.79 0.02 0.31 0.07 3

SM20 7 (21, 4, 16, 18, 38,
7, 36)

MSAVI1, RVI, RDVI, EVI1, IPVI,
OSAVI1, VARI 0.70 0.02 0.35 −0.06 10

SM30 5 (29, 8, 27. 20, 35) TCARI/OSAVI2, OSAVI2, TCARI2,
EVI3, SAVI 0.78 0.02 0.32 0.06 4

SM40 2 (37, 18) GLI, EVI1 0.70 0.02 0.39 −0.10 12

SM60 5 (12, 18, 22, 13, 25) CARI740, EVI1, MSAVI2, MTVI1,
MTVI2 0.50 0.01 0.27 −0.18 15
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Table 4. Cont.

Model Response
Variables

Number of VIs (No. of
VIs) Predictive Input VIs R2 RRMSE MAE GPI Rank

RF

SM10 4 (12, 22, 13, 8) CARI740, MSAVI2, MTVI1, OSAVI2 0.82 0.02 0.20 0.21 1
SM20 3 (21, 4, 16) MSAVI1, RVI, RDVI 0.73 0.02 0.31 0.01 7

SM30 6 (29, 8, 27. 20, 35, 2) TCARI/OSAVI2, OSAVI2, TCARI2,
EVI3, SAVI, NDRE 0.72 0.02 0.38 −0.08 11

SM40 7 (37, 18, 31, 36, 1,
22, 30)

GLI, EVI1, TCAR1, VARI, NDVI,
MSAVI2, MCARI 0.71 0.02 0.35 −0.05 9

SM60 4(12, 18, 22, 13) CARI740, EVI1, MSAVI2, MTVI1 0.54 0.01 0.27 −0.13 13

ELM

SM10 3 (12, 22, 13) CARI740, MSAVI2, MTVI1 0.77 0.02 0.27 0.09 2
SM20 3 (21, 4, 16) MSAVI1, RVI, RDVI 0.73 0.02 0.31 0.02 5

SM30 6 (29, 8, 27. 20, 35, 2) TCARI/OSAVI2, OSAVI2, TCARI2,
EVI3, SAVI, NDRE 0.77 0.02 0.34 0.01 6

SM40 3 (37, 18, 31) GLI, EVI1, TCAR1 0.59 0.02 0.20 −0.02 8

SM60 7 (12, 18, 22, 13, 25, 24,15) CARI740, EVI1, MSAVI2, MTVI1,
MTVI2, PRI, DVI 0.52 0.01 0.28 −0.16 14

Note: best statistical indicators among all models are highlighted in orange.

Table 5. Statistical analysis of root zone SM models based on the number of the best VIs at Stage II.

Model Response
Variables

Number of VIs (No.
of VIs) Predictive Input VIs R2 RRMSE MAE GPI Rank

SVM

SM10 6 (28, 31, 39, 25, 36, 37) TCARI/OSAVI1, TCAR1, NNIR,
MTVI2, VARI, GLI 0.56 0.03 0.46 −0.03 9

SM20 2 (20, 3) EVI3, SCCCI 0.72 0.02 0.34 0.25 3
SM30 3 (13,15. 20) MTVI1, DVI, EVI3 0.69 0.02 0.38 0.19 6

SM40 6 (14. 20, 13, 22, 15, 17) TVI, EVI3, MTVI1, MSAVI2, DVI,
SPVI 0.53 0.02 0.53 −0.13 11

SM60 2 (14, 12) TVI, CARI740 0.30 0.02 0.55 −0.38 14

RF

SM10 6 (28, 31, 39, 25, 36, 37) TCARI/OSAVI1, TCAR1, NNIR,
MTVI2, VARI, GLI 0.65 0.02 0.41 0.11 7

SM20 1 (20) EVI3 0.76 0.02 0.36 0.28 2

SM30 6 (13,15. 20, 17, 19, 16) MTVI1, DVI, EVI3, SPVI, EVI2,
RDVI 0.71 0.02 0.37 0.22 5

SM40 7 (14. 20, 13, 22, 15,
17, 12)

TVI, EVI3, MTVI1, MSAVI2, DVI,
SPVI, CARI740

0.58 0.02 0.46 −0.01 8

SM60 7 (14, 12, 22, 18, 13.
20, 15)

TVI, CARI740, MSAVI2, EVI1,
MTVI1, EVI3, DVI 0.32 0.03 0.56 −0.37 13

ELM

SM10 7 (28, 31, 39, 25, 36,
37, 16)

TCARI/OSAVI1, TCAR1, NNIR,
MTVI2, VARI, GLI, RDVI 0.54 0.03 0.45 −0.04 10

SM20 7 (20, 3, 2, 9, 5, 18, 7) EVI3, SCCCI, NDRE, VOG1,
NDCI, EVI1, OSAVI1 0.72 0.02 0.38 0.22 4

SM30 6 (13,15. 20, 17, 19, 16) MTVI1, DVI, EVI3, SPVI, EVI2,
RDVI 0.79 0.02 0.34 0.33 1

SM40 1 (14) TVI 0.52 0.03 0.55 −0.17 12

SM60 7 (14, 12, 22, 18, 13.
20, 15)

TVI, CARI740, MSAVI2, EVI1,
MTVI1, EVI3, DVI 0.27 0.03 0.53 −0.40 15

Note: best statistical indicators among all models are highlighted in orange.

Table 6. Statistical analysis of root zone SM models based on the number of the best VIs at Stage III.

Model Response
Variables

Number of VIs (No.
of VIs) Predictive Input VIs R2 RRMSE MAE GPI Rank

SVM

SM10 1 (13) MTVI1 0.59 0.03 0.49 0.11 4
SM20 4 (13, 15, 17. 20) MTVI1, DVI, SPVI, EVI3 0.62 0.04 0.56 0.06 5

SM30 7 (13, 15, 17, 18. 20,
27, 14)

MTVI1, DVI, SPVI, EVI1, EVI3,
TCARI2, TVI 0.61 0.03 0.57 0.05 6

SM40 1 (13) MTVI1 0.38 0.04 0.68 −0.30 12
SM60 4(12,13,14,18) CARI740, MTVI1, TVI, EVI1 0.25 0.04 0.62 −0.37 14
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Table 6. Cont.

Model Response
Variables

Number of VIs (No.
of VIs) Predictive Input VIs R2 RRMSE MAE GPI Rank

RF

SM10 7 (13, 15, 17, 18. 20,
12, 14)

MTVI1, DVI, SPVI, EVI1, EVI3,
CARI740, TVI 0.67 0.03 0.50 0.18 3

SM20 5 (13, 15, 17. 20, 18) MTVI1, DVI, SPVI, EVI3, EVI1 0.69 0.03 0.50 0.20 2
SM30 2 (13, 15) MTVI1, DVI 0.73 0.03 0.54 0.21 1

SM40 7 (13, 15, 17. 20, 18,
27, 14)

MTVI1, DVI, SPVI, EVI3, EVI1,
TCARI2, TVI 0.49 0.04 0.70 −0.22 10

SM60 4 (12, 13, 14, 18) CARI740, MTVI1, TVI, EVI1 0.32 0.04 0.67 −0.35 13

ELM

SM10 4 (13, 15, 17, 18) MTVI1, DVI, SPVI, EVI1 0.63 0.04 0.59 0.03 7

SM20 7 (13, 15, 17. 20, 18,
27,12)

MTVI1, DVI, SPVI, EVI3, EVI1,
TCARI2, CARI740

0.62 0.05 0.71 −0.10 9

SM30 3 (13, 15, 17) MTVI1, DVI, SPVI 0.68 0.04 0.74 −0.07 8

SM40 7 (13, 15, 17. 20, 18,
27, 14)

MTVI1, DVI, SPVI, EVI3, EVI1,
TCARI2, TVI 0.56 0.05 0.85 −0.29 11

SM60 4 (12, 13, 14, 18) CARI740, MTVI1, TVI, EVI1 0.40 0.06 1.07 −0.68 15

Note: best statistical indicators among all models are highlighted in orange.

3.3. Spatial Distribution of Root-Zone Soil Moisture in the Kiwi Field

The optimal prediction models of SM10, SM20, SM30, SM40, and SM60 on these key
fruit periods were selected by GPI rankings shown in Figure 8. According to the prediction
results at Stage I, the SM model developed by the RF algorithm with CARI740, MSAVI,
MTVI1, and OSAVI2 variables had the best performance (Table 4). There was a higher R2

value than 0.8 and a low RRMSE value of 0.02, indicating that the model was reliable. In
addition, the SM model in other layers in this period is better than that in the other two
periods. Furthermore, the performance of SM20 and SM30 models were better than SM10
at Stage II and Stage III, which may be related to the higher weed cover in kiwifruit orchard
at these stages. According to the model performance on three critical fruit growth periods
for SM prediction (Figure 8), the SM10 model at Stage I outperformed the other two stages
(highest R2 0.82, lowest RRMSE 0.02 and MAE 0.20), followed by SM20 and SM30 models
(R2, RRMSE, MAE were in the range of 0.69–0.79, 0.02–0.03, 0.32–0.50, respectively, for the
entire key growth season), whereas SM40 and SM60 exhibited diminished performance
with lower R2 (0.32–0.54), higher RRMSE (0.01–0.06) and MAE (0.27–1.07). This is because
the SM model based on optical RS in this study is mainly based on the average reflectance
of kiwifruit canopy leaves. The absorption of water and nutrients by the canopy during
the growth period of kiwifruit mainly depends on the root hair cells in the mature area
of the root tip. The root hair area of kiwifruit is shallow, and it is widely distributed in
the 0–30 cm soil layer. Therefore, the accuracy of the shallow SM model is high, and it
performs better when the kiwifruit canopy is lush and healthy in Stages II and III. The deep
root zone is the main root growth area of kiwifruit. There were fewer capillary roots in
30–40 cm and very few below 50 cm, which accounted for a small proportion of canopy
water transport. Therefore, the performance of deeper SM models in this study was poor,
and SM40 > SM60.

Overall, the RF is the most recommended model for estimating the kiwi root-zone
SM, with fewer simple input parameters, higher simulation accuracy, and easy operation.
Furthermore, the results of planted-by-planted spatial simulation of root-zone SM based
on planting patterns can assist agricultural water managers in making irrigation decisions.

The planted-by-planted spatial distribution of root-zone SM prediction results on the
critical fruit growth period based on the above optimal model is shown in Figure 9. The
variation characteristics of SM during these critical fruit growth periods were similar to
the measured values (Figure 5). Although the shallow root-zone SM (SM10, SM20, and
SM30) at Stage I was lower than that at Stage II, the deep root-zone SM (SM40 and SM60)
was higher than that at Stage II, which was consistent with the conclusion obtained in
Section 4.1 combined with Figure 5.
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In conclusion, albeit the accuracy of the deeper SM model (SM40 and SM60) was
relatively weak, it showed a spatial clustering pattern over space. This may be due to
the assumption that spatial independence and position invariance was not considered in
this study [62]. On the whole, the feasibility of using UAV MS remote sensing to estimate
root-zone SM of kiwifruit at field scale was preliminarily proved. Further research into the
spatial adaptability of RF-based models in SM prediction should be carried out for assorted
kiwifruit varieties and larger regions.

4. Discussion
4.1. Comparison of Sensitive Spectral Variables with Soil Moisture

Multispectral RS carried by UAVs has great potential as a tool for evaluating root-zone
SM. Compared to field sampling, UAVs are much cheaper. Usually, numerous spectral
covariates are typically generated in the process of the model development. In order to
develop an optimal model, it is crucial to select sensitive spectral variables since these
covariates contain redundant information. Here, we found that the VIP variable selection
method can effectively reduce the number of 42 VIs feature indices (R2 0.21–0.78 to less
than 7 (R2 0.25–0.82) under the assumption that the SM model will provide accurate
estimations. Moreover, we found that MTVI1, CARI740, EVI1, EVI3, and OSAVI selected
on the VIP selection method appeared more frequently among all-depth SM inversion
models at different growth stages. These variables were mainly banded at near-infrared
(B10, 842 nm), red-edge (B9, 740 nm), red (B6, 668 nm), and green (B4, 560 nm). Further,
vegetation indexes are typically developed by subtracting red and green bands from near-
infrared and red-edge bands to enhance near-infrared information, which is consistent
with previous research [13,15]. Water and oxygen were absorbed strongly at 750 nm, which
was the point of strong red-edge information for plants [63]. Since kiwifruit leaves do
not have the protective coating of apple and pear leaves, they evaporate more quickly
than other fruit trees. Therefore, chlorophyll levels of the kiwi canopy fluctuated with
drought severity, indicating a strong positive correlation between SM and chlorophyll
levels. Moreover, chlorophyll and moisture response zones (Green, Red, Red-Edge, and
NIR) were used to match empirical SM models. We were able to quantitatively estimate
SM using multispectral data from UAVs and spectral mechanisms. Based on that, future
precision agriculture research can be conducted using phenological data in conjunction with
the results of this study. Moreover, the results of our study will help design a space-borne
multiband remote sensing system (especially for Sentinel-2) for detecting SM at different
growth stages.

4.2. Performances of RF, SVM, and ELM Models

With sensitive spectral indices and RF, SVM, and ELM algorithms, we developed
models to estimate SM10, SM20, SM30, SM40, and SM60 on three key growth seasons in the
kiwifruit orchard. Moreover, we found that ML algorithms produce different prediction
effects while optimizing spectral variables differed (as shown in Tables 4–6 and Figure 8).
Multi-temporal changes in crop SM can be estimated with traditional VIs, but these VIs
are saturated during the reproductive crop stage and have low sensitivity [64,65]. Our
researchers found, however, that using multiple VIs coupled with the ML algorithm model,
it was possible to predict the root-zone SM of kiwifruit during three critical fruit growth
periods. Due to the different reflectance of pure kiwifruit canopy bands used in the VIs,
the sensitivity differences between the SMs may have been evident during the critical
fruit growth period in our study. Comparing the accuracy of the inversion model of SM
at different depths and three critical fruit growth periods, we found that the RF model
performed the best when retrieving SM as opposed to the other two models. This could be
due to its suitability for mining a small subset of features and producing unbiased estimates
that were less susceptible to generalization errors [66].

Regression methods in estimation models have been compared by many scholars to
similar conclusions [13,24]. According to Ge et al. [13], their RF models outperformed ELM
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models for SM inversion by UAV-based hyperspectral imagery. Comparing the prediction
accuracy at the SM10, SM20, SM30, SM40, and SM60 throughout three critical fruit growth
periods, we found that the SM60 was generally low, and accuracy was even worse as canopy
cover increased. There may be an increase in the amount of water required by the capillary
roots and canopy of kiwifruit during fruit expansion and maturity seasons. Moreover, the
complex vegetation cover on the underlying surface makes the canopy reflect less deep soil
moisture information. To achieve this, we will further explore empirical models such as
the Biswas model or HYDRUS-1D model in our subsequent study. Meanwhile, the model
could be updated to include shallow soil moisture retrieved by remote sensing in order to
get more accurate information on deeper soil moisture.

4.3. Research Limitations and Future Prospects

Multiple-sensor based on the UAV platform has the advantages of high resolution and
continuous monitoring, making it ideal for precision agriculture research and management.
The UAV platform, however, cannot be used for large-scale orchard monitoring because
of its limited working time and flight distance. As opposed to Sentinel-2, the Red-Edge
MX Dual used in this study has the same red-edge band. Thus, we can use them in a
further application to create a dynamic and continuous monitoring network that measures
root-zone SM at multiple scales based on mathematical modeling. Using UAV-borne
multispectral RS, we were able to estimate root-zone SM in the kiwifruit orchard. In
addition, results indicated that SM had a severe influence on spectral reflectance from
Red-Edge MX Dual RS data, and the CARI740 developed in this study has been involved in
developing the root-zone SM model. It can be seen that the red-edge bands based on UAV
MS have a potential for SM prediction. Therefore, we will further consider the participation
of different red edge bands in the calculation of VI and try to develop VIs that are more
suitable for kiwifruit SM.

According to our findings, VIs with high correlations with the shallow SM (10-30 cm)
varied in three critical fruit growth seasons, indicating a challenge in selecting VIs that can
accurately estimate physiological growth parameters for various stages of growth of the same
crop [67]. Moreover, a simultaneous increase and decrease in irrigation applied to the field
were observed in this study. Water storage in different parts of the kiwifruit at different stages
on the spectrum makes it difficult to identify the spectral characteristics of an element and
distinguish the reflectance effect that is sensitive. In order to further investigate the sensitive
spectral characteristics of soil water for kiwifruit, the water gradient is recommended to be set
while the other gradients remain constant in future research work.

5. Conclusions

Based on UAV-derived MS images of pure kiwi canopy, we compared the accuracy of
three ML algorithms with the first seven sensitive input VIs selected by the VIP method for
root-zone SM models on three critical fruit growth periods. The preliminary results lead to
the following conclusions:

Firstly, the VIP variable selection method was capable of efficiently reducing the
number of 42 VIs feature indices (R2 from 0.21 to 0.82) to less than 7 (R2 from 0.25 to 0.82)
while ensuring the accuracy of the SM model. Moreover, the sensitive VI associated with
SM during three key growth seasons was primarily CARI740, TCARI2, SAVI, OSAVI and
MSAVI, MTVI (MTVI1 and MTVI2), EVI (EVI1 and EVI3) and TVI index calculated by B4,
B6, B9, and B10.

Secondly, the accuracy of the shallow root-zone SM models (R2 0.65 to 0.82, RRMSE
0.02 to 0.03, MAE 0.20 to 0.54) was better than that of the deep root-zone SM models (the
accuracy in SM40 is greater than SM60, with Stage I > Stage II > Stage III).

Thirdly, according to the RF algorithm, the CARI740, MSAVI, MTVI1, and OSAVI2
were used as predictions in the SM10 model, with the best prediction effect at stage I
(R2 > 0.8, RRMSE −0.02). Furthermore, the proposed method to estimate SM produces
similar results at the SM20 and SM30, with R2, RMMSE, and MAE were 0.69–0.76, 0.02–0.03,
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0.32–0.50, respectively, which indicates that this approach may be more appropriate for
estimating SM20 and SM30 over different growth periods.

The results showed the excellent potential of adopting ML methods in UAV-based SM
estimation to help precision irrigation management. However, it is important to point out
that UAV platforms usually cannot be directly used by the growers since an expertized
background is required even if numerous UAV platforms were developed and were already
in use among academic communities. In this case, the proposed planted-by-planted spatial
mapping of root-zone SM estimation approach can be considered a great tool to upgrade
the toolbox of the growers in site-specific field management for the high spatiotemporal
resolution of SM maps. It is worth noting that the model can be operated by the growers
only if the model is scientifically set up and validated considering the on-site conditions of
the kiwi orchard.
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