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Abstract: Vertical structure is an important parameter not only for assessment of the naturalness
of a forest and several functional parameters, such as biodiversity or protection from avalanches
or rockfall, but also for estimating biomass/carbon content. This study analyses the options for
assessing vertical forest structure by using airborne (ALS) and spaceborne LiDAR data (GEDI) in
a mountainous near-natural forest in the Austrian Alps. Use of the GEDI waveform data (L1B) is
still heavily underexploited for vertical forest structure assessments. Two indicators for explaining
forest vertical structure are investigated in this study: foliage height diversity (FHD) and number of
layers (NoL). For estimation of NoL, two different approaches were tested: break-detection algorithm
(BDA) and expert-based assessment (EBA). The results showed that FHD can be used to separate
three structural classes; separability is only slightly better for ALS than for GEDI data on a 25 m
diameter plot level. For NoL, EBA clearly outperformed BDA in terms of overall accuracy (OA) by
almost 20%. A better OA for NoL was achieved using ALS (49.5%) rather than GEDI data (44.2%). In
general, OA is limited by difficult terrain and near-natural forests with high vertical structure. The
usability of waveform-based structure parameters is, nonetheless, promising and should be further
tested on larger areas, including managed forests and simpler stands.

Keywords: GEDI; forest structure; forest layers; LiDAR; spaceborne laser scanning

1. Introduction

Forests have become a focal point for their role in the global carbon cycle [1] in the frame
of climate change. The vertical structure of a forest is—along with its canopy height—a
significant parameter for assessing biomass [2] and, thus, also carbon content. In general,
the magnitude of a forest’s contribution as a carbon sink is not yet fully understood and
remains uncertain [3]. Therefore, attempts to better understand and map vertical forest
structure also contribute to improved carbon content modelling. Since the 1960s, forest
structure (also termed as diversity, heterogeneity or complexity [4]) has been discussed in
forest science as an important parameter for assessing temporal dynamics, such as gaps
and regeneration [5], for forest management [6] and biodiversity issues [7]. Anthropogenic
activities not only affect the role of the forests as carbon storage but are also a threat to
biodiversity [8]. Due to human-induced climate change, biodiversity is rapidly declining
and habitats are being destroyed [9,10]. In order to address all these effects on the ecosys-
tem, continuous spatial measurement frameworks for land cover, vegetation and forest
parameters are needed [11].

Early endeavours for quantifying forest variables—including forest structure—relied
mainly on in situ techniques, hence limiting the spatial and temporal extent of data. In-
troduction of remote sensing technologies moved beyond these constraints by enabling
transferability to the required resolution to detect changes in forest structures even over
large and remote areas. Several forest parameters are currently obtained by remote sensing
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methods in an operational manner, such as the main tree species or canopy cover—which
are available within Europe’s COPERNICUS program—understood as “high-resolution
layers” [12,13]. Three-dimensional parameters, such as canopy height, biomass content or
vertical structure, have until recently been limited to analysis of airborne laser scanning
(ALS), which is still costly in terms of acquisition and, therefore, limited in spatial coverage
and temporal updates. Only within the last two years and thanks to the availability of
spaceborne laser scanning (SLS) data has this situation changed, and large-area forest
canopy height maps have also been produced [14,15]. From past and existing spaceborne
laser scanners, such as Ice, Cloud, and Land Elevation Satellite (ICESAT), Cloud-Aerosol
LiDAR and Infrared Pathfinder Satellite Observation (CALIPSO), Atmospheric Dynamics
Mission-Aeolus (ADM-AEOLUS) and ICESAT-2, only the Global Ecosystem Dynamics
Investigation (GEDI) sensor is specifically designed for mapping vegetation and forest
parameters [16]. We, therefore, limit our analysis to GEDI data, although we are aware of
several papers having also used other SLS data for forest parameter assessments [17–19].
For GEDI, pre-launch calibration and validation studies employing simulated GEDI wave-
forms processed from ALS instruments show promising results and suggest that GEDI data
are well suited for capturing vegetation patterns and biomass products [20–23]. Since the
release of version 1 GEDI data, various studies have been published that assess accuracy of
GEDI data by evaluating ground elevation and canopy height estimates against ALS height
data [14,15,24,25]. These studies are in good agreement with each other and highlight the
applicability of GEDI data to forest structure investigations.

The basic ability of a spaceborne laser to analyse complex forest structures with dense
and multi-layered canopies enables not only canopy height and biomass estimations but
also provides new and valuable insights into forest structure and biodiversity [25,26]
and improves understanding of ecological functions [21]. From a literature review of
98 publicly available peer-reviewed studies, approximately two-thirds of the studies use
GEDI data for assessing canopy height and profile metrics (level 2) as well as biomass
estimates (level 4). From the remaining GEDI-related publications, only 30 made use of
L1B waveforms. Of these, eighteen focussed on simulated L1B waveforms, twelve used
real L1B data and one used both. Of these, most targeted the geolocation issue, e.g., by
analysing water bodies (four publications) and canopy height and/or making comparisons
with simulated waveforms. Dwiputra et al. [27] used waveforms to identify different
vegetation types, whereas Liu et al. [28] aimed to improve canopy height estimations by
employing waveform data. Nonetheless, geolocated waveforms (L1B) remain significantly
under-exploited for assessing forest structure. Our study aims to contribute to filling this
gap by using real L1B products and comparing them to ALS data for assessment of vertical
forest structure. However, this aim is hampered because “vertical structure” or “forest
structure” are rather ambiguous terms in forest science. The approaches to assess forest
structure can be divided into three groups. First, many foresters consider diameter size
distribution of trees (diameter at breast height—DBH) [29–31] as a parameter for defining
vertical structure. The DBH distribution cannot be measured by ALS or SLS as this is not
feasible from above. Only terrestrial manual measurements (with a measuring “kluppe”)
or terrestrial laser scanning can measure DBH directly [32,33].

The second group of approaches use the height distribution of individual trees [34–38]
to assess a forest’s structure. Dominant tree heights can be measured very accurately from
ALS data, while results show lower accuracies for suppressed trees, e.g., in near-natural
forests and/or complex stands [36,39–41].

Third, there are attempts to model the vertical structure not on an individual tree
level but using an area-based approach, often also based upon ALS data. Some of these
approaches use machine- or deep learning methods in a black-box approach [42,43]. Oth-
ers rely on simpler statistical features [36,40,44–46] or expert/rule-based classification
systems [37,47]. Among the latter, there is also a rather old approach called foliage height
diversity (FHD) [7], which has been implemented in the GEDI processing chain of L1B
data [21].
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In our study, we will answer the following three research questions:

1. How well are LiDAR data in general suitable for explaining vertical forest structure
and the number of layers (NoL) in a near-natural mountainous forest?

2. How well are GEDI data specifically suited for this purpose?
3. What waveform-based indicators are best suited for explaining vertical forest structure?

2. Materials and Methods
2.1. Materials
2.1.1. Study Area

The study area (see Figure 1) is located in the central region of Austria and covers
large parts of the National Park “Kalkalpen” forest. The park is located in the north-eastern
Limestone Alps, characterised by very steep slopes ranging from 385 to 1963 m in elevation
and a large shared area of forest and shrub vegetation cover (about 81% of the park) [48].
Selection of the study area is based upon three main reasons: first, availability of ALS
data in close temporal proximity (2018) with the available GEDI data (2019–2020), which
is necessary for comparison. The second reason is related to availability of old-growth
beech forests, which have been designated as UNESCO World Heritage sites [49]. These
forests, up to an elevation of 1450 m mainly beech and spruce–fir–beech forests, make up a
climax vegetation community [48] and are supposedly highly structured and, therefore, an
ideal testbed. Third, we want to test the usability of GEDI data in difficult, mountainous
conditions characterised by steep slopes, small-structured alpine topography and complex
terrain, and these characteristics are observed within the study area.
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Figure 1. Study area, the National Park Kalkalpen in the state of Upper Austria, Austria.

2.1.2. GEDI Data

The GEDI instrument is a space-borne LiDAR aboard the International Space Station,
acquiring pointwise 3D data between 51.6◦N and 51.6◦S since April 2019. The LiDAR
system is equipped with three lasers that are split into four beams and dithered into eight
tracks that are 600 m apart. At every 60 m along the track, the instrument collects data of
individual shots with a diameter of approximately 25 m on the ground. The delayed return
energy is used to calculate the raw waveform (Level 1A–L1A) of the footprint.

With information from GEDI’s GPS and star trackers, the raw waveforms are geolo-
cated and smoothed to form Level 1B data (L1B). Subsequently, they are processed as
higher-level products, such as canopy height and profile metrics (L2 and L3) and biomass
(L4) on footprint as well as on a gridded level. A detailed description of the data products
can be found in [16], and data can be accessed via the Land Processes Distributed Active
Archive Center (LP DAAC: https://lpdaac.usgs.gov/, accessed on 21 January 2023). In our
study, we used L1B and L2B data.

https://lpdaac.usgs.gov/
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L2B data provide information about a forest’s structure, such as canopy cover, plant
area index (PAI) and FHD. GEDI’s canopy cover is defined as “the percent of the ground
covered by the vertical projection of canopy material (i.e., leaves, branches and stems)” [50],
which is slightly different from the crown cover’s definition that is commonly used in
ALS data. Based on the canopy cover and the canopy’s directional gap probability (its
complement), the plant area index (PAI) is calculated. Furthermore, the PAI is used to
derive the FHD. A high FHD value indicates a more complex canopy structure [23].

2.1.3. ALS

ALS data were acquired on 21 May 2018 using an ultra-light airplane at a cruising
altitude of ca. 790 m above ground. The sensor is a RIEGL VQ580 with a point density
of >16 points/m2. Additionally, true-colour and near-infrared imagery were acquired
for visual comparison. Altogether, an area of approximately 4000 ha was covered by
50 flight lines.

2.2. Methods

The overall workflow used in this study is outlined in Figure 2. It comprises four
main steps: pre-processing, indicator calculation, reference data generation and, finally, an
evaluation of the results. Steps one to three are explained in the subsections of this chapter,
and results of the evaluation are provided in Chapter 3.
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Figure 2. Overall workflow used in this study (abbreviations: BDA = break detection algorithm;
EBA = expert-based assessment).

2.2.1. Pre-Processing

Direct georeferencing is carried out for ALS by using a GPS/IMU unit: Novatel
SPAN-FSAS [51]. Afterward, the resulting data were compared to existing data from a
previous region-wide ALS campaign to ensure location accuracy. For GEDI, the given plot
locations, as provided by the LP-DAAC were used in the initial step.

Furthermore, ALS point clouds are extracted for the given GEDI position in a 25 m
diameter circle. Additionally, discrete LiDAR returns per 1 m vertical height layer are
used to generate a “pseudo-waveform”. In full awareness of the difference, we use the
term “waveform” for both the real GEDI waveform and the ALS pseudo-waveform in
this publication. The comparison between the ALS waveform and the GEDI waveform,
in many cases, reveals significant differences in the vertical profile (see Figure A1b,d,f in
Appendix A). One potential reason for such differences is the geolocation of the GEDI
footprints. According to GEDI documentation, “GEDI uses its own Global Positioning
System (GPS), Inertial Measurement Unit (IMU), and information from three star trackers
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that permit GEDI to georeference each laser pulse to within 10 m (1 σ) (i.e. assuming a
distribution of geolocation errors whose mean is zero, and whose standard deviation is
10 m) on the Earth’s surface” [16]. The effects of this geolocation error have been studied
with respect to ground height [52], canopy height [52,53] and biomass [49,50]. It is evident
that the geolocation error is the highest in areas with strong topography [54] and in forests
with fragmented and heterogeneous canopies [53]. Both characteristics are present in
our study area. Therefore, the correlation method of Blair and Hofton [55] implemented
in the GEDI simulator [56] is used to test geolocation improvements. The basic idea
of this approach is to create simulated waveforms for each GEDI orbit intersecting the
ALS reference data. Subsequently, the offset that maximises the correlation between the
measured GEDI waveform and the simulated (ALS-based) waveform is applied to all
footprints of the corresponding orbit. The maximum deviation is set to 10 m in both x and
y directions based on the value given in [16].

Additionally, from a total of 9065 footprints, only the GEDI footprints fulfilling the
following requirements were included in the analysis. For each applied filter, the remaining
footprints are provided in brackets:

• Quality flag = 1 (4618);
• Waveforms with terrain height within accuracy limits. Due to the steep terrain, inaccu-

racies with respect to the terrain’s height occur. In order not to impact the analysis,
these outliers (>2*stdv) were discarded from further analysis (4174);

• Acquisition during leaf-on season (June–October 2019 and 2020) (2911);
• Degrade flag = 0 (2911);
• Data overlapping the ALS coverage (1734);
• Within areas, where no changes between 2018 and 2020 occurred (1725);
• Footprints, where GEDI or ALS estimate heights above ground of 50 m or more, are

removed to account for artefacts (e.g., from birds) (1692).

For the remaining 1692 GEDI footprints, we recalculated the continuous waveforms
of both ALS and GEDI into discrete 1 m height layers. Before moving on to indicator
calculations, only for GEDI data, the mean noise level (given as a ready-to-use value per
footprint in the L1B data) is removed by simply subtracting it from the amplitude values.

2.2.2. Calculation of Indicators for Vertical Forest Structure from Waveforms

For assessment of vertical forest structure, several indicators, such as canopy rugosity,
foliage height diversity (FHD) and the effective number of layers (NoLs), are used, e.g., by
Atkins et al. [57]. In our study, we evaluated two indicators: FHD and NoLs. FHD [7]
was originally deployed in terrestrial assessments of leaf areas (percentage of leaves that
obscure the view counted by obscured areas on white boards) [7]. These amounts are
further divided into layers and summed according to the following formula:

FHD = −Σi pi ∗ ln(pi) (1)

where pi is the vertical plant area index (PAI) profile in the ith layer, which is summed over
the height layers.

For comparability between GEDI and ALS, we calculate the FHD value based on
the amplitude per height layer instead of the PAI. The vertical extent of each layer is
set to 1 m. In the next step, the FHD for ALS data is calculated by utilising the discrete
returns per height layer since the PAI is not available for ALS data. Figure 3 depicts two
examples of GEDI (black line) and ALS (green bars) waveforms. For the FHD comparison,
three different values are used: FHD derived from the PAI provided in the L2B product
(“GEDI FHDL2B”), FHD calculated from 1 m vertical averaged amplitudes provided in
the L1B product (“GEDI FHDcalc”) and FHD calculated from the co-located ALS returns
(“ALSco FHD”).
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Figure 3. Example plots with GEDI waveforms (black) and ALS returns per height layer (green);
further noted are the FHD values from GEDI L2B, calculated from GEDI amplitude and calculated
from co-located ALS returns.

The second used indicator is the NoLs in a forest stand. The NoLs can be derived
from different algorithms. The first algorithm in our study is based on individual height
layers using a “Break Detection Algorithm” (BDA) [37] developed by Leiterer et al. (2015).
In order to apply it to GEDI data, targeted pre-processing is needed. To eliminate the
understorey vegetation, all data below 1 m above ground were omitted. Next, a threshold
(TH) is defined to transform the share of the amplitude to a binary system, where 0 indicates
an “empty” layer (share of amplitude below the threshold) and 1 indicates a “filled” layer
(share of amplitude above the threshold), as illustrated in Figure 4. TH is set to 5 in the
example shown in Figure 4. TH is defined flexibly per GEDI waveform as a percentage (P)
of the number of occupied height layers (NooL) in the respective GEDI waveform, and it is
calculated as follows.

TH =
P

NooL
(2)

To find the most suitable TH, values in a 0.1 interval from 0.1 to 1.5 were tested. In a
second step, outliers (Figure 4, indicated in red colour) are removed. Single isolated “filled”
or “empty” layers are eliminated by assigning them to their surrounding layer (Figure 4,
right). For example, if the height layers above and below an “empty” height layer (0) are
“filled” (1), then this layer is also set to be “filled”. Adjacent “filled” height layers represent
one vertical forest layer. Starting from the topmost “filled” height layer, which represents
the maximum canopy height, the number of vertical forest layers is counted.
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Figure 4. Processing steps to derive the NoLs from the relative frequency distribution of amplitude
per 1 m height layer in the BDA. In the vector in the middle of this figure, isolated “filled” or “empty”
layers marked in red colour are considered as outliers. These outliers are assigned the status of their
adjacent height layers before calculating the NoLs.

The second algorithm for deriving the NoLs was developed together with practical
foresters and termed “Expert-Based Assessment” (EBA). In practical forestry, experts would
consider a forest to be “one-layered”, “two-layered” or “multi-layered” depending on the
relative amount and height of trees in relation to the dominant height of the stand. The
dominant height can have various definitions [58]; here, we define it as the mean height of
the top 20% highest trees within an area [59]. If 70% of the treetops are in the layer above
5⁄6 of the dominant height (upper layer), the stand would be classified as “one-layered”
(see Figure 5a). A “two-layered” stand is identified when 30% to 70% of the treetops are
in the upper layer and another 30% of treetops are in a second layer. The height of this
second layer is irrelevant, but the vertical width of the height layer is a maximum of 2⁄6 of
the dominant height (see Figure 5b). All stands fulfilling neither of the conditions for “one-”
or “two-layered” are defined as “multi-layered”. This approach has already been used for
forest parameter assessments in previous projects [60]. In order to apply this approach
to GEDI data, we adapt it to work on the amplitude/return shares of the different height
layers rather than tree detections for both ALS and GEDI waveforms. Furthermore, instead
of the dominant height, we use the RH90, which shows a high correlation to the dominant
height (R2 = 0.92 using ALS). We also modify the threshold of the upper layer: instead of
70%, only 50% of the amplitude/returns need to be in the upper layer to form a one-layered
stand. This adaptation is made because the treetop approach working on a raster basis
usually omits trees in the understorey (see Figure 5). These trees are, however, part of
the GEDI waveform or the ALS returns. The same threshold for the upper layer would,
therefore, be biased.

2.2.3. Reference Data Generation

To acquire reference data for vertical forest structure and NoLs, vertical profiles
showing the GEDI amplitude waveform and the share of ALS returns in 1 m height intervals,
as illustrated in Figure 3, are generated for 190 randomly selected GEDI footprints. These
profiles, without showing any information on FHD or NoLs values, are used for unbiased
and blind interpretation. Some example profiles used as inputs for blind interpretation are
also shown in Appendix A—Figure A1. These profiles are visually interpreted to deduct
NoLs (one, two or multiple) and vertical structure (low, medium or high). Field visits are
used to train the visual interpreter in order to classify the waveforms.
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Figure 5. Schematic illustration of the original EBA approach based on individual detected treetops.
(a) is an example of a one-layered stand: 8 (72%) out of 11 detected treetops denoted as stars lie in the
upper 1 ⁄6 of the dominant height. (b) is an example of a two-layered stand: 5 (36%) out of 14 detected
treetops are in the upper 1 ⁄6 of the dominant height and 8 (57%) of the detected treetops reside in
another layer. This approach was adapted to work with amplitude/returns instead of treetops.

Low-structure plots are characterized by small height variability, usually for one- and
two-layered stands (ALS example (a) in Figure A1 in Appendix A). Highly structured plots
are characterized by strong height variability and can only be plots of two or more layers
(ALS example (b) in Figure A1 in Appendix A). Plots with a medium vertical structure are
one- or two-layered plots with notable height variability (ALS example (c) in Figure A1
in Appendix A). It should be mentioned that interpretation of ALS returns and GEDI
waveform is carried out separately. This is needed due to the—even after application
of the co-location procedure—still existing mismatch between GEDI and ALS data (see
Figure A1b,d,f in Appendix A).

3. Results
3.1. Results of Co-Location

The agreement in FHD between ALS and GEDI was analysed before (ALS FHD) and
after (ALSco FHD) applying the co-location procedure. Figure 6 shows the comparison
between FHD derived from ALS and from GEDI (GEDI FHDcalc before (a) and after (b)
co-location and GEDI FHDL2B before (c) and after (d) co-location). As expected, the overall
correlation is rather weak. In any case, the effect of the co-location procedure is visible by
an improvement in R2 from 0.19 to 0.23 and from 0.21 to 0.25, respectively. The specific
offset values used for all orbits are provided in Appendix B.
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Figure 6. ALS FHD and GEDI FHDcalc (a) before and (b) after the co-location, and ALS FHD and
GEDI FHDL2B (c) before and (d) after the co-location. For the statistical analysis, Python module
“statsmodels” is used.

3.2. Results for Vertical Forest Structure Assessment
3.2.1. Results for Indicator “FHD”

Comparison of the calculated FHD with the FHD of the L2B product shows an R2

of 0.76. This R2 value can be explained by different input data (amplitude data versus
PAI). It is noticeable that FHD values are substantially different even for plots with a
similar height layer profile of ALS returns and GEDI amplitudes (see Figure 3). The highest
value in Figure 3a is GEDI FHDL2B followed by GEDI FHDcalc with 3.11 and ALS FHD
with 2.87. In Figure 3b, GEDI FHDL2B has a value of 3.29; for GEDI FHDcalc, we obtain
3.51 and 2.89 for ALS FHD. In order to account for these differences, we assess all three
FHD values separately.

When comparing the results of the vertical structure’s interpretation with the FHD
values obtained, we observe some explanatory power both with GEDI and ALS as inputs
(see Figure 7). As expected, higher FHD values are typically related to more complex verti-
cal structured forests. However, the differentiation between low-, medium- and high-structured
forests is more distinct for ALS, with larger differences between class means (x¯high − x¯medium
= 0.27; x¯medium − x¯low = 0.63) than for GEDI (GEDI FHDcalc: x¯high − x¯medium = 0.20;
x¯medium − x¯low = 0.44; GEDI FHDL2B: x¯high − x¯medium = 0.39; x¯medium − x¯low = 0.16).
For ALS and GEDI FHDcalc, the difference in class means between high and medium classes
is less distinct than between medium and low classes. Interestingly, the results for GEDI
FHDL2B are inverse: here, the difference between high and medium classes is better than
between medium and low classes.



Remote Sens. 2023, 15, 664 10 of 16

Remote Sens. 2023, 15, x FOR PEER REVIEW 10 of 18 
 

 

FHDcalc, the difference in class means between high and medium classes is less distinct 

than between medium and low classes. Interestingly, the results for GEDI FHDL2B are in-

verse: here, the difference between high and medium classes is better than between me-

dium and low classes.  

Aside from the difference in class means, the variance per class is also important for 

class separability. The variance per class does not provide a clear result in terms of a fa-

vourable dataset. It is slightly higher for GEDI FHDcalc than for ALS when looking at the 

low and high-structure classes (see Figure 7). For the medium class, the variance is smaller 

for GEDI FHDcalc than for ALS FHD. The variability in GEDI FHDL2B is in general similar 

or slightly lower than for ALS. Note that the number of plots (n) per reference category is 

different as ALS and GEDI data are interpreted separately. Regardless, there is a clear 

difference between the three classes, suggesting usability of FHD for vertical forest struc-

ture estimation. 

Figure 7. (a) ALS FHD, (b) GEDI FHDcalc and (c) GEDI FHDL2B each vs. interpreted vertical structure 

(low, medium and high). 

3.2.2. Results for “Number of Layers” Indicator 

Calculation of the NoLs using BDA results in generally low overall accuracy (OA): 

All results, independent from the used TH value, show OAs that are below 30 % (see Fig-

ure 8). This is valid for both ALS and GEDI data. The highest OA for GEDI is obtained 

using a TH of 1.1 (OA 28%). The highest OA for ALS is reached for a TH of 0.4 (OA 26%). 

Figure 7. (a) ALS FHD, (b) GEDI FHDcalc and (c) GEDI FHDL2B each vs. interpreted vertical structure
(low, medium and high).

Aside from the difference in class means, the variance per class is also important
for class separability. The variance per class does not provide a clear result in terms of a
favourable dataset. It is slightly higher for GEDI FHDcalc than for ALS when looking at
the low and high-structure classes (see Figure 7). For the medium class, the variance is
smaller for GEDI FHDcalc than for ALS FHD. The variability in GEDI FHDL2B is in general
similar or slightly lower than for ALS. Note that the number of plots (n) per reference
category is different as ALS and GEDI data are interpreted separately. Regardless, there is
a clear difference between the three classes, suggesting usability of FHD for vertical forest
structure estimation.

3.2.2. Results for “Number of Layers” Indicator

Calculation of the NoLs using BDA results in generally low overall accuracy (OA): All
results, independent from the used TH value, show OAs that are below 30 % (see Figure 8).
This is valid for both ALS and GEDI data. The highest OA for GEDI is obtained using a TH
of 1.1 (OA 28%). The highest OA for ALS is reached for a TH of 0.4 (OA 26%).

The EBA results show much better OA values (ALS: 49.5%, GEDI: 44.2%) than BDA.
The main confusion for ALS-based EBA results is between two-layered and multi-layered
plots (see the confusion matrix in Table 1). For GEDI (Table 2), we can observe a general
overestimation of NoL, with very few plots considered as one-layered and instead classified
as two-layered. Similarly, many of the two-layered plots are classified as multi-layered.
This behaviour suggests a bias in the classification system or the GEDI data, which requires
further investigation.
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Table 1. Confusion matrix of EBA for NoL calculation, with ALS input data (UA = user accuracy;
PA = producer accuracy; OA = overall accuracy).

Classification
Class 1 2 3 Total PA (%)

Reference
1 24 9 11 45 53.3
2 9 18 39 66 27.3
3 6 22 52 80 73.6

Total 39 49 102 190
UA (%) 61.5 36.7 51.0 OA = 49.5

Table 2. Confusion matrix of EBA for NoL calculation, with GEDI input data (UA = user accuracy;
PA = producer accuracy; OA = overall accuracy).

Classification
Class 1 2 3 Total PA (%)

Reference
1 5 22 12 39 12.8
2 0 26 53 79 32.9
3 0 19 53 72 73.6

Total 5 67 118 190
UA (%) 100 38.8 44.9 OA = 44.2

4. Discussion

The accuracy of the results is dependent on several factors, e.g., the complexity of
the terrain, species composition and LiDAR point density. One main factor that has
been shown in many recent studies [24,52,61] is the terrain’s variability: steep slopes and
small-structured topographic landforms cannot be properly represented by the 25 m GEDI
waveform. Since ~96% of the GEDI plots in our study area are located at slopes steeper
than 15◦, we could not specifically analyse this effect.

We could, however, show that co-location improved our results by applying a maxi-
mum shift of 10 m in each direction (equivalent to 1 sigma). However, a sigma of 1 means
that 68% of the shifts are within 10 m and another 32% may be out of the 10 m range.
Table A1 in Appendix B also shows that, even for large offsets in each direction, the ob-
tained R2 is still low. Moreover, Shannon et al. (2022) [62] found that extending the
limitation from 10 m to 20 m improves the geolocation’s accuracy. This suggests that, for
even better co-location, a higher maximum offset should be considered.

For definition of vertical forest structure, uncertainty and many differences remain:
vertical forest structure may be represented by the NoL (with varying definitions), the
vertical distribution of tree heights (or stem diameters) or by the vertical distribution
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of plant material (biomass, leaf area, etc.). Existing indicators (such as FHD and NoL)
target different definitions and are, therefore, only partly comparable. The literature
shows some examples of vertical structure indicators successfully derived from ALS data.
Zimble et al. (2003) [36] only consider vertical structure as the horizontal variability of tree
heights; thus, the related accuracies are much better than in our study (e.g., 97% accuracy
for two structural classes in [36]). Wirth et al. (2009) emphasized the need to assess forest
structure both in horizontal and vertical directions [35] for definition of old-growth forests.
De Assis Barros (2019) [40] used the coefficient of variation (COV) of ALS-derived tree
heights as a structure proxy for horizontal structural variability (similar to [36]). He used
this proxy as one of the features for classification of different development stages; thus,
no accuracy for each proxy was reported, and we have no data to compare our results to.
For vertical (sub-canopy) variability, De Assis Barros (2019) used understory density as a
ratio between the ALS point density of the understory strata and ground return. This proxy
helped separate old-growth forests from other development stages in their study [40], but,
again, no individual accuracy is available for comparison. Compared to studies covering
all stages of stand development (e.g., [40]), our results are focussed mostly on old and
complex forests due to the characteristics of the national park. This is also represented in
the FHD distribution (Figure 6): most values are above 2.5, and values at the lower end of
the spectrum are rare. This fact reduces the stability of the regression and, to some extent,
also the informative value of our results.

Meyer et al. (2021) [30], also focussing on old-growth forests, mentioned stem diameter
distribution as a measure for vertical structure; however, this cannot be measured directly
from above. Therefore, dedicated stem diameter measurements on the ground would
be extremely helpful for better accuracy assessments and should be obtained for future
developments of this approach.

The results for the NoL of the two applied approaches show deviations in OA when
compared to previous studies. Leiterer et al. [37] achieved an OA of 69.2% for the same
three classes for the Swiss canton of Aargau compared to our OA of only 49.5%. However,
there are several important differences: first, they used a fixed threshold of 1%. Second, they
calculated the values on a 10x10 m grid cell. Third, their test area is located in moderate
terrain in the northern part of Switzerland. Fourth, the forests in the test area comprise
the full range of forest management from natural forests to highly intensive regimes with
silvicultural interventions. It must be noted that only 1% of the final map was classified as
multi-layered [37] compared to 42% of our reference plots. This can explain the deviation
in accuracy. It is also obvious that distinct layers, a typical feature for managed “age-class”
forests, are not as clear in a national park with near-natural forests. In terms of class
confusion, our results are fully in line with their findings [37]: most confusion occurred
between the double- and multi-layered canopy classes, especially for ALS.

Finally, we observed different behaviour of broadleaf- and coniferous-dominated
stands, in agreement with our field assessments. Due to the very small number of coniferous
stands, statistical analysis was not possible. However, the same effect was found by
Atkins et. al. [57], who suggested assessing structural parameters separately for broadleaf-
and coniferous-dominated forests.

5. Conclusions

In principle, both ALS and GEDI data are suitable for deriving forest structural
parameters such as NoL or FHD. However, due to the limited resolution of only one pulse
at about 25 m diameter, there are some limitations in GEDI data. The separability between
classes is slightly better when using ALS data for calculation of FHD. Comparing the
usability of FHD from L2B and performing calculations directly from the waveform, no
clear performance difference was found. For the NoL, ALS data are also better suited than
GEDI data (49.5% versus 44.2% OA). However, the overall difference at the plot level is not
as distinct as expected; thus, GEDI can be a very valuable dataset in areas where ALS data
are missing or outdated. Generally, the usability of waveform-based structure parameters
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is promising and should be further tested on larger areas, including managed forests and
simpler stands. Finally, the combination of FHD and NoL should be considered, as well as
development of alternative approaches, to leverage the full potential of LiDAR waveform
data for vertical forest structure assessments.
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Appendix B

The co-location tool resulted in the offsets given in Table A1 and subsequently applied
on the respective orbits.

Table A1. Offset values per orbit as applied in the GEDI co-location step.

Orbit No. Shift x Shift y R2

02056 02 −10.0 −10.0 −0.00013
02578 03 0 −10.0 −0.016344
02713 02 −6.0 9.0 0.765259
03143 03 9 9 0.14292
03372 03 1 3 0.780396
03507 02 −6.0 9.0 0.805535
04410 03 −6.0 −2.0 0.845933
05173 03 −5.0 6.0 0.623483
06119 03 −10.0 9.0 −0.011138
07705 03 9.0 −10.0 0.266957
07766 03 3.0 1.0 0.707449
08633 02 −2.0 −10.0 −0.000612
08694 02 9.0 −6.0 −0.00683
09093 03 8.0 1. 0.830865
10313 03 −7.0 0.0 −0.009003
13119 03 6.0 −1.0 0.330467
13180 03 3.0 −2.0 0.54763
13241 03 −10.0 −1.0 −0.021584
13879 02 −1.0 7.0 0.682199
13940 02 5.0 9.0 −0.008227
14001 02 −10 9.0 0.734022
15086 03 6.0 9.0 0.475214
15419 02 −2.0 0 0.871305
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