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Abstract: The coast of the East China Sea (ECS) is one of the regions most frequently affected by
harmful algal blooms in China. Remote sensing monitoring could assist in understanding the
mechanism of blooms and their associated environmental changes. Based on imagery from the
Second-Generation Global Imager (SGLI) conducted by Global Change Observation Mission-Climate
(GCOM-C) (Japan), the accuracy of satellite measurements was initially validated using matched
pairs of satellite and ground data relating to the ECS. Additionally, using SGLI data from the coast of
the ECS, we compared the applicability of three bloom extraction methods: spectral shape, red tide
index, and algal bloom ratio. With an RMSE of less than 25%, satellite data at 490 nm, 565 nm, and
670 nm showed good consistency with locally measured remote sensing reflectance data. However,
there was unexpected overestimation at 443 nm of SGLI data. By using a linear correction method,
the RMSE at 443 nm was decreased from 27% to 17%. Based on the linear corrected SGLI data, the
spectral shape at 490 nm was found to provide the most satisfactory results in separating bloom
and non-bloom waters among the three bloom detection methods. In addition, the capability in
harmful algae distinguished using SGLI data was discussed. Both of the Bloom Index method and
the green-red Spectral Slope method were found to be applicable for phytoplankton classification
using SGLI data. Overall, the SGLI data provided by GCOM-C are consistent with local data and can
be used to identify bloom water bodies in the ECS, thereby providing new satellite data to support
monitoring of bloom changes in the ECS.

Keywords: bloom detection; remote sensing; East China Sea; GCOM-C

1. Introduction

Anomalous aggregation of phytoplankton, known as a bloom event, has negative
impacts on the coastal fishing industry and marine ecosystems. According to previous
research, bloom frequency has increased in recent decades because of excess nutrients
input resulting from human activities [1–4]. The East China Sea (ECS), one of China’s
most important marginal seas, is abundant in fishery resources. Because of the interaction
of freshwater from the Yangtze River, the Taiwan Warm Current, the Kuroshio Current,
and monsoons, this region is favorable for growth of phytoplankton and is consequently
susceptible to occurrence of blooms [5,6]. In the past decade, there have been numerous
reports of Prorocentrum donghaiense blooms, which are known to have harmful impacts on
marine ecosystem health by causing mortality of fishes and other marine organisms [7–9].
Comprehensive and detailed monitoring, including both spatial and temporal distribution
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of blooms, can assist in understanding the occurrence and evolution of blooms and also
clarify the distribution characteristics of blooms in the ECS.

In general, bloom waters exhibit increased chlorophyll concentrations, with strong
reflectance peaks in the green and red wavebands, as well as considerable changes in
absorption and scattering properties [10–12]. Bloom detection methods based on remote
sensing techniques have, therefore, been established using the distinct remote sensing
reflectance Rrs(λ) characteristic of bloom waters. At present, there are several methods for
bloom detection using satellite imagery, including methods based on anomalous chloro-
phyll a concentration (Chl-a), Rrs(λ) spectrum variation, and the inherent optical properties
of blooms.

Based on anomalous Chl-a in bloom waters, Stumpf et al. (2003) [13] detected Karenia
brevis blooms in the Gulf of Mexico using Chl-a data derived from SeaWiFS; Sun et al.
(2012) [14] extracted blooms along the ECS coast using MODIS data by comparing the
Chl-a with the monthly averaged value; He et al. (2013) [1] explored the long-term bloom
changes in the ECS using satellite-derived Chl-a data with a threshold of 10µg/L. However,
Chl-a-based approaches remain challenging in coastal regions because satellite estimations
of Chl-a are often overestimates because of high levels of resuspended sediments and
colored dissolved organic matter in nearshore areas [15,16]. Further, these approaches may
fail if the phytoplankton cells have a low Chl-a content. Consequently, when using Chl-a as
a bloom indicator, false-positive detections may occur in coastal regions.

Other studies have been conducted that directly apply the Rrs(λ) spectrum rather
than the satellite-derived Chl-a. Lou et al. (2014) [17] developed an improved red tide index
(RI) for bloom detection in ECS by utilizing Geostationary Ocean Color Imager (GOCI)
imagery; Tao et al. (2015) [18] successfully extracted P. donghaiense and diatom bloom
waters in the ECS using the algal bloom ratio (Rab) with Moderate Resolution Imaging
Spectroradiometer (MODIS) satellite data; Shin et al. (2018) [19] extracted Margalefidinium
bloom waters by calculating the spectral slope change at 490 nm and successfully applied
to GOCI, Sentinel-3 Ocean, Land Color Instrument (OLCI), and Landsat Operational Land
Imager (OLI) data. Other algorithms also detect bloom species by utilizing the inherent
optical features of phytoplankton. Shang et al. (2014) [11] distinguished P. donghaiense
and diatom blooms in the ECS using MODIS data by taking advantage of the higher
absorption coefficient at 443 nm in P. donghaiense bloom waters; Cannizzaro et al. (2008) [20]
detected Karenia brevis blooms in the Gulf of Mexico using the lower particle backscattering
signal of bloom waters on MODIS imagery; Shen et al. (2019) [9] used Medium Resolution
Imaging Spectrometer (MERIS) imagery to differentiate P. donghaiense and diatom blooms by
analyzing the absorption spectrum of algae species at green–red bands; Qi et al. (2019) [21]
detected Noctiluca scintillans blooms in the ECS based on its distinctive absorption and
scattering properties using MODIS data from 2000 to 2017.

In summary, various approaches based on specific ocean color satellites have been
developed. However, applicability of different bloom identification methods varies across
study regions, as does efficiency of one bloom extraction approach on a different sensor.
As a result, it is necessary to validate and analyze input threshold values and extraction
results using historical field bloom data when applied on different satellites.

In December 2017, Japan launched the Global Change Observation Mission-Climate
(GCOM-C) satellite with the Second-Generation Global Imager (SGLI) sensor, which pro-
vides spectral data in 19 channels ranging from near-ultraviolet to thermal infrared (380
nm–12 m) with a bandwidth of 10 nm and a temporal resolution of 1–2 days. The visible
bands are 412 nm, 443 nm, 490 nm, 530 nm, 565 nm, and 670 nm, respectively. It is known
that various phytoplankton have distinct spectral differences in the blue–green bands of
Rrs(λ); thus, species such as diatoms or dinoflagellates can be differentiated based on
spectral morphology of satellite Rrs(λ) [12,22,23]. Therefore, inclusion of a band at 530 nm
is critical for bloom monitoring and algae species classification.

In this study, we evaluated the SGLI data for detecting blooms along the coast of the
ECS with three objectives. The first task was to validate satellite Rrs(λ) data by comparing
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them to in situ measured Rrs(λ) data because accuracy of satellite data is crucial to reliability
of bloom detection results. The second objective was to evaluate the applicability of bloom
extraction using SGLI data by comparing various bloom detection methods. On this basis,
the effect of different remote sensing techniques for distinguishing harmful algae in the
ECS based on SGLI images was also discussed.

2. Materials and Methods
2.1. Study Area and Bloom Records

The study area covers the northwestern part of the East China Sea, including the
mouth of the Yangtze River, Hangzhou Bay, and Zhejiang Coast (27◦N–32◦N, 120◦E–
123◦E) (see Figure 1). The study area is located in a subtropical region with frequent
monsoon activities, abundant precipitation, and temperature and humidity conditions that
make it a "high-risk" location for bloom disasters. Since 2011, outbreaks of P. donghaiense
bloom have occurred frequently along the ECS coast. The deterioration of water quality
and the decrease of dissolved oxygen in the water during bloom periods have seriously
affected the coastal ecological health. In this study, bloom records for the study area from
2019 to 2020 were collected from the Wenzhou Marine Environmental Monitoring Center
Station of State Oceanic Administration (China) and the China Marine Disaster Bulletin
(https://www.nmdis.org.cn/hygb/zghyzhgb/, accessed on 18 January 2018, in Chinese).
The bloom records were used as the ground truth for comparison of bloom detection
methods. The data include information such as bloom location, occurrence time, and
algal species (Table 1). As a result of a lack of in situ measured Rrs(λ) data for bloom
waters, satellite Rrs(λ) was matched with the bloom locations to assess the performance of
the bloom detection methods. Details regarding the matching methods can be found in
Section 2.3.
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Table 1. East China Sea summer bloom events 2019–2021.

Data Usage Date Longitude * Latitude * Species

Harmful algae
discrimination

122.12 29
121.12 27.47 Prorocentrum donghaiense

2019/5/24 121.24 27.72
122.57 31.67 Skeletonema spp.
121.69 28.11

Bloom detection 2020/4/29 121.08 27.46 Prorocentrum donghaiense
122.12 29.09

Bloom detection
121.04 27.46 Prorocentrum donghaiense

2020/5/13 120.69 27.36
Bloom detection 2020/5/17 120.59 27.26 Prorocentrum donghaiense
Harmful algae
discrimination 2021/6/7 120.58 27.21 Prorocentrum donghaiense

121.22 27.74
* Note that longitude and latitude indicate the center location of bloom occurrences.

2.2. In Situ Rrs(λ)

From September 2019 to September 2021, in situ measured Rrs(λ) data were collected
from the Dongou Ocean Observing Platform (27.675◦N, 121.355◦E, indicated by a red star
in Figure 1). The observation platform was constructed as part of the Dongou Comprehen-
sive Ocean Observation Platform Project, which was managed by the Wenzhou Marine
Environment Monitoring Center of the State Oceanic Administration (China). The observa-
tion platform combines the functions of marine observation, instrument experiments, and
scientific research. The implementation of the platform is significant in terms of improving
observation ability relating to marine hazards and providing comprehensive coverage of
major marine disasters along the ECS.

The offshore observation platform employs a Sea-Viewing Wide Field-of-View Sensor
Photometer Revision for Incident Surface Measurements (SeaPRISM) autonomous mea-
surement system, with measurements every 30 min from 8:00 am to 4:00 pm each day. The
system collects radiometric data from the water surface and sky. After processing to obtain
the normalized water-leaving radiance Lwn, it is divided by the solar irradiance (F0) in the
corresponding band to obtain the remote sensing reflectance Rrs(λ). The SeaPRISM system
comprises 11 upper spectrum observation channels ranging from 400 nm to 1020 nm. To
assess the accuracy of satellite GCOM-C, local measured Rrs(λ) data at the central wave-
lengths of 412 nm, 443 nm, 490 nm, 560 nm, and 667 nm were collected corresponding with
the bands of SGLI data.

2.3. SGLI Imagery Processing

The purpose of the Global Change Observation Mission-Climate (GCOM-C) project is
to conduct long-term worldwide observations of the Earth’s environment. The GCOM-C is
expected to play an important role in monitoring both global water circulation and climate
change from space. The Second-Generation Global Imager (SGLI) carried on the GCOM-C
conducts observations related to land, ocean, cryosphere, atmosphere, and so on (details
of SGLI data are summarized in Table 2). Of the SGLI visible channels, 490 nm, 565 nm,
and 670 nm are high signal-to-noise channels for retrieval of ocean color variables, such as
Chl-a, total suspended matter, and gelbstoff [24].

Table 2. Main parameters of SGLI L2 in visible bands provided by the satellite GCOM-C.

Data Level Bands Spatial
Resolution

Observation
Time Swath

SGLI Level 2
412 nm, 443 nm,
490 nm, 530 nm,
560 nm, 670 nm

250 m 2 : 00–3 : 00 UTC 1150 km
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The SGLI provides three levels of data: L1, L2, and L3. Among them, L2 and L3 can
provide radiometer products with a spatial resolution of 250 m, and ocean water color
product data with a spatial resolution of 1 km, respectively. The SGLI products were
downloaded via FTP from the Satellite Monitoring for Environmental Studies (JASMES)
data center of the Japan Aerospace Exploration Agency (ftp.gportal.jaxa.jp, accessed on 18
January 2018).

Specifically, the L2 data contain three radiometer products: normalized water leaving
radiance nLw at 380–670 nm, aerosol optical thickness (AOT) at 670–865 nm, and pho-
tosynthetically available radiation (PAR). The SGLI ocean color atmospheric correction
algorithm is basically same as those of MODIS and VIIRS [25] (the details could be checked
at https://suzaku.eorc.jaxa.jp/GCOM_C/data/, accessed on 18 January 2018). Specifically,
the nLw is derived by correcting the directional dependency of in-water and water-surface
reflectance using the Look Up Table (LUT) developed by Morel and Maritorena (2001) [26].
In the L3 data, the satellite Chl-a product was derived using the OCx algorithm with
an empirical exponential power algorithm for the remote sensing reflectance ratio in the
blue–green band (details of SGLI Chl-a retrieval can be found in Murakami, 2020 [27]).

To obtain the satellite Rrs(λ), the nLw data in L2 were converted to Rrs(λ) using the
following Equation (1):

Rrs(λi) = DN × Rrs_slope(λi) + Rrs_o f f set(λi) (1)

Here, Rrs(λi) denotes the remote sensing reflectance of band i; DN denotes the nLw
value; Rrs_slope(λi) and Rrs_o f f set(λi) denote the slope and intercept, respectively, when
transferring the nLw value to satellite Rrs(λ) of band i. The conversion parameters for the
different bands can be found in the SGLI attributes file.

The SGLI satellite images obtained in this study were divided into two parts. The first
part of the data was used to verify the satellite Rrs(λ) accuracy, and the second part was
used to compare the effectiveness of bloom detection methods in the ECS.

The first part of the satellite data was chosen based on the in situ measured Rrs(λ) by
Dongou Observation Platform with a time window of ±1 h. Because the spatial reference
of the original SGLI L2 images is a user-defined geographic coordinate system, it cannot be
spatially matched with the local measured Rrs(λ) data. Therefore, the original image data
were converted to a projection of equal longitude and latitude with WGS84 using MATLAB
2021b. In addition, the SGLI data were checked using the satellite flag attribute data to
eliminate abnormal or invalid pixels (conditions such as haze cover, atmospheric correction
errors, etc.). Then, the nearest neighbor pixels were selected to be matched with the local
Rrs(λ) data using a 3×3 pixels window. The pixel closest to the target location was chosen
if there were invalid satellite pixels in the local measurement. Finally, 32 pairs of satellite
Rrs(λ) data were matched with the local observations for the satellite Rrs(λ) accuracy
assessment. To evaluate the accuracy of SGLI Rrs(λ), the coefficient of determination
(R2), root mean square error (RMSE), and mean absolute percentage error (MAPE) were
calculated. R2 was used to measure the consistency of variation between satellite data and
local measured data; RMSE was used to evaluate the uncertainty of satellite data; MAPE
was used to evaluate the deviation of satellite data from local measured data. R2 was
obtained by linear regression from the matched pairs of satellite and in situ measured data.
The RMSE and MAPE were defined as follows:

RMSE =

√√√√ N

∑
i=1

(ysatellite − yin−situ)
2

N
(2)

MAPE =
100%

N

N

∑
i=1

∣∣∣∣ysatellite − yin−situ
yin−situ

∣∣∣∣ (3)

ftp.gportal.jaxa.jp
https://suzaku.eorc.jaxa.jp/GCOM_C/data/
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where ysatellite and yin−situ denote the satellite-derived and local measured Rrs(λ) data,
respectively. N represents the number of matched pairs.

For the comparison of bloom detection methods, another set of SGLI L2 images were
processed to collect the satellite Rrs(λ) during local bloom surveys in 2020 (Table 1). The
SGLI L2 Rrs(λ) data were matched with the bloom occurrence locations using a time
window of ±2 h. Finally, five pairs of matched Rrs(λ) from P. Donghaiense bloom locations
were obtained (from four SGLI images). In addition, four pairs of satellite Rrs(λ) data
on non-bloom days (14 April 2020) were chosen to assess the ability of bloom detection
methods to differentiate bloom waters from turbid or clear waters. To analyze the spatial
distribution extracted by different bloom detection methods, three additional SGLI images
were also processed using the Rrs(λ) conversion method mentioned above (including SGLI
images on 24 May 2019; 29 April 2020; 7 June 2021).

2.4. Bloom Detection Methods

Algal blooms are commonly accompanied by accumulation of pigments, resulting in
strong absorption in the range of blue to green bands. In contrast, turbid water scatters
light at all visible bands, whereas clear water absorbs light at all wavebands [28,29]. These
features enable detection of bloom waters via satellite Rrs(λ). In this study, three existing
approaches, the spectral shape (SS) algorithms [30], the red tide index (RI) [17], and the
algal bloom ratio (Rab) [18], were compared for their ability to detect blooms using SGLI
data. The SS algorithms are defined methods as shown below:

Spectral Shape (SS) = Rrs(λ)− Rrs
(
λ−)− (Rrs

(
λ+
)
− Rrs

(
λ−))× (λ − λ−)

(λ+ − λ−)
(4)

where λ denotes the position of the central band; λ− and λ+ denote the positions of the
two bands closest to the central band; and Rrs(λ), Rrs(λ−), and Rrs(λ+) correspond to the
remotely sensed reflectance on band positions. Based on the spectral characteristics of the
SGLI data in the blue–green band, calculation of spectral shapes was performed on 490 nm
and 530 nm. A pixel was flagged as bloom water when SS(490) < 0 or SS(530) < 0.

The RI and Rab are defined by the satellite Rrs(λ) in the blue and green bands as follows:

RI =
Rrs(550)− Rrs(443)
Rrs(490)− Rrs(443)

(5)

Rab =
Rrs(550)
Rrs(531)

(6)

where Rrs(443), Rrs(490), Rrs(531), and Rrs(550) denote the remote sensing reflectance at
443 nm, 490 nm, 530 nm, and 550 nm of satellite data, respectively. It should be noted that
Rrs(565) and Rrs(530) were used instead of Rrs(550) and Rrs(530) to match the wavebands
in SGLI data. A pixel was flagged as bloom water when RI > 2.8 or Rab > 1.25 [17,18].
Furthermore, the Rab algorithm excluded turbid water by judging the distribution range of
the green band as follows: (1) if Rrs(555) < 0.014 sr−1, the Rab is calculated to determine the
location of blooms; (2) if Rrs(555) > 0.014 sr−1, it is directly flagged as turbid water. Because
SGLI lacks the 555 nm band, the Rrs(555) was replaced by Rrs(565) from the SGLI data.

Following the comparison of bloom detection methods, species identification of P.
donghaiense and diatom blooms using SGLI data were investigated using the bloom index
(BI) and a green-red spectral shape (Rslope) algorithms (developed by Shang et al. (2014) [11]
and Shen et al. (2019) [9], respectively). The algorithms were described as follows:

(1) If 0 < BI = (Rrs(488)−Rrs(443))/(488−443)
(Rrs(555)−Rrs(531))/(555−531) < 0.3, the pixel was classified as P. donghaiense

bloom water or diatom bloom water.
(2) If Rslope = tan−1(100 ×

(
1 −

(
Rrs(667)
Rrs(550)

))
/(667 − 550) > 0.4, the pixel was classified

as P. donghaiense bloom water or diatom bloom water.
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Note that the Rrs(488), Rrs(531), Rrs(555), and Rrs(667) in the equations of BI and
Rslope were replaced as Rrs(490), Rrs(530), Rrs(565), and Rrs(670), respectively. The BI
method was developed to describe the steep slope of Rrs(λ) in the blue–green bands
based on the strong pigment absorption of P. donghaiense bloom waters. Satellite pixels
with a BI range of 0–0.3 were classified as P. donghaiense bloom waters. The Rslope was
calculated to represent the Rrs(λ) variation in spectral morphology in the green–red band,
and a pixel with Rslope > 0.4 was considered to have a high probability of P. donghaiense
bloom occurrence.

3. Results
3.1. Validation of SGLI Rrs(λ)

Figure 2 shows the performance of SGLI Rrs(λ) data compared with local measure-
ments. The accuracy of satellite Rrs(λ) varied across bands. The lowest R2 was found at
412 nm and the highest at 670 nm. The short bands of 41 nm and 443 nm were significantly
overestimated, whereas the SGLI data at 490 nm, 565 nm, and 670 nm showed a better
correlation with in situ Rrs(λ), with the data concentrated at the 1:1 line. The MAPE in each
band was 33.01% (412 nm), 27.3% (443 nm), 18.02% (490 nm), 24.26% (565 nm), and 20.67%
(670 nm), respectively (Table 3). Because the 443 nm band is important for determining
bloom waters when using the bloom detection methods, as mentioned in Section 2.4, the
SGLI Rrs(λ) at this band was further corrected using a linear correction method based on
in situ Rrs(λ) measurement.
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Figure 2. Comparison of in situ measured Rrs(λ) with SGLI-derived Rrs(λ).

Table 3. Statistics of Rrs(λ) measurement for in situ and SGLI data. The parameters include R2,
RMSE, and MAPE.

Bands (nm) R2 RMSE (sr−1) MAPE

412 0.39 2.1×10−3 33.01%
443 0.56 2.3×10−3 27.3%
490 0.61 2.9×10−3 18.02%
530 - - -
565 0.74 4.7×10−5 24.26%
670 0.84 8.4×10−4 20.67%

Because there was a good correlation at 565 nm between satellite Rrs(λ) and in situ
data (as shown in Table 3), satellite Rrs(412) was rebuilt using the linear relationship
between 412 nm and 565 nm from local measurements. Thus, the error of satellite Rrs(412)
could be calculated as the difference between linear retrieved Rrs(412) and satellite Rrs(412).
Then, the error of satellite Rrs(443) could be calculated from the linear function between
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412 nm and 443 nm. In detail, the linear corrected reflectance at 412 nm was obtained
as follows:

RrsLC (412) = 0.3811 × RrsSGLI (565) (7)

Here, RrsLC (412) denotes the linearly corrected remote sensing reflectance at 412 nm;
RrsSGLI (565) denotes the remote sensing reflectance of SGLI satellite data at 565 nm. The
parameter 0.3811 is empirically derived from the linear relationship between in situ Rrs(412)
and Rrs(565). The remote sensing reflectance at 443 nm is then rectified by the corrected
RrsLC (412) as:

Rrs_LC(443) = Rrs_SGLI (443) + (Rrs_LC(412)− Rrs−SGLI(412))× 565 − 443
565 − 412

(8)

Here, Rrs_LC(443) denotes the corrected SGLI Rrs(443); Rrs_LC(412) and Rrs−SGLI(412)
denote the linear corrected Rrs(412) and the original satellite Rrs(412), respectively. By
Figure 3, it was shown that the overestimation of SGLI Rrs(443) is suppressed after linear
correction. The MAPE is reduced from 27.3% to 17.99%, and the RMSE is reduced from
2.3 × 10−3 to 8.7 × 10−5. It should be noted that the observation platform is located near
the area where bloom occurs frequently, and some of the matched data were acquired
during the bloom period. Therefore, it is believed that this linear correction method is also
suitable for correction of SGLI Rrs(443) for bloom waters. The corrected SGLI Rrs(443)
was then used in place of the original data to analyze the performance of bloom detection
methods in the following step.
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Figure 3. (a) Examples of SGLI Rrs linear correction in the short bands. (b) Comparison between
original SGLI Rrs (443) and linear corrected SGLI Rrs (443). The solid and dotted black lines in
(a) represent the spectrum of original and corrected SGLI Rrs(443), respectively. The hollow and solid
black points in (b) indicate the value of SGLI Rrs(443) before and after linear correction, respectively.

3.2. Bloom Detection Based on Matched Pairs

Figure 4 depicts the satellite spectrum of bloom waters obtained through in situ
matching in the summer of 2020. For comparison, the Rrs(λ) spectra of turbid and clear
waters extracted on a non-bloom day (14 April 2020) were also shown. It can be clearly seen
that the bloom water body exhibits a distinct Rrs(λ) spectrum when compared with turbid
water and clean water. First, the Rrs(λ) of bloom waters demonstrated obvious absorption
characteristics in the short bands of 443 nm and 490 nm, as well as a clear reflection peak
at 565 nm, which is consistent with the bloom spectral curves measured in the ECS [9,11].
Although turbid waters also have reflectance peaks in the green waveband, they could be
differentiated from the bloom waters by limiting the Rrs(λ) range of green peaks. On the
other hand, the reflectance peaks of clear waters are mainly located in the blue bands, and
the spectrum reflectance gradually decreases with increasing wavelength.
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Figure 4. Satellite Rrs(λ) of match-up pairs with local bloom records. The orange lines indicate
values corresponding to bloom waters, whereas blue lines and gray lines represent clear and turbid
waters, respectively.

Figure 5 shows the scatterplots of the three bloom extraction methods obtained by
local matches, which were derived from the satellite Rrs(λ) data in Figure 4. Even though
the SGLI satellite reflectance data are in good agreement with the ground observations
after linear correction, the bloom detection methods calculated by satellite reflectance did
show some variability. In terms of spectral shape, SS(490) and SS(530) (Figure 5a,b), a
cut-off line centered on 0 can effectively distinguish the bloom and clear waters. Although
turbid waters also showed negative SS(490) values, they can be differentiated from bloom
waters by limiting the range of Rrs(565). In terms of the Rab results, both clear and turbid
waters exhibited lower Rab than bloom waters. Most of the bloom waters showed values
of Rab > 1.25, which were consistent with the results in Tao et al. (2015) [18]. In contrast,
the RI detection results were insufficient for bloom detection. Although previous studies
demonstrated that a threshold of RI > 2.8 was useful for detecting bloom in the ECS [17,23],
the scatterplot of RI in Figure 5d shows two outliers from bloom waters with an RI < 0.
Although the overestimation at Rrs(443) of SGLI data has been corrected using the linear
correction method, there are still uncertainties at short bands, resulting in negative RI values.
In conclusion, the scatterplots obtained by matched pairs demonstrated that the spectral
shape method and the Rab method can achieve better extraction results for bloom waters
than the RI method. The success can be attributed to the steeper slope between 430 nm
and 565 nm caused by pigment absorption by phytoplankton. In addition, a threshold of
Rrs(565) is important for differentiation between turbid water and bloom water.

3.3. Bloom Detection Based on SGLI Images

To further assess the performance of bloom detection methods, the SGLI image from
29 April 2020 was selected as an example to compare the spatial distribution characteristics
extracted by the different bloom detection methods. Figure 6 shows the SGLI false-color
composite image and its corresponding SGLI Chl-a distribution map on 29 April 2020. The
nearshore waters of the Zhejiang Coast exhibited higher Chl-a than other areas, which
corresponded to the locations of bloom observations.
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Figure 5. Scatterplots of different water types indicated by (a) SS(490), (b) SS(530), (c) Rab, and
(d) RI. The data were derived from the satellite Rrs(λ) in Figure 4. The horizontal black dotted lines
represent (a) SS(490) = 0, (b) SS(530) = 0, (c) Rab = 1.25, and (d) RI = 2.8. The vertical broken lines
represent Rrs(565) = 0.0014 sr−1.
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Figure 6. SGLI images of (a) false RGB image and (b) satellite Chl-a map on 29 April 2020. The
highlighted circles indicate the location of Prorocentrum donghaiense blooms.

Figure 7a,b illustrates the bloom regions estimated by SS(490) < 0 and SS(530) < 0,
respectively. The Zhejiang Coast region had the lowest value of SS (490) in Figure 7a. In
contrast, the offshore region had a relatively high SS(490) of around zero. Observations
of local blooms were matched with the lowest SS(490) area. Although the SS(530) map
also displays the confirmed bloom area with the lowest value of SS(530), negative SS(530)
values of −0.001 were also found in the eastern offshore of Yangtze River Estuary, where
blooms were not observed.
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Figure 7. Bloom extraction maps using the methods: (a) SS(490) < 0; (b) SS(530) < 0; (c) Rab > 1.25;
and (d) RI > 2.8 from the SGLI image on 29 April 2020. Note that all the bloom pixels were assessed
using the criteria of Rrs(565) < 0.014 sr−1.

The regional distribution of RI > 2.8 is illustrated in Figure 7c. Consistent with the local
observations, the majority of Zhejiang Coast regions exhibited somewhat higher values
compared to offshore regions. However, in the regions between 27◦N and 27.5◦N, RI values
were unexpectedly high where bloom events were not reported in the summer of 2020.
In comparison with Figure 6a, this region was covered by thin clouds, which may have
impacted the accuracy of atmospheric correction. Although the pixels in this region had
RI > 2.8, additional data checking indicated that there were extremely low values in the
blue bands here, which were substantially responsible for the unexpected high RI values.
Consequently, it is deduced that the RI method cannot detect bloom waters accurately
using SGLI data when there is cloud coverage.

The spatial distribution of blooms using Rab > 1.25 was comparable with SS(530) and
RI. However, the highest Rab values were not detected in local observations but rather in
the offshore region, where no bloom events were reported. Since there is good consistence
of Rrs(565) between in situ and satellite data, the uncertainties of Rrs(530) were thought
to be responsible for false-positive bloom detection results in the offshore region. Because
there is no band of 530 nm for the local measurement, the SGLI Rrs(530) was compared
with MODIS Rrs(531) on the same day (not shown here). It is found that there was notable
underestimation in the offshore region at 530 nm on the observation day, which may,
therefore, account for the high Rab values in the area. Therefore, it can be concluded that
the Rab method is inadequate for identification of blooms when using SGLI data unless the
uncertainties at 530 nm are appropriately addressed.

Combining the results from Figures 5 and 7, the SS(490) shows the most satisfactory
separation between confirmed bloom waters and non-bloom waters, with a threshold of
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−0.0005. To further evaluate the efficacy of the refined SS(490) on SGLI images for ECS
bloom identification, satellite images acquired on 24 May 2019 and 7 June 2021 were used
(Figure 8). It was found that the SS(490) detected blooms effectively on these two bloom
days. Furthermore, the enhanced SS(490) method can accurately extract even the extremely
nearshore blooms, as shown in Figure 8b.
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method. The areas indicated by the rectangular polygon and the highlighted circles are the main
bloom occurrence locations provided by bloom reports from the China Marine Disaster Bulletin.

3.4. Discrimination of Harmful Bloom Species

The effectiveness of the BI and Rslope algorithm in algal species classification was
evaluated based on the bloom detection results for 24 May 2019 and 7 June 2021, as
shown in Figure 9. Blooms of P. donghaiense and diatoms both occurred on 24 May 2019,
whereas only P. donghaiense blooms were reported on 7 June 2021. According to Shang
et al. (2014) [11], the MODIS-derived BI yields reliable results for distinguishing diatom
and P. donghaiense blooms. It was found that the BI of diatom bloom waters was never
below 0.3, whereas the BI of bloom waters dominated by P. donghaiense was generally below
0.3. Differences in phytoplankton absorption and backscattering are probably responsible
for the discrepancy in BI values between the two algae species. Figure 9a,b demonstrate
that the P. donghaiense bloom zone had a low BI value, whereas pixels with high BI values
were detected in the region of the Yangtze River Estuary where diatom bloom occurred. In
contrast with the classification threshold identified by Shang et al. (2014) [11], classification
of diatom and P. donghaiense bloom waters was generally separated by a BI threshold of 0.5
on SGLI images.
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Figure 9. SGLI-derived (a,b) bloom index (BI) map based on the bloom detection results in Figure 8a,b,
respectively; and (c,d) Rslope map based on the bloom detection results in Figure 8a,b, respectively.
The black circles and rectangles represent the location of diatom and Prorocentrum donghaiense
blooms, respectively.

It Is also possible to classify d”atom’ and P. donghaiense using the Rslope approach.
Previous studies have shown that P. donghaiense bloom waters have a steeper Rslope than
diatoms in the green–red bands in local measured Rrs(λ), which assists differentiation
between diatom and P. donghaiense blooms. However, in the study by Shen et al. (2019) [9],
it was found that the difference in Rslope between P. donghaiense and diatoms might be
suppressed when the red band was far from the green band. Nevertheless, the Rslope
algorithm performed well on SGLI data for identifying harmful algae. Despite the fact that
the bands in Rslope calculation using SGLI data differed from those of Shen et al. (2019) [9],
pixels with Rslope > 1.2 were discovered in the region of P. donghaiense bloom waters. In
contrast, the bloom area of diatoms exhibited lower Rslope values.

4. Discussion

In this study, three kinds of bloom detection algorithms were compared to explore
their ability in bloom extraction on SGLI data along the ECS coast. Bloom detection results
from local match-up pairs and SGLI imagery showed that the SS(490) outperformed the the
SS(530), Rab, and RI methods. The reasons for the unsatisfactory bloom detection results
could be different among the methods.

Figure 10 depicts the in situ Rrs(λ) associated with P. donghaiense blooms (provided
by the data in [18]) and the Rrs(λ) extracted spectrum from the SGLI image on 29 April
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2020. It is known that outbreaks of bloom are often accompanied by an increase in pigment
concentration, resulting in a reflectance valley in the blue–green band range. Such a feature
is indicated by a negative SS(490) or SS(530) value in the spectrum shape method. Although
the SS(530) could detect bloom by the local match-up pairs, an unexpected bloom area was
found in the offshore region by SGLI image (Figure 7b). Uncertainties in satellite Rrs(530)
may account for the unsatisfactory results obtained by SS(530) and Rab. Despite the fact that
Rrs(530) was also used in SS(490), it was only employed as a baseline to describe spectrum
curvature at 490 nm. Further accuracy assessment of satellite Rrs(530) is recommended
when sufficient in situ Rrs(λ) data are available. With regard to the failure of the RI method,
it only considers the height difference of satellite Rrs(λ) between blue–green bands rather
than the variation in spectral curvature in this range. Although subtraction of Rrs(443)
could eliminate the influence of non-algal sediments, uncertainty regarding atmospheric
correction might still result in high RI values in the non-bloom waters. Thus, utilization of
Rayleigh-corrected reflectance could be a preferred choice when dealing with unfavorable
sky conditions [17]. In short, uncertainties in atmospheric correction in the offshore regions
might be the main reason for the failure in SS(530), Rab, and RI. Even though validation of
SGLI Rrs(λ) was evaluated using in situ measurement from the Dongou Ocean Observing
Platform (located in the nearshore region), the accuracy of satellite Rrs(λ) in the offshore
region remains unknown. Further efforts are required to explore the accuracy of satellite
data in the region.
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Figure 10. (a) Local measured Rrs(λ) of Prorocentrum donghaiense blooms by Tao et al. (2015);
(b) spectrum of different water types from SGLI imagery on 29 April 2020. The gray vertical bars in
(a,b) indicate the wavebands of SGLI data. The red vertical lines in (b) describe the values obtained
by SS(490) and SS(530).

In further steps, an empirical threshold of −0.0005 of SS(490) was established for bloom
detection on SGLI data. Although Figure 5a shows that all bloom waters can be accurately
determined with a negative SS(490), the local measured Rrs(λ) from bloom waters showed
a smaller SS(490) value of −0.00047 ± 0.00011 (calculated from the in situ Rrs(λ) of bloom
waters in Figure 10a, provided by Tao et al. (2015)). In fact, it was found that coastal waters
with high concentrations of dissolved organic matter will also show negative SS(490) by
absorbing strongly in blue–green bands [31]. Therefore, a refined threshold for SS(490) is
recommended when applying SS(490) in coastal regions for bloom detection.

In summary, the spectral shape algorithms are outperformed in bloom detection
compared to the other two methods in this study when considering the challenge of
atmospheric correction in coastal regions. In fact, Blondeau-Patissier et al. (2014) [32] also
concluded that band ratio methods related to blue–green bands could be unreliable in
coastal waters because of increasing concentrations of sediments and dissolved organic
matter. In contrast, the spectral shape method is robust in analyzing satellite Rrs(λ) by
capturing increasing pigments absorption from accumulated phytoplankton in bloom
waters. Previous methods such as fluorescence line height (FLH), maximum chlorophyll
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index (MCI), and floating algae index (FAI), which described spectral curvature in red to
near-red bands, were also found to work well in detection of bloom waters [33–35].

Furthermore, it is suggested that correction for Rrs(443) is required when applying
certain bloom detection approaches to SGLI images. The linear correction method can assist
in reducing overestimation of bloom areas without the need to repeat the atmospheric
correction processes. The linear correction approach on satellite Rrs was first developed
for correction of underestimation from MODIS images in the research area of Ise Bay in
Japan [36]. The results of this study demonstrated that the linear correction method could
also be applied to correct overestimation of satellite Rrs(λ) (similar results found in [37]).
Notably, the parameter used in Equation (7), which describes the relationships between
in situ Rrs(412) and Rrs(565), is an empirical value. In future studies, the unexpectedly
overestimated Rrs at short bands was supposed to be more effectively corrected using the
locally measured Rrs(λ) from bloom waters to improve the utility on bloom detection by
SGLI images.

In the final steps, classification of P. donghaiense and diatom blooms was achieved using
both the BI and Rslope approaches on SGLI images. Inclusion of 530 nm in the SGLI data
enhances their ability to distinguish harmful algal species in the ECS by using the multiple
phytoplankton discrimination method. Although the bands use in Rslope calculation differs
from that described by Shen et al. (2019), the method characterizing the spectral shape in
green–red bands of bloom waters remain effective for phytoplankton discrimination. Note
that the difference in thresholds of BI and Rslope might not only be from bands difference
between SGLI and MODIS but also from uncertainties in satellite Rrs(λ) retrieval. Further
thresholds modifications in BI and Rslope are recommended when local measured Rrs(λ)
data of P. donghaiense and diatom blooms in ECS are available.

5. Conclusions

In this study, performance of different bloom extraction methods using SGLI imagery
was evaluated via comparative analysis. First, the accuracy of SGLI Rrs(λ) was assessed by
comparing matched pairs to the locally measured Rrs(λ). Compared with in situ measured
Rrs(λ), the precision of satellite Rrs(λ) differed between wavebands. Accuracies of 490 nm,
565 nm, and 670 nm were adequate for bloom observation in the ECS, while overestimation
was found at 412 nm and 443 nm. By utilizing a linear correction approach, overestimation
of Rrs(λ) at 443 nm was reduced. Furthermore, based on local matched data and SGLI
images, the spectral shape (SS) method, the red tide index (RI), and the algal bloom ratio
(Rab) were examined for bloom identification accuracy. The bloom extraction results from
SS(490) were better than those obtained using SS(530), Rab, and RI. To remove the potential
influence of turbid waters, an empirical criterion for Rrs(565) was required. In addition,
it was notable that the SGLI data could also help in distinguishing P. donghaiense from
diatom blooms. Inclusion of 530 nm accurately described the discrepancy in blue–green
absorption between the two species. On the other hand, according to China Marine Disaster
Bulletin reports, harmful species other than diatoms and P. donghaiense, such as Akashiwo
sanguinea and Ceratium furca, have also emerged in recent years. Therefore, more efforts
will be required to establish the ability of current phytoplankton discrimination algorithms
to detect other harmful species using SGLI data.

Author Contributions: Conceptualization, C.F.; methodology, C.F.; software, C.F.; validation, C.F.;
resources, Y.Z.; writing—original draft preparation, C.F.; writing—review and editing, Y.Z. and
A.S.; visualization, C.F.; supervision, Y.Z. and A.S.; data provision, B.T., C.L., Q.S., and J.Z.; funding
acquisition, J.Z. and C.F. All authors have read and agreed to the published version of the manuscript.

Funding: This study was supported by the National Key Research & Development Program "Key
Processes of Nitrogen and Phosphorus Transport and Transformation and Ecosystem Response"
(2021YFC3101702); the Research Funds from Remote Sensing Identification of Red Tide Algae in
the East China Sea (332114802); the Zhejiang Provincial Public Welfare Technology Application
Research Program of China under Grant No. LGF21D060001; the Zhejiang Provincial Natural Science
Foundation (LY20D060004).



Remote Sens. 2023, 15, 691 16 of 17

Data Availability Statement: The SGLI data may be downloaded through FTP: ftp.gportal.jaxa.jp,
accessed on 18 January 2018. The bloom reports may be checked at https://www.nmdis.org.cn/
hygb/zghyzhgb/, accessed on 15 November 2022 (In Chinese).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. He, X.; Bai, Y.; Pan, D.; Chen, C.-T.A.; Cheng, Q.; Wang, D.; Gong, F. Satellite views of the seasonal and interannual variability of

phytoplankton blooms in the eastern China seas over the past 14 yr (1998–2011). Biogeosciences 2013, 10, 4721–4739. [CrossRef]
2. Liu, L.; Zhou, J.; Zheng, B.; Cai, W.; Lin, K.; Tang, J. Temporal and spatial distribution of red tide outbreaks in the Yangtze River

Estuary and adjacent waters, China. Mar. Pollut. Bull. 2013, 72, 213–221. [CrossRef]
3. Zohdi, E.; Abbaspour, M. Harmful algal blooms (red tide): A review of causes, impacts and approaches to monitoring and

prediction. Int. J. Environ. Sci. Technol. 2019, 16, 1789–1806. [CrossRef]
4. Shen, A.; Ishizaka, J.; Yang, M.; Ouyang, L.; Yin, Y.; Ma, Z. Changes in community structure and photosynthetic activities of total

phytoplankton species during the growth, maintenance, and dissipation phases of a Prorocentrum donghaiense bloom. Harmful
Algae 2019, 82, 35–43. [CrossRef]

5. Yang, Y.; Liu, P.X.; Zhou, H.H.; Xia, L.H. Evaluation of the change trend and health status of marine organisms in the Changjiang
estuary in the past 15 years. J. Ecol. 2020, 40, 8892–8904.

6. Zeng, Y.; Lu, D.; Wang, P.; Guo, R.; Guan, W.; Dai, X. Further study on the relationship between the protochlorophyte and Taiwan
warm current species in the East China Sea. Oceanogr. Res. 2020, 38, 38–48.

7. Marcarelli, A.M.; Wurtsbaugh, W.A.; Griset, O. Salinity Controls Phytoplankton Response to Nutrient Enrichment in the Great
Salt Lake, Utah, USA. Can. J. Fish. Aquat. Sci. 2006, 63, 2236–2248. [CrossRef]

8. Feng, C.; Ishizaka, J.; Wang, S.Q. A simple method for algal species identification in the East China Sea using multiple satellite
images. Geosci. Lett. 2022, 9, 12. [CrossRef]

9. Shen, F.; Tang, R.; Sun, X.; Liu, D. Simple methods for satellite identification of algal blooms and species using 10-year time series
data from the East China Sea. Remote Sens. Environ. 2019, 235, 111484. [CrossRef]

10. Lei, H.; Pan, D.; Bai, Y.; Chen, X.; Zhou, Y.; Zhu, Q. HAB Detection Based on Absorption and Backscattering Properties of
Phytoplankton. In Proceedings of the Remote Sensing of the Ocean, Sea Ice, Coastal Waters, and Large Water Regions, Prague,
Czech Republic, 19–22 September 2011; Volume 8175, pp. 403–410.

11. Shang, S.; Wu, J.; Huang, B.; Lin, G.; Lee, Z.; Liu, J.; Shang, S. A new approach to discriminate dinoflagellate from diatom blooms
from space in the East China Sea. J. Geophys. Res. Oceans 2014, 119, 4653–4668. [CrossRef]

12. Tao, B.; Mao, Z.; Lei, H.; Pan, D.; Bai, Y.; Zhu, Q.; Zhang, Z. A semianalytical MERIS green-red band algorithm for identifying
phytoplankton bloom types in the East China Sea. J. Geophys. Res. Oceans 2017, 122, 1772–1788. [CrossRef]

13. Stumpf, R.P.; Culver, M.E.; Tester, P.A.; Tomlinson, M.; Kirkpatrick, G.J.; Pederson, B.A.; Truby, E.; Ransibrahmanakul, V.; Soracco,
M. Monitoring Karenia Brevis Blooms in the Gulf of Mexico Using Satellite Ocean Color Imagery and Other Data. Harmful Algae
2003, 2, 147–160. [CrossRef]

14. Sun, L.; Chen, Y.; Wang, X. Research on the extraction of red tide information from time series MODIS data. Remote Sens. Inf. 2012,
27, 71–77.

15. Kiyomoto, Y.; Iseki, K.; Okamura, K. Ocean Color Satellite Imagery and Shipboard Measurements of Chlorophyll a and Suspended
Particulate Matter Distribution in the East China Sea. J. Oceanogr. 2001, 57, 37–45. [CrossRef]

16. Gong, G.-C. Absorption Coefficients of Colored Dissolved Organic Matter in the Surface Waters of the East China Sea. Terr. Atmos.
Ocean. Sci. 2004, 15, 75–87. [CrossRef]

17. Lou, X.; Hu, C. Diurnal variation of harmful algal blooms in the East China Sea. Observations from GOCI. Remote Sens. Environ.
2014, 140, 562–572. [CrossRef]

18. Tao, B.; Mao, Z.; Lei, H.; Pan, D.; Shen, Y.; Bai, Y.; Zhu, Q.; Li, Z. A new method for identifying Prorocentrum donghaiense from
diatom blooms in the East China Sea using MODIS measurements. Remote Sens. Environ. 2015, 158, 267–280. [CrossRef]

19. Shin, J.; Kim, K.; Min, J.E.; Ryu, J.H. Red tide detection by image fusion of GOCI and Landsat OLI. Korean J. Remote Sens. 2018,
34, 377–391.

20. Cannizzaro, J.P.; Carder, K.L.; Chen, F.R.; Heil, C.A.; Vargo, G.A. A novel technique for detection of the toxic dinoflagellate,
Karenia brevis, in the Gulf of Mexico from remotely sensed ocean color data. Cont. Shelf Res. 2008, 28, 137–158. [CrossRef]

21. Qi, L.; Tsai, S.-F.; Chen, Y.; Le, C.; Hu, C. In Search of Red Noctiluca Scintillans Blooms in the East China Sea. Geophys. Res. Lett.
2019, 46, 5997–6004. [CrossRef]

22. Liu, Y.Y.; Shen, F.; Li, X.Z. Analysis of light absorption characteristics of phytoplankton in red tide waters adjacent to the Yangtze
estuary. Environ. Sci. 2015, 36, 2019–2027.

23. Li, C.; Tao, B.; Liu, Y.; Zhang, S.; Zhang, Z.; Song, Q.; Jiang, Z.; He, S.; Huang, H.; Mao, Z. Assessment of VIIRS on the Identification
of Harmful Algal Bloom Types in the Coasts of the East China Sea. Remote Sens. 2022, 14, 2089. [CrossRef]

24. Hori, M.; Murakami, H.; Miyazaki, R.; Honda, Y.; Nasahara, K.; Kajiwara, K.; Nakajima, T.Y.; Irie, H.; Toratani, M.; Hirawake, T.;
et al. GCOM-C Data Validation Plan for Land, Atmosphere, Ocean, and Cryosphere. Trans. Jpn. Soc. Aeronaut. Space Sci. Aerosp.
Technol. Jpn. 2018, 16, 218–223. [CrossRef]

ftp.gportal.jaxa.jp
https://www.nmdis.org.cn/hygb/zghyzhgb/
https://www.nmdis.org.cn/hygb/zghyzhgb/
http://doi.org/10.5194/bg-10-4721-2013
http://doi.org/10.1016/j.marpolbul.2013.04.002
http://doi.org/10.1007/s13762-018-2108-x
http://doi.org/10.1016/j.hal.2018.12.007
http://doi.org/10.1139/f06-113
http://doi.org/10.1186/s40562-022-00222-1
http://doi.org/10.1016/j.rse.2019.111484
http://doi.org/10.1002/2014JC009876
http://doi.org/10.1002/2016JC012368
http://doi.org/10.1016/S1568-9883(02)00083-5
http://doi.org/10.1023/A:1011170619482
http://doi.org/10.3319/TAO.2004.15.1.75(O)
http://doi.org/10.1016/j.rse.2013.09.031
http://doi.org/10.1016/j.rse.2014.11.004
http://doi.org/10.1016/j.csr.2004.04.007
http://doi.org/10.1029/2019GL082667
http://doi.org/10.3390/rs14092089
http://doi.org/10.2322/tastj.16.218


Remote Sens. 2023, 15, 691 17 of 17

25. Gordon, H.R.; Wang, M. Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: A
preliminary algorithm. Appl. Opt. 1994, 33, 443–452. [CrossRef]

26. MMorel, A.; Maritorena, S. Bio-optical properties of oceanic waters: A reappraisal. J. Geophys. Res. Oceans 2001, 106, 7163–7180.
[CrossRef]

27. Murakami, H. ATBD of GCOM-C Ocean Color Atmospheric Correction. Available online: https://archimer.ifremer.fr/doc/0065
5/76742/77894.pdf (accessed on 24 December 2022).

28. Zhang, M.; Tang, J.; Dong, Q.; Song, Q.; Ding, J. Retrieval of total suspended matter concentration in the Yellow and East China
Seas from MODIS imagery. Remote Sens. Environ. 2010, 114, 392–403. [CrossRef]

29. Siswanto, E.; Ishizaka, J.; Tripathy, S.C.; Miyamura, K. Detection of harmful algal blooms of Karenia mikimotoi using MODIS
measurements: A case study of Seto-Inland Sea, Japan. Remote Sens. Environ. 2013, 129, 185–196. [CrossRef]

30. Wynne, T.T.; Stumpf, R.P.; Tomlinson, M.C.; Warner, R.A.; Tester, P.A.; Dyble, J.; Fahnenstiel, G.L. Relating spectral shape to
cyanobacterial blooms in the Laurentian Great Lakes. Int. J. Remote Sens. 2008, 29, 3665–3672. [CrossRef]

31. Hoge, F.E.; Vodacek, A.; Blough, N.V. Inherent optical properties of the ocean: Retrieval of the absorption coefficient of
chromophoric dissolved organic matter from fluorescence measurements. Limnol. Oceanogr. 1993, 38, 1394–1402. [CrossRef]

32. Blondeau-Patissier, D.; Gower, J.F.R.; Dekker, A.G.; Phinn, S.R.; Brando, V.E. A review of ocean color remote sensing methods
and statistical techniques for the detection, mapping and analysis of phytoplankton blooms in coastal and open oceans. Prog.
Oceanogr. 2014, 123, 123–144. [CrossRef]

33. Neville, R.A.; Gower, J.F.R. Passive remote sensing of phytoplankton via chlorophyll α fluorescence. J. Geophys. Res. Atmos. 1977,
82, 3487–3493. [CrossRef]

34. Gower, J.; King, S.; Goncalves, P. Global monitoring of plankton blooms using MERIS MCI. Int. J. Remote Sens. 2008, 29, 6209–6216.
[CrossRef]

35. Hu, C.; Lee, Z.; Ma, R.; Yu, K.; Li, D.; Shang, S. Moderate Resolution Imaging Spectroradiometer (MODIS) observations of
cyanobacteria blooms in Taihu Lake, China. J. Geophys. Res. Atmos. 2010, C04002, 1–20. [CrossRef]

36. Hayashi, M.; Ishizaka, J.; Kobayashi, H.; Toratani, M.; Nakamura, T.; Nakashima, Y.; Yamada, S. Evaluation and Improvement of
MODIS and SeaWiFS-derived Chlorophyll a Concentration in Ise-Mikawa Bay. J. Jpn. Soc. Remote Sens. 2015, 35, 245–259.

37. Ishizaka, J.; Yang, M.; Fujii, N.; Katano, T.; Hori, M.; Mine, T.; Saitoh, K.; Murakami, H. Use of AERONET-OC for validation of
SGLI/GCOM-C products in Ariake Sea, Japan. J. Oceanogr. 2022, 78, 291–309. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1364/AO.33.000443
http://doi.org/10.1029/2000JC000319
https://archimer.ifremer.fr/doc/00655/76742/77894.pdf
https://archimer.ifremer.fr/doc/00655/76742/77894.pdf
http://doi.org/10.1016/j.rse.2009.09.016
http://doi.org/10.1016/j.rse.2012.11.003
http://doi.org/10.1080/01431160802007640
http://doi.org/10.4319/lo.1993.38.7.1394
http://doi.org/10.1016/j.pocean.2013.12.008
http://doi.org/10.1029/JC082i024p03487
http://doi.org/10.1080/01431160802178110
http://doi.org/10.1029/2009JC005511
http://doi.org/10.1007/s10872-022-00642-9

	Introduction 
	Materials and Methods 
	Study Area and Bloom Records 
	In Situ Rrs()  
	SGLI Imagery Processing 
	Bloom Detection Methods 

	Results 
	Validation of SGLI Rrs()  
	Bloom Detection Based on Matched Pairs 
	Bloom Detection Based on SGLI Images 
	Discrimination of Harmful Bloom Species 

	Discussion 
	Conclusions 
	References

