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Abstract: The vegetation of the post-mining areas is subject to constant and significant changes.
Reclamation works, carried out after the cessation of mineral extraction, contribute to the intensive
development of new plant species. However, secondary deformations, occurring even many years
after the end of exploitation, may cause the degradation of the vegetation cover. It is, therefore,
an important issue to identify changes in flora conditions and to determine whether and to what
extent past mining has a negative impact on the plant cover state. The objectives of this research
have been as follows: (1) analysis of the flora condition in the post-mining area in the 1989–2019
period, (2) identification of sites with significant changes in vegetation state, and (3) modeling of
the relationship between the identified changes in vegetation and former mining activities. The
research was carried out in the area of the former opencast and underground lignite mine “Friendship
of Nations—Babina Shaft,” which is located in the present-day Geopark (Western Poland), using
Landsat TM/ETM+/OLI derived vegetation indices (NDVI, NDII, MTVI2) and GIS-based spatial
regression. The results indicate a general improvement in flora condition, especially in the vicinity of
post-mining waste heaps and former opencast excavations, with the exception of the northwestern
part of the former mining field where the values of all of the analyzed vegetation indices have
decreased. Also, four zones of statistically significant changes in the flora condition were identified.
Finally, the developed GWR models demonstrate that former mining activities had a significant
influence on changes in the plant cover state of the analyzed region.

Keywords: vegetation indices; post-mining area; Landsat; Geographically Weighted Regression
(GWR); Geographic Information System (GIS); spatial statistics

1. Introduction

Mining of raw materials inherently contributes to the degradation of land. The
impacts of extracting minerals from deposits with surface or underground mining methods
include continuous (e.g., subsidence basins) and discontinuous (e.g., sinkholes, cracks,
throughs) deformations, large-scale earthworks (open-pits, waste dumps), lowering of
the groundwater table (mine drainage), soil and groundwater contamination (leakages
of substances during technological processes), and dust pollution. All of these effects
contribute to the destruction or damage of vegetation in and around the mining area [1–4].

The increasing number of post-mining sites worldwide requires effective and reliable
methods of monitoring the condition of these areas. Kretschmann and Nguyen [5] state that
the processes affecting the post-mining environment should be regarded as continuous and
treated as such. For example, secondary ground deformations may occur decades after the
end of the underground extraction of minerals [6] in the form of residual subsidence [7,8].
Uplift is caused by a change of rock mass conditions due to the saturation of the previ-
ously drained rock formations [9–12], while discontinuous deformations occur due to the
destruction of old, especially shallow, voids underground [13,14]. The subsided zones
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may experience waterlogging or flooding resulting from the restoration of the original
groundwater table. All the above-mentioned phenomena have a significant impact on the
vegetation of the post-mining areas.

The areas degraded by mining (usually surface mining) are subjected to technical
and biological treatments aimed at restoring their value. The subsequent stages of the
reclamation process include land forming, regulating water conditions, and restoring or
improving the physical and chemical properties of soils [15]. The last stage of reclamation
consists of the introduction of vegetation and systematic care [16]. As a result, areas severely
affected by mining may again be characterized by healthy and species-rich vegetation.

The complexity of the reclamation process and the secondary consequences of mining
require continuous monitoring. It is usually limited in space and time, costly, and difficult
to implement given the size of post-mining areas. However, the proliferation of open and
publicly available satellite remotely sensed data and GIS-based spatiotemporal analysis
methods facilitate environmental studies of former mining areas. Nowadays, the analysis
of vegetation cover conditions in post-mining areas is based on spectral indices, determined
from remotely sensed imagery and processed in Geographic Information Systems (GIS).
The former enables the study of biophysical and biochemical parameters of the flora; the
latter is used for spatiotemporal analyses and data visualization. Among the published
studies of vegetation cover conditions in post-mining areas that are based on vegetation
indices, those related to the monitoring and evaluation of the reclamation process have been
the most frequent. Noteworthy examples include Karan et al. [17] who have used NDVI,
RVI, EVI, and NDMI indices, derived from Landsat TM/OLI images and the Support Vector
Machine (SVM) algorithm to identify spatiotemporal changes in the flora of the Jharia
hard coal mining area in the 2000–2015 period. Padró et al. [18] have used high-resolution
multispectral imagery acquired with an Unmanned Aerial System (UAV) and SAVI, MSAVI,
NDVI, and NDWI indices to evaluate vegetation development in a restored calcareous
quarry. Yao and Zhou Wei [19] have applied as many as 19 vegetation indices to assess
the process of restoration in the Pingshuo Coal Mining area. The authors relied on the
Landsat TM imagery registered between 1990 and 2019 and the Principal Component
Analysis (PCA) method. The results of other significant studies aimed at assessment of the
post-mining area’s restoration using spectral indices have also been presented in [20–29].
Vegetation indices based on remotely sensed data have been used in studies concerning:
the assessment of surface mining and reclamation process impacts on croplands and food
security [30], analysis of the relation between metal concentration and reflectance spectra
of plant leaves [31], evaluation of the change in surface mining and restored areas in
time [32,33], detection of spontaneous combustion of coal waste dumps [34], assessment of
biomass production [35], and effect of aggregated mining development on the condition of
vegetation [29]. More examples of such studies can be found in review publications [36,37].

The GIS methods were used in these publications primarily to visualize spatial data.
Nevertheless, the literature review has shown that spatial multivariate regression mod-
els [29,38], hot spot spatial statistics [39], and supervised and unsupervised classification
algorithms [18,32,40–44] have all been applied in environmental studies in mining terrains.

The reviewed literature has also shown that spatial regression models based on the
integration of spectral indices and mining-geological characteristics have so far seldom
been used in the study of the flora in former mining areas. These conclusions were the
reason for undertaking the research presented in the article.

Until now the research on vegetation conditions in an area of combined underground
and open-cast mining using spectral indices and spatial regression models has been limited.

Thus, our study is aimed at the long-term spatiotemporal analysis of vegetation
conditions in a lignite post-mining site “Babina,” located in a glaciotectonic area (Western
Poland). The research is based on multispectral imagery from the Landsat satellite missions
and GIS multivariate weighted spatial regression approach. The specific objectives of our
study include:

1. spatiotemporal description of the vegetation condition trajectory in the 1989–2019 period;
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2. identification of sites with significant flora changes;
3. testing GIS-based methodology to analyze the relationship between the condition of

vegetation and the potential topographical and mining driving factors.

A unique aspect of the research arises from the fact that the study area was subjected
to long-term, combined, underground, and open-cast mining in complex glaciotectonic
conditions. The mineral extraction ended in the 70s of the 20th Century, and the area now
constitutes a part of the UNESCO Global Geopark “Muskau Arch.” The background of this
study also lies in the fact that numerous secondary effects of former mining activity, such as
sinkholes, subsidence basins leading to localized waterlogging, and waste heap weathering
have been observed there. Up to this date only limited in situ investigations have been
conducted in the study area [45–49], and our work is the first research that utilizes remotely
sensed multispectral satellite imagery and GIS. Time-series analysis (1989–2019) of the
following vegetation indices: Normalized Difference Vegetation Index (NDVI), Modified
Triangular Vegetation Index-Improved (MTVI2), and Normalized Difference Infrared Index
(NDII) was applied to study vegetation condition in the post-mining period. Then we
used algebra and multivariate, spatially weighted regression methods to identify zones
of significant changes of flora condition and to analyze the statistically significant driving
factors behind these changes. The proposed methodology can be applied to a long-term
analysis of vegetation condition in other lignite mining and post-mining areas with similar
spatial and temporal characteristics.

2. Study Area

The former mining site “Babina” is located in Western Poland, close to the border
with Germany between 14◦43′E and 14◦51′E and 51◦31′N and 51◦42′N. In terms of ge-
omorphology, it is located in the eastern fragment of the glaciotectonic structure called
the Muskau Arch, which is characterized by a horseshoe-like shape, open towards the
North. The Muskau Arch is divided by the Nysa Łużycka river that constitutes the border
between Poland and Germany. The arch was formed probably during the South Polish
(Elsterian) Glaciations, but its shape was remodeled during the succeeding glacial periods
(Figure 1) [50].

The analyzed geomorphological structure is located within the Paleozoic platform
made up of three structural levels: the Precambrian crystalline bedrock, folded Caledonian-
Hercynian Paleozoic formations and the Zechstein-Mesozoic-Cenozoic platform cover. The
latter is characterized by a wealth of mineral resources, including lignite and construc-
tion clays [51].

The glacial processes led to the exposure of lignite deposits, which contributed to the
beginning of mining operations within the whole of the Muskau Arch. In the now Polish
part of this structure, mining began in the second half of the 19th Century. The “Babina”
mine started its operation in 1921 and was the largest one in the area. Both underground
and open-cast mining methods were used due to the complexity of the folded lignite
seams [52]. These unfavorable geological-mining conditions had also been the cause of the
closing of the operation in 1973 due to economic reasons. Restoration of the post-mining
area, aimed at the flooding of the old open pits and reforestation of the ground, started
soon afterward [53]. Presently, the dominant plant species are pine forests, as well as alder
and riparian forests. In total, over 1500 species of vascular vegetation, including ruderal
and replacement plants, have been classified in the post-mining area [45]. The region was
declared a Global UNESCO Geopark in 2015 because of the unique anthropogenic landscape
that includes anthropogenic lakes with a low pH level and high Fe content, waste heaps
and relics of mining infrastructure, as well as geological settings (valleys formed by glacial
erosion, hills made of glacial erratic boulders, sands, and gravels, and gizers—ditches
formed by weathering and subsiding of exposed lignite outcrops) [46,52,53].

The research presented in this paper has been conducted in the “Pustków” mining
field located in the southern part of the “Babina” mine (Figure 1). The four specific study
sites (test fields) of 877.54 ha, where the analysis of the vegetation state in 1989–2019 was
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carried out, coincide with the extent of the available historical, geological, and mining
maps, describing the done mining operation in the research area.
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Figure 1. Location of the test fields against the background of the Muskau Arch and the mining fields
of the Babina mine (terrain topography was obtained on the basis of 1′’ Digital Elevation Model
(DEM) Shuttle Radar Topography Mission (SRTM)).

3. Materials and Methods
3.1. Geospatial Data

In this study, the multispectral Landsat TM/ETM+/OLI images (Landsat Collection
Level-1), downloaded from the EarthExplorer platform (https://earthexplorer.usgs.gov/
(accessed on 12 May 2021)), were used to analyze the changes in the vegetation condition
in a post mining area in the 1989-2019 period. Overall, 30 images, registered in the period
characterized by similar features of flora located in the western Poland (from May to the
end of September), were used. The number of available images was reduced by the criterion
of a maximum cloud cover, set at the 10% level.

Table A1 (Appendix A) shows the dates of the acquired remote sensing satellite images,
as well as the basic information about the sensors which registered this data.

In addition to the satellite imagery, the following data were used:

1. 67 archival geological and mining maps were drawn at the 1:1000 scale bet-
ween 1956–1973, obtained from the State Mining Authority and listed in Table S1
(Supplementary Materials);

2. vector data from the Database of Topographical Objects (scale 1: 10,000) representing
the location of water reservoirs in the research area and available from [54];

3. Digital Elevation Model (DEM) (1 m resolution) obtained from aerial laser scanning
performed in 2020 and available from [55];

https://earthexplorer.usgs.gov/
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4. German Topographical Map—Messtischblatt drawn at the 1:25,000 scale and repre-
senting the study area as it was in 1911;

5. vector data representing the extent of the glaciotectonic structures and documented
locations of gizers in the area, developed by [56];

6. vector data representing boundaries of mineral deposits in Poland available from [57];
7. Hydrogeological Map of Poland from the year 2006 and drawn at scale 1:50,000 [58];
8. archival meteorological data (precipitation and air temperature) for the 1989–2019 pe-

riod (corresponding to the months of satellite imagery acquisitions), obtained from [59].

The data were used to develop a GIS database of potential driving (causative) factors
behind the observed changes of vegetation condition. The database consisted of indepen-
dent variables characterizing former mining activity and geological and topographical
conditions applied in the tested multivariate spatial regression models. The meteorological
data were used to test if the calculated statistics of the analyzed spectral indices were
related to the atmosphere conditions.

3.2. Pre-Processing of Satellite Data

The acquired satellite data were subjected to processes aimed at standardizing the
images registered by various sensors in different weather and lighting conditions. In the
first stage, the radiometric Digital Number (DN) values were converted to the values of the
registered LSAT radiance, using the following Equation (1):

LSAT = c0 + c1 ∗ DN, (1)

where: c0 and c1 are the calibration constants, stored in the metadata, for a specific type of
sensor and spectral band, called the offset and gain, respectively [60].

In the next step, the atmospheric correction of the images was performed, considering:

1. the average terrain height of the former mining field (100 m a.s.l.);
2. atmosphere model—in this study, based on the image registration date, models with a

water vapor content of 2.08 g/cm2 or 2.92 g/cm2 and an average air temperature of 14 or
21 ◦C were used (Sub-Arctic Summer and Mid-Latitude Summer models, respectively);

3. aerosol model—in the analyzed case, a model dedicated to a slightly polluted and
non-urbanized areas was selected.

The atmospheric correction of the image registered by the ETM+ sensor was preceded
by the removal of the scan line error, using an algorithm based on the triangulation (the Scan
Line Corrector was damaged in June 2003, resulting in white lines covering the images) [61].

All of these operations were performed in the ENVI 5.6. software, licensed to the
Wroclaw University of Science and Technology, using the Raster Management, FLAASH and
Radiometric Correction modules.

3.3. Remote Sensing Vegetation Indices

Pre-processed images were used to calculate the following vegetation indices in ENVI
5.6. software:

1. Normalized Difference Vegetation Index (NDVI)—that is a combination of red and near-
infrared bands, the spectral ranges in which the highest absorption and reflection of
solar radiation by vegetation are observed, respectively [62]. This index enables the
identification of flora among other forms of land cover and the general assessment of
its condition and is given by the formula (2):

NDVI =
NIR − RED
NIR + RED

, (2)

where: NIR and RED are the spectral reflectance values in the near-infrared and red
bands, respectively [17].
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The NDVI index takes values between −1 and 1, with negative values indicating non-
vegetated areas, values from the 0.2–0.8 interval being characteristic for areas covered with
green plants, and index values exceeding 0.8 indicating dense and healthy plant cover [63];

2. Normalized Difference Infrared Index (NDII)—developed by Hardisky et al. [64] using
the reflectance value in the near and short infrared bands. NDII enables to assess the
water content of vegetation, and it is given by the formula (3):

NDII =
NIR − SWIR1
NIR + SWIR1

, (3)

where: SWIR1 is the spectral reflectance value in the short infrared band.

NDII, similarly to the NDVI index, takes values from −1 to 1, with negative values
indicating a deficiency of water in the vegetation [65,66];

3. Modified Triangular Vegetation Index—Improved (MTVI2)—spectral bands combination
developed by Haboudane et al. [67], used for the estimation of leaf area index (LAI),
with the following formula (4):

MTVI2 =
1.5 ∗ [1.2 ∗ (R800 − R550)− 2.5 ∗ (R670 − R550)]√
(2 ∗ R800 + 1)2 − (6 ∗ R800 − 5 ∗

√
R670)− 0.5

, (4)

where: R800, R550, and R670 are the spectral reflectance values for the wavelengths of
800 nm, 550 nm, and 670 nm, respectively.

The MTVI2 index is very sensitive to changes in leaves and canopy structures, a
decrease in the index value indicates a lower ratio of the leaf area to the ground area,
whereas an increase indicates the growth of the tree canopy. It is resistant to the influence
of soils and changes in the concentration of photosynthetic pigments [67].

3.4. Spatial Statistics and Multivariate Weighted Spatial Regression

The map algebra local functions (cell statistics) implemented in the ESRI ArcGIS Pro
2.8.0 software were used to determine the range of changes in vegetation indices values for
each pixel of the research area in the 1989–2019 period and identify significant changes in
plant cover condition.

Then, multivariate spatial regression methods were used to analyze the relationship
between the identified vegetation changes over a 30-year period (spectral indices used
as dependent variables) and the potential mining, geological, and topographical driving
factors (independent explanatory variables in the models). First, the global and then
local spatial regression methods have been applied to determine the potential relationship
between these factors and flora condition represented by the change of indices.

Due to the spatial heterogeneity of the variables representing the area of the combined,
underground and open-cast mining identified in the constructed global regression models,
the weighted spatial regression approach has been subsequently applied. The general
formula of a Geographically Weighted Regression (GWR) model is given by (5):

yi(u) = β0i(u) + β1i(u) ∗ x1 + · · ·+ βni(u) ∗ xn + εi, (5)

where: x1, x2, . . . , xn—are the independent variables, β0i(u), β1i(u), . . . , βni(u) are the
coefficients describing the relationship between the location u and a particular independent
variable, characteristic feature of each location, εi—random error [68].

The theory behind multivariate spatial regression has been described in [69,70]. The
important aspect of the method is the construction of local models based on the neighbor-
hood matrix with the use of a weighting function. Weights in the matrix depend on the
distance between the given location and its neighbors [71].

The dependent variables for the regression models were the spatial statistics calculated
for the NDVI, NDII, and MTVI2 indices. The considered, independent (explanatory)
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variables describing the former mining activity, as well as the geological and topographic
conditions of the research area, were:

• mining factors: number of shafts per reference unit area, average and minimum depth
of the underground excavations, the average depth of the mining shafts, distance from
former open pits, distance from the underground workings, distance from the mining
waste heaps, area of the underground mining excavations per reference unit area;

• geological factors: distance from lignite seams, distance from gizers, groundwater table
elevation, distance from the boundary of glaciotectonic changes;

• topographic factors: DEM (as in the year 2020), DEM (as in the year 1911), DEM of
Difference (2020–1911), slope and aspect of the terrain, and distance from the anthro-
pogenic lakes.

All of the variables were represented by raster data with a cell size of 30 m × 30 m
and have the same spatial extent (S 5 707 725 m, N 5 714 745 m, E 487 035 m, W 482 635 m)
and coordinate system (WGS 84 UTM zone 33). The detailed information on the source
and processing of data to prepare spatial representation of independent variables can be
found in Table S2 (Supplementary Materials).

The construction and testing of spatial regression models were preceded by exploratory
data and correlation analysis of the independent variables (with Layer Stack and Band Statis-
tics tools in ENVI 5.6. software) in order to eliminate the collinear factors (global collinearity).

The evaluation of the global and the local multivariate spatial regression models was
performed based on their statistics: regression residuals, the spatial distribution of the
residuals, Akaike’s information criterion (AICc), as well as the value of adjR2 coefficient
(square of Pearson’s linear correlation), and the strength of the local coefficients [72].

These tasks were performed in the ArcGIS Pro 2.8.0 software, licensed to the Wroclaw
University of Science and Technology.

4. Results
4.1. Vegetation General Condition in the 1989–2019 Period

The first stage of the research was aimed at the analysis of the average annual values
of the NDVI, NDII, and MTVI2 indices. As shown in Figure 2, an increase in the values of
all of the analyzed indices was observed in the 1989–2019 period (the average values of all
spectral indices increased by approximately 0.15 over the 30-years period). The values for
1997, 2002, 2008, and 2015 were not analyzed as the images available for these years did
not meet the minimum cloud cover criterion.
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The NDVI index had the lowest average value in 1990 (0.66) and the highest one in
2016 (0.82). The highest average values of the NDII and MTVI2 indices were observed in
2011 and 2018 respectively (0.34 and 0.38), while the lowest ones were noticed in 1989 (0.19
and 0.24, respectively).

The trend lines representing general temporal changes of the analyzed indices are
similar (Figure 2). The strength of the relationships between the NDVI, NDII, and MTVI2
was determined with the Pearson correlation coefficients, calculated for each possible
combination of these indices. The results indicate that the NDII and NDVI are highly
correlated (correlation coefficient of 0.80), while the MTVI2 and NDII, as well as the MTVI2
and NDVI, are characterized by an even stronger linear relationship (correlation coefficients
of 0.83 and 0.82, respectively). Thus, a change in the value of one spectral index corresponds
to a change in the value of the other indices. All of the determined correlation coefficients
are positive [73].

This indicates a gradual improvement in the general condition of vegetation in the
post-mining area, increased water content in plants, and growth of the tree canopies (larger
area and density of leaves). In the analyzed period, only the results for 1993, 2002, and 2006
showed slight discrepancies from the general trend.

In order to verify whether the identified changes in vegetation conditions have been
influenced by extreme meteorological conditions (drought periods or heavy precipitation),
the results were compared with the average air temperature and precipitation for the
1989-2019 period. As shown in Figure 3, precipitation significantly higher than the average
for the analyzed period was observed in 1994, 2010, and 2017 with an average precipitation
of 99.4, 133.2, and 123.1 mm, respectively, and with dry periods in 1989, 1991–1992, and
2016. The average amount of precipitation for the 1989-2019 period was 56.9 mm. Thus, it
can be assumed that the variation of meteorological parameters did not cause any increase
or decrease in the analyzed indices. The identified positive changes in the plant cover
general condition are part of a trend that has not been disturbed by extreme meteorological
conditions (the correlation coefficients between the NDVI index value and the average air
temperature and precipitation amount were −0.14 and 0.24, respectively).
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Figure 3. Meteorological conditions and average values of the NDVI index in the period of 1989–2019.

4.2. Statistical Analysis of Dependent Variables

The raster range cell spatial statistic, determined for the NDVI index, is characterized
by a log-normal distribution, and its values are in the 0.1–1.6 range (Figure 4a). The average
value of NDVI change is equal to 0.26. The smallest changes of the NDVI index value in the
1989–2019 period, less than 0.2, were observed in the eastern parts of test fields no. 1 and 2,
in the western part of test field no. 3, as well as in the northwestern and eastern parts of the
test field no. 4 (Figure 5a). The greatest changes occurred in the northwestern part of field
no. 1, in the western part of field no. 2, in the eastern and southern parts of field no. 3, in



Remote Sens. 2023, 15, 719 9 of 22

the western part of field no. 4, and along the shorelines of anthropogenic water reservoirs
(changes in index values higher than 0.6). The greatest changes of the NDVI values, except
for the northwestern part of test field no. 1, were positive (increase in the index value over
a period of 30 years at the level of 0.2–0.6), which was confirmed by analysis of distribution
of index values in 1989 and 2019 (Figure 5b,c).
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Figure 4. Histograms of dependent variables: (a) Change of NDVI values; (b) Change of NDII values;
(c) Change of MTVI2 values.

The statistic, determined for the NDII, is characterized by a range of values (0.1–1.3),
similar to the NDVI distribution (log-normal) and the average change in time (0.28)
(Figure 4b). Analysis of the statistic value variability within the test fields indicates that
the regions of the largest and the smallest changes of the NDII value overlap with the
boundaries of the areas identified for the NDVI index (Figure 5d). Significant negative
changes of NDII were observed in the northwestern part of test field no. 1, as in the case of
NDVI (Figure 5e,f).

The statistic, determined for the MTVI2 index, has the smallest range of values (0.1–0.8)
and a log-normal distribution. The average variability of MTVI2 value within the cells of
the research area is equal to 0.26 (Figure 4c). The distribution of this statistic in the test fields
is different than in the case of the NDVI and NDII. The changes of the MTVI2, observed
in most of the areas of interest, do not exceed the value of 0.4. The greater variability of
these index values was noticed only in the northwestern part of test field no. 1 and in the
southern parts of test fields no. 3 and 4 (Figure 5g). The areas of the greatest changes in the
MTVI2 index, apart from the northwestern part of test field no. 1, were characterized by an
increase in leaf area and denser tree canopies in the period of 1989-2019 (Figure 5h,i).

Based on the spatial distribution of the range of NDVI, NDII, and MTVI2 values,
we identified the zones of the greatest change in the plant cover condition. These are
the northwestern part of test field no. 1, the western part of test field no. 2, the eastern
part of test field no. 3, the western part of test field no. 4, as well as the vicinities of the
anthropogenic water reservoirs (in the vicinity of anthropogenic lakes, statistics determined
for NDVI and NDII indices are characterized by values greater than 1.0, which indicates
the change in the area of water bodies).

4.3. Independent Variables
4.3.1. Mining Factors

The former open pits were located in fields no. 2 and 4. These are now anthropogenic
lakes. The spatial distribution of the distance to former open pits is presented in Figure 6a.
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NDVI values; (b) NDVI values in 1989; (c) NDVI values in 2019; (d) Change of NDII values; (e) NDII
values in 1989; (f) NDII values in 2019; (g) Change of MTVI2 values; (h) MTVI2 values in 1989;
(i) MTVI2 values in 2019.

Underground mining was conducted in each of the test fields, most intensively in test
field no. 4. Distance to these sites is presented in Figure 6b.

Mining waste heaps are located in the southeastern part of test field no. 1, in the
northwestern part of test field no. 2, in the northeastern part of test field no. 4, and along
the shoreline of the largest lake in the middle of the test field no. 4 (Figure 6c).

Vertical mining excavations (underground ore passes, shafts) are associated with the
underground mining sites. Their number is the highest in test field no. 4. The distribution
of their number per reference unit (pixel) is shown in Figure 6d.
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Figure 6. Independent variables—mining factors: (a) Distance from former open pits; (b) Distance
from the underground workings; (c) Distance from the mining waste heaps; (d) Number of the
mining shafts per pixel; (e) Average depth of the mining shafts; (f) Average depth of the underground
excavations; (g) Minimum depth of the underground excavations; (h) Area of the underground
mining excavations per 1 pixel.

The average depth of vertical excavations in the analyzed research area varies from
20 to 40 m b.s.l. (Figure 6e). The deepest mining shafts (140 to 160 m b.s.l.) were located in
the southeastern part of test field no. 2 and in the northwestern and northern parts of test
field no. 4.

The average depth of the underground production levels varies from 40 m to over
100 m b.s.l. located in test fields no. 3 and 4. The spatial distribution is presented in
Figure 6f. Analogous distribution of values in the study area is observed for the variable
“minimum depth of the underground excavations” (Figure 6g).

The area of the underground mining excavations was calculated as the sum of all
underground levels in a given reference pixel. The distribution of this variable ranges from
less than 300 m2 in sites located in test fields no. 2 and 3 to over 4200 m2 in the northeastern
part of test field no. 4 (Figure 6h).

4.3.2. Geological Factors

The lignite seams in the research area are a scale-like form extending along the SW—NE
direction. The map of distance from documented deposits is presented in Figure 7a.

The groundwater table level variable ranges from 130 to 140 m a.s.l. and its spatial
distribution is shown in Figure 7b. At this point, it is worth emphasizing that there is no
aquifer within anthropogenic reservoirs, thus the values of the terrain height (as in the year
2020) have been assigned to the pixels representing post-mining lakes.
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Figure 7. Independent variables—geological factors: (a) Distance from the lignite seams; (b) Ground-
water table level; (c) Distance from gizers; (d) Distance from the boundary of glaciotectonic changes.

Weathering ditches, locally called gizers, are exposed lignite formations and extend
along the SW–NE direction. They are present in all study sites, except test field no. 3
(Figure 7c).

Glaciotectonic structures are located in most of the area of interest. The boundary runs
along the southeastern part of test fields no. 3 and 4 (Figure 7d).

4.3.3. Topographic Factors

The relief of the terrain in the area prior to mining was reconstructed through the
digitization of the 1911 topographic map. The southwestern part of test field no. 4, close to
the Nysa Łużycka river valley, had the lowest elevation (less than 130 m a.s.l.). The sites
are located in the eastern part of test field no. 1, in the central part of test field no. 2 and in
the northern parts of test fields nos. 3 and 4 had the highest elevation (Figure 8a).

In the period of 109 years, the area changed significantly. For example, a decrease
in the terrain height, more than 15 m, was observed in fields nos. 2 and 4. The Digital
Elevation Model (DEM) in 2020 is shown in Figure 8b.

The map of a variable representing DEM of Difference between the above two DEMs
is presented in Figure 8c. The elevation changes are the result of terrain subsidence over
underground mines, the development of open pits subsequently filled with waste materials,
the development of waste heaps, and other anthropogenic activity.

Post-mining water reservoirs are present in the entire AOI with the exception of test
field no. 3. The variable representing the distance from anthropogenic lakes is presented
in Figure 8d.

The slope variable is shown in Figure 8e. Over 80% of the area is characterized by
slope values lower than 2◦. Higher slope values (10–22◦) are associated with the shorelines
of anthropogenic lakes and mining waste heaps.

The most common terrain aspect classes include SW, SE, and NW directions. The
northern aspect is the least frequent one (Figure 8f).

4.4. Correlation Analysis of Independent Variables

The results of the correlation analysis between all the considered variables have been
presented in the form of a matrix (Figure S1 in Supplementary Materials). Significant, very
strong correlations with Pearson coefficient values of 0.86 or above have been identified
for the following pairs of variables: slope and aspect of the terrain, DEM in 2020 and
in 1911, average and minimum depth of underground excavations, distance from gizers,
and the boundary of the glaciotectonically transformed area. Strong correlations exist
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between distance from open pits and distance from underground mining areas, distance
from underground mining areas and distance from waste heaps, number of mining shafts
in reference unit, and the average depth of mining shafts.
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Taking into account the results of both the correlation analysis and exploratory data
analysis for all potential combinations of variables in global regression models and their
Variance Inflation Factor (VIF) values [74], the following independent variables were
selected as potential driving factors: distance from the anthropogenic lakes, DEM (2020),
DEM of Difference (2020–1911), distance from the lignite seams, distance from former open
pits, distance from the underground workings, distance from waste heaps, distance from
gizers, as well as the aspect of the terrain.

4.5. Multivariate Weighted Spatial Regression Models

The development of the multivariate weighted spatial regression models was preceded
by the reclassification of the values of the dependent variables that did not have a normal
distribution. The reclassified data take the values of 0 or 1, denoting significant or insignifi-
cant changes in the spectral indices’ values in the period of 1989-2019. The threshold values
for significant changes were determined from the distribution of the indices (histograms in
Figure 4) and were above 0.3, 0.4, and 0.6 for MTVI2, NDVI, and NDII, respectively.
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The logistic (binary) regression model and neighborhood search (bandwidth) algo-
rithm, based on the minimum value of AICc, were selected to determine the extent of
kernel, in accordance with the spatial regression calculation theory for binary data and
regular space tessellation.

The best-fitting spatial regression models demonstrated that independent variables
(listed in Table S2) explain between 48% (adjR2 for NDII model) and 62% (adjR2 for the
NDVI model) of changes in the values of the analyzed vegetation indices in the period
of 1989–2019. The values of the Akaike Information Criterion (AICc) for the obtained
regression models, for the NDVI, NDII, and MTVI2 indices, were equal to 4362.7, 7612.0,
and 6245.4, respectively.

The distribution of residuals for the spatial regression models indicated that the areas
of the greatest underestimation and overestimation of the model, developed for the NDVI
index, were observed in the southwestern part of test field no. 1, in the western part of
test field no. 2, in the southern and eastern parts of test field no. 3, in the western part
of test field no. 4, as well as along the shorelines of anthropogenic lakes (Figure 9a). In
the remaining parts of the analyzed area the model performed well. The distribution of
residuals from the MTVI2 model is similar (Figure 9b). However, the obtained residuals are
greater. The residuals for the NDII model are characterized by a greater discrepancy from
the observed values. The areas of underestimation and overestimation cover the majority
of test field no. 4, the eastern parts of test field no. 1 and 2, as well as the central part of test
field no. 3 (Figure 9c).

Remote Sens. 2023, 15, 719 15 of 23 
 

 

 
Figure 9. Maps of regression residuals: (a) NDVI model; (b) MTVI2 model; (c) NDII model. 

The residuals from the regression models developed for the NDII and MTVI2 indices 
are characterized by a bimodal distribution. 

The character and strength of the relationship between the independent variables 
and the plant cover condition changes represented by the reclassified values of the spec-
tral indices are given by the local coefficient values and their sign determined for each 
reference unit. Table 1 contains basic information on the coefficients assigned to the indi-
vidual independent variables in the GWR models. 

Table 1. Coefficients of the independent variables. 

Independent Variables 
NDVI NDII MTVI2 

Min Max Mean Std Min Max Mean Std Min Max Mean Std 
Distance from the anthropogenic lakes −7.98 0.25 −0.05 0.29 −0.35 0.58 −0.01 0.05 −4.04 1.35 −0.03 0.17 

DEM (2020) −4.71 3.02 −0.39 0.24 −3.29 4.74 −0.08 0.60 −9.43 12.20 −0.17 0.99 
DEM of Difference (2020–1911) −19.12 5.69 −0.13 0.72 −4.13 3.24 −0.05 0.53 −20.33 5.10 −0.07 1.09 
Distance from the lignite seams −0.72 0.66 0.00 0.05 −0.49 0.35 0.00 0.05 −2.27 0.89 −0.01 0.10 
Distance from former open pits −1.13 7.93 0.02 0.27 −0.78 0.40 0.00 0.06 −1.99 3.39 0.01 0.15 

Distance from the underground work-
ings −0.12 2.35 0.02 0.13 −0.21 0.75 0.00 0.04 −0.15 1.50 0.02 0.08 

Distance from the waste heaps −0.14 0.66 0.01 0.04 −0.20 0.84 0.01 0.05 −0.58 1.39 0.00 0.04 
Distance from gizers −0.74 0.50 0.00 0.07 −0.61 0.41 0.01 0.05 −0.77 0.32 0.00 0.05 

Aspect −0.06 0.19 0.00 0.01 −0.11 0.02 0.00 0.01 −0.28 0.13 0.00 0.01 

Tables 2 and 3 describe the areas where the influence of a given independent variable 
on changes in the analyzed vegetation indices is positive (the coefficient value is above 
1.5) or negative (the coefficient value is below −1.5), respectively. These tables were pre-
pared on the basis of the spatial distributions presented in Supplementary Materials (Fig-
ures S2–S4). 

  

Figure 9. Maps of regression residuals: (a) NDVI model; (b) MTVI2 model; (c) NDII model.

The residuals from the regression models developed for the NDII and MTVI2 indices
are characterized by a bimodal distribution.

The character and strength of the relationship between the independent variables and
the plant cover condition changes represented by the reclassified values of the spectral
indices are given by the local coefficient values and their sign determined for each reference
unit. Table 1 contains basic information on the coefficients assigned to the individual
independent variables in the GWR models.

Tables 2 and 3 describe the areas where the influence of a given independent variable
on changes in the analyzed vegetation indices is positive (the coefficient value is above 1.5)
or negative (the coefficient value is below−1.5), respectively. These tables were prepared on
the basis of the spatial distributions presented in Supplementary Materials (Figures S2–S4).
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Table 1. Coefficients of the independent variables.

Independent Variables
NDVI NDII MTVI2

Min Max Mean Std Min Max Mean Std Min Max Mean Std

Distance from the
anthropogenic lakes −7.98 0.25 −0.05 0.29 −0.35 0.58 −0.01 0.05 −4.04 1.35 −0.03 0.17

DEM (2020) −4.71 3.02 −0.39 0.24 −3.29 4.74 −0.08 0.60 −9.43 12.20 −0.17 0.99

DEM of Difference (2020–1911) −19.12 5.69 −0.13 0.72 −4.13 3.24 −0.05 0.53 −20.33 5.10 −0.07 1.09

Distance from the lignite seams −0.72 0.66 0.00 0.05 −0.49 0.35 0.00 0.05 −2.27 0.89 −0.01 0.10

Distance from former open pits −1.13 7.93 0.02 0.27 −0.78 0.40 0.00 0.06 −1.99 3.39 0.01 0.15

Distance from the
underground workings −0.12 2.35 0.02 0.13 −0.21 0.75 0.00 0.04 −0.15 1.50 0.02 0.08

Distance from the waste heaps −0.14 0.66 0.01 0.04 −0.20 0.84 0.01 0.05 −0.58 1.39 0.00 0.04

Distance from gizers −0.74 0.50 0.00 0.07 −0.61 0.41 0.01 0.05 −0.77 0.32 0.00 0.05

Aspect −0.06 0.19 0.00 0.01 −0.11 0.02 0.00 0.01 −0.28 0.13 0.00 0.01

Table 2. GWR models: identification of areas of clearly positive influence of the independent variables
on the vegetation indices (based on Figures S2–S4).

Independent
Variable *

The Area of Positive Influence of the Independent Variable

NDVI NDII MTVI2

DEM (2020) the NE part of the test field no. 4 the NE and SW parts of
the test field no. 4

the NE and SE parts of the test
field no. 4

DEM of
Difference (2020–1911)

the NW, SW and SE parts
of the test field no. 4

the NW part of the test
field no. 1

the NW part of the test field
no. 1, southern part of the test
field no. 3, SW and SE parts of

the test field no 4.
Distance from lignite seams not identified not identified not identified

Distance from former open pits The SE part of the test field no. 4 not identified the SE part of the test field no. 4
Distance from

underground workings the NW part of the test field no. 4 not identified not identified

* The coefficient values for distance from anthropogenic lakes, distance from waste heaps, distance from gizers, as
well as for aspect of the terrain in each of the developed GWR model ranged from 0 to 1.5.

Table 3. GWR models: identification of areas of clearly negative influence of the independent
variables on the vegetation indices (based on Figures S2–S4).

Independent
Variable *

The Area of Negative Influence of the Independent Variable

NDVI NDII MTVI2

Distance from
anthropogenic lakes

the NW and SE parts of the
test field no. 4 not identified the SE part of the test field no. 4

DEM (2020)
the NE and SW parts of the
test field no. 3, SW and SE
parts of the test field no. 4

the NW part of the test field
no. 1, SE part of the test field
no. 3, eastern part of the test

field no. 4

the NW part of the test field no.
1, the southern part of the test

field no. 3, eastern and SW parts
of the test field no. 4

DEM of
Difference (2020–1911)

the NE and SE parts of the
test field no. 4

the southern part of the test
field no. 3 and NE part of

the test field no. 4

the southern part of the test field
no. 3 and eastern part of the test

field no. 4
Distance from lignite seams not identified not identified the SE part of the test field no. 4

Distance from former open pits not identified not identified the SE part of the test field no. 4

* The coefficient values for distance from underground workings, distance from waste heaps, distance from gizers,
as well as for aspect of the terrain in each of the developed GWR models ranged from −1.5 to 0.
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Based on these results, the authors identified the locations where the impact of the
independent variables, such as distance from the anthropogenic lakes, DEM 2020, and
DEM of Difference on the values of significant changes of spectral indices was the greatest.
These are:

1. the northwestern, northeastern, eastern, southeastern, and southwestern parts of test
field no. 4;

2. the northwestern part of test field no. 1;
3. the northeastern, southwestern, southeastern and southern parts of test field no. 3.

5. Discussion

In this study, an evaluation of long-term changes in flora condition in a partly re-
claimed glaciotectonic post-mining area, based on the time series of the NDVI, NDII, and
MTVI2 vegetation indices, was conducted. Various spectral indices were also used for an
assessment of vegetation in different areas in the research described in [17–28]. Only in the
publication [29] the combination of a selected spectral index and geographically weighted
regression was applied to analyze the relationship between the former mining activity and
the state of flora.

This research involved a more comprehensive approach based on the combination of
spatial statistics in GIS to identify zones of significant changes for three spectral indices
in a 30-years period (1989–2019) and modeling the relationships between these changes
and a set of mining, geological, and topographic factors. The vegetation condition in the
former area of combined open-pit and underground mining was characterized using the
NDVI, NDII, and MTVI2 spectral indices, describing the overall condition of the flora, the
water content in plants as well as density and area of leaves, respectively. The indices were
selected based on the results of an extensive literature study. The review of indices used for
the characterization of water content, e.g., MSI, WBI, NDWI, NDII, and NMDI [64,75–77],
showed that NDII can be determined from the Landsat TM, ETM+, and OLI sensors. The
results presented in [67] showed that among the TVI, MCARI, MCARI2, MTVI, and MTVI2,
the latter performed the best in a test area. Whereas the NDVI is the most widely used
spectral index for vegetation condition studies in post-mining areas and the results of
studies using spectral indices such as SAVI, NLI, MSR, VARI, and SR [19,78] indicated that
these do not reflect correctly the condition of multispecies and tall vegetation. Due to the
significant forest cover in the study area, we did not use the WRDVI index [79]. The field
reconnaissance (conducted on 11–12 June 2020) confirmed the continuation of the identified
changes (see section Vegetation general condition in the 1989–2019 period). The expansion of
vegetation in the area of the mining waste heaps located in the northwestern part of test
field no. 2 (Figure 10a) and in the area of the former open pit (Figure 10b) was observed.
Lush vegetation along the anthropogenic lake, and encroachment of aquatic vegetation, in
the northwestern part of test field no. 4, where no mining operations have been carried out,
were also noticed (Figure 10c). The zones with the highest values of the spectral indices are
covered with deciduous or mixed vegetation.

The field studies indicated that not all the areas of significant changes in the vegetation
state were detected with open satellite imagery. Subsidence zones and sinkholes in test fields
no. 1 and 4 were identified by employees of the Lipinki Forest District, in which complete
destruction of the flora was observed. However, detection of these areas was not possible due
to the 30 m spatial resolution of the Landsat data. Application of SPOT images, characterized
by a higher resolution (8–20 m), could have increased the accuracy of the vegetation condition
analysis [80]. Similarly, the application of the Copernicus Sentinel-2 mission data for an
assessment of flora state in the last few years could also have been considered.

In this study satellite images registered during the vegetation growing season (from
May to September) were used. The cloud cover did not allow us to apply the data captured
in the same month in each year of the research period. For this reason, the authors
have prepared the analysis of seasonal changes in spectral indices values in 1993, 2006,
and 2018 (only in these years it was possible to obtain Landsat data for each month of
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vegetation growing season, characterized by a low cloud cover). As shown in Figure S5
(Supplementary Materials), the seasonal changes in values of the spectral indices for given
months are insignificant and amounted to 0.06–0.09, 0.07–0.09, and 0.05–0.10 for the NDVI,
NDII, and MTVI2, respectively. In contrast, the average changes in indices values over the
period of 30 years were: 0.26, 0.28, and 0.26, respectively.
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Figure 10. The results of field reconnaissance: (a) The expansion of barberry birch, Scots pine, and
acacia robinia in the northern part of test field no. 2; (b) An appearance of Scots pine along the
shoreline of Lake Africa (the largest water reservoir in test field no. 4); (c) Lush vegetation (barberry
birches, Scots pines, aspens, poplars, and spruces) along the lake in the northwestern part of test field
no. 4 (photos: Anna Buczyńska, 11–12 June 2020).

To analyze a potential relationship between vegetation cover conditions and factors
describing former mining operations, a multivariate spatial regression approach was
adopted. Additional geological and topographic factors were also studied In the initial
study, an exploratory data analysis (EDA) was performed, and global spatial regression
models were tested. The global regression method based on the Ordinary Least Squares
(OLS) algorithm assumes spatial homogeneity of the analyzed phenomenon and assigns
uniform coefficient values for each of the considered variables. The low values of adjR2 (in
contrast to R2 takes into account the complexity of the model), clusters of model residuals
determined with the Moran I statistics, and significant Koenker statistics indicated spatial
heterogeneity of the data [81]. Table A2 (Appendix B) contains the statistics obtained for
the global models. Due to unsatisfactory results of the transformation of data representing
changes of the NDVI, NDII, and MTVI2 indices, e.g., Yeo-Johnson transformation [82], an
approach based on a binary reclassification of dependent variables values, representing
areas of significant changes in vegetation state (value of 1) and areas where few changes
were detected (value of 0), was adopted. The final multivariate weighted spatial regression
models have a bimodal distribution of residuals (models developed for NDII and MTVI2
indices). This may be the result of a binary distribution approach [83]. However, a missing
significant explanatory variable, such as environmental data representing meteorological
conditions or soil quality data, in the model cannot be ruled out. Nevertheless, the main aim
of the analysis was to assess the potential effect of former mining operations and identify
the statistically significant influence of distance from former open pits and underground
mining on zones of vegetation changes, which was accomplished. In future studies, if
appropriate data became available, more complex models, as well as other approaches,
will be tested (e.g., the random forest approach [84]). It should be noted that the GWR
models were developed for the parts covered with information from archival mining maps
(Figure 1). The results can thus be used in the future to identify zones subjected to mining
for which information was not preserved to this day.

Finally, the spatial resolution of the Landsat data, as well as the limited number of
imageries without cloud cover in the vegetation growing season may have contributed to
the results, e.g., to the unavoidable generalization of data in reference units. On the other
hand, it has allowed us to study the condition of vegetation in the post-mining area for a
long period of 30 years.
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6. Conclusions

As a result of the performed analyzes, zones have been identified in the post-lignite
mining area where the plant cover was degraded and where there was a conspicuous
improvement in the flora state in the 1989–2019 period.

The methodology proposed and applied in this study (combination of spectral veg-
etation indices and spatial statistics, including spatial regression) allowed us not only to
describe the vegetation condition in the post-mining area over a period of 30 years but also
to identify regions of substantial changes in the flora state and determine the strength of
the influence of former mining on the temporal changes.

The results have proved that the former mining activity may significantly affect the
condition of a selected environmental component long after it has ended. Therefore,
monitoring the post-mining environment should be regarded as a continuous task.

Despite some limitations, such as the spatial resolution of remotely sensed satellite
data, as well as the influence of cloud cover on the quality of imagery, the combined remote
sensing and spatial statistics methodology can be used to study other post-mining areas.
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//www.mdpi.com/article/10.3390/rs15030719/s1, Figure S1: Correlation matrix of independent
variables; Figure S2: GWR coefficients in the NDVI model; Figure S3: GWR coefficients in the NDII
model; Figure S4: GWR coefficients in the MTVI2 model; Figure S5: Values of vegetation indices
in the period from May to September in 1993, 2006 and 2018; Table S1: Summary of the archival
mining maps obtained from the State Mining Authority; Table S2: Summary of the developed
independent variables.
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Appendix A

Table A1. Satellite images used for the analysis of changes in the flora condition in the research area
in the period 1989–2019 (own study based on website: https://www.usgs.gov/landsat-missions
(accessed on 12 May 2021)).

Mission Sensor Name Duration of
Mission

Number of
Spectral Bands

Spectral Range
[µm] Spatial Resolution [m] Date of the Acquired Image

Landsat
5

Thematic
Mapper (TM) 03.1984–06.2013 7 0.45–12.5 visible light, infrared bands: 30 m

thermal band: 120 m

18.09.1989, 04.08.1990, 07.08.1991,
10.09.1992, 08.05.1993, 31.08.1994,
18.08.1995, 20.08.1996, 01.09.1997,
10.08.1998, 14.09.1999, 11.05.2000,
14.05.2001, 18.06.2002, 25.09.2003,
10.08.2004, 29.08.2005, 26.09.2006,
19.08.2007, 29.07.2008, 24.08.2009,

12.09.2010, 24.09.2011

https://www.mdpi.com/article/10.3390/rs15030719/s1
https://www.mdpi.com/article/10.3390/rs15030719/s1
https://www.usgs.gov/landsat-missions
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Table A1. Cont.

Mission Sensor Name Duration of
Mission

Number of
Spectral Bands

Spectral Range
[µm] Spatial Resolution [m] Date of the Acquired Image

Landsat
7

Enhanced
Thematic

Mapper Plus
(ETM+)

04.1999–at present 8 0.45–12.5
visible light, infrared bands: 30 m

thermal band: 60 m
panchromatic band: 15 m

20.05.2012

Landsat
8

Operational
Land Imager

(OLI)
02.2013—at present 11 0.43—12.5

visible light, infrared bands: 30 m
panchromatic band: 15 m

thermal bands: 100 m

15.05.2013, 07.09.2014, 19.09.2015,
12.09.2016, 30.08.2017, 17.08.2018,

21.09.2019

Appendix B

Table A2. Diagnostics of OLS models.

Parameter
OLS Model

NDVI NDII MTVI2

adjR2 0.23 0.19 0.18

AICc 641.2 −5879.9 −16,490.1

Joint Wald statistics 1053.6 * 963.3 * 1761.9 *

Koenker statistics 1100.9 * 1118.0 * 598.4 *

Global Moran I statistics 98.6 * 88.6 * 94.3 *
* an asterisk indicates a statistically significant value.
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cooperation with the City Hall; “Chroma” Printing House of Krzysztof Raczkowski: Żary, Poland, 2005; ISBN 978-83-922412-2-5.
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