Post Mining Ground Deformations Transition Related to Coal Mines Closure in the Campine Coal Basin, Belgium, Evidenced by Three Decades of MT-InSAR Data
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
4.1. Effects of Groundwater Recharge
4.2. Effects of the Actual Mining Works
4.3. GNSS vs. PSI Time Series
4.4. Leveling vs. PSI Time Series
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Devleeschouwer, X.; Declercq, P.Y.; Dusar, M.; Debien, A. Contrasting Ground Movements Revealed by Radar Interferometry in the Abandoned Coal Concessions (Campine, Belgium). In Proceedings of the FRINGE 2007 Workshop, Frascati, Italy, 26–30 November 2007. [Google Scholar]
- Islam, M.R.; Hayashi, D.; Kamruzzaman, A.B.M. Finite Element Modeling of Stress Distributions and Problems for Multi-Slice Longwall Mining in Bangladesh, with Special Reference to the Barapukuria Coal Mine. Int. J. Coal. Geol. 2009, 78, 91–109. [Google Scholar] [CrossRef]
- Bukowski, P. Water Hazard Assessment in Active Shafts in Upper Silesian Coal Basin Mines. Mine Water Environ. 2011, 30, 302–311. [Google Scholar] [CrossRef] [Green Version]
- Fan, G.; Zhang, S.; Zhang, D.; Zhang, C.; Chen, M.; Li, Q. An Index of Aquiclude Destabilization for Mining-Induced Roof Water Inrush Forecasting: A Case Study. Water 2019, 11, 2170. [Google Scholar] [CrossRef] [Green Version]
- Yin, H.; Zhao, H.; Xie, D.; Sang, S.; Shi, Y.; Tian, M. Mechanism of Mine Water Inrush from Overlying Porous Aquifer in Quaternary: A Case Study in Xinhe Coal Mine of Shandong Province, China. Arab. J. Geosci. 2019, 12, 163. [Google Scholar] [CrossRef]
- Piessens, K.; Dusar, M. Feasibility of CO2 Sequestration in Abandoned Coal Mines in Belgium. Geol. Belg. 2004, 7, 165–180. [Google Scholar]
- Todd, F.; McDermott, C.; Harris, A.F.; Bond, A.; Gilfillan, S. Coupled Hydraulic and Mechanical Model of Surface Uplift Due to Mine Water Rebound: Implications for Mine Water Heating and Cooling Schemes. Scott. J. Geol. 2019, 55, 124–133. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.; Konietzky, H.; Herbst, M.; Morgenstern, R. Numerical Simulation of Flooding Induced Uplift for Abandoned Coal Mines: Simulation Schemes and Parameter Sensitivity. Int. J. Coal. Sci. Technol. 2021, 8, 1238–1249. [Google Scholar] [CrossRef]
- Dudek, M.; Tajduś, K.; Misa, R.; Sroka, A. Predicting of Land Surface Uplift Caused by the Flooding of Underground Coal Mines—A Case Study. Int. J. Rock Mech. Min. Sci. 2020, 132, 104377. [Google Scholar] [CrossRef]
- Bekendam, R.F.; Pöttgens, J.J. Ground Movements over the Coal Mines of Southern Limburg, The Netherlands, and Their Relation to Rising Mine Waters. IAHS Publ.-Ser. Proc. Rep.-Intern. Assoc. Hydrol. Sci. 1995, 234, 3–12. [Google Scholar]
- Bateson, L.; Cigna, F.; Boon, D.; Sowter, A. The Application of the Intermittent SBAS (ISBAS) InSAR Method to the South Wales Coalfield, UK. Int. J. Appl. Earth Obs. Geoinf. 2015, 34, 249–257. [Google Scholar] [CrossRef] [Green Version]
- Cuenca, M.C.; Hooper, A.J.; Hanssen, R.F. Surface Deformation Induced by Water Influx in the Abandoned Coal Mines in Limburg, The Netherlands Observed by Satellite Radar Interferometry. J. Appl. Geophys. 2013, 88, 1–11. [Google Scholar] [CrossRef]
- Cuenca, M.C.; Hanssen, R. Subsidence and Uplift at Wassenberg, Germany Due to Coal Mining Using Persistent Scatterer Interferometry. In Proceedings of the 13th FIG International Symposium on Deformation Measurements and Analysis, Lisbon, Portugal, 12–15 May 2008; pp. 12–15. [Google Scholar]
- Harnischmacher, S.; Zepp, H. Mining and Its Impact on the Earth Surface in the Ruhr District (Germany). Z. Geomorphol. 2014, 58, 3–22. [Google Scholar] [CrossRef]
- Samsonov, S.; d’Oreye, N.; Smets, B. Ground Deformation Associated with Post-Mining Activity at the French-German Border Revealed by Novel InSAR Time Series Method. Int. J. Appl. Earth Obs. Geoinf. 2013, 23, 142–154. [Google Scholar] [CrossRef]
- Guéguen, Y.; Deffontaines, B.; Fruneau, B.; Al Heib, M.; de Michele, M.; Raucoules, D.; Guise, Y.; Planchenault, J. Monitoring Residual Mining Subsidence of Nord/Pas-de-Calais Coal Basin from Differential and Persistent Scatterer Interferometry (Northern France). J. Appl. Geophys. 2009, 69, 24–34. [Google Scholar] [CrossRef]
- Marschalko, M.; Yilmaz, I.; Křístková, V.; Fuka, M.; Kubečka, K.; Bouchal, T. An Indicative Method for Determination of the Most Hazardous Changes in Slopes of the Subsidence Basins in Underground Coal Mining Area in Ostrava (Czech Republic). Environ. Monit. Assess. 2013, 185, 509–522. [Google Scholar] [CrossRef]
- Malinowska, A.A.; Witkowski, W.T.; Guzy, A.; Hejmanowski, R. Satellite-Based Monitoring and Modeling of Ground Movements Caused by Water Rebound. Remote Sens. 2020, 12, 1786. [Google Scholar] [CrossRef]
- Blachowski, J.; Kopec, A.; Milczarek, W.; Owczarz, K. Evolution of Secondary Deformations Captured by Satellite Radar Interferometry: Case Study of an Abandoned Coal Basin in SW Poland. Sustainability 2019, 11, 884. [Google Scholar] [CrossRef] [Green Version]
- Przyłucka, M.; Herrera, G.; Graniczny, M.; Colombo, D.; Béjar-Pizarro, M. Combination of Conventional and Advanced DInSAR to Monitor Very Fast Mining Subsidence with TerraSAR-X Data: Bytom City (Poland). Remote Sens. 2015, 7, 5300–5328. [Google Scholar] [CrossRef] [Green Version]
- Solarski, M.; Machowski, R.; Rzetala, M.; Rzetala, M.A. Hypsometric Changes in Urban Areas Resulting from Multiple Years of Mining Activity. Sci. Rep. 2022, 12, 2982. [Google Scholar] [CrossRef]
- Nádudvari, Á. Using Radar Interferometry and SBAS Technique to Detect Surface Subsidence Relating to Coal Mining in Upper Silesia from 1993–2000 and 2003–2010. Environ. Socio-Econ. Stud. 2016, 4, 24–34. [Google Scholar] [CrossRef] [Green Version]
- Antonielli, B.; Sciortino, A.; Scancella, S.; Bozzano, F.; Mazzanti, P. Tracking Deformation Processes at the Legnica Glogow Copper District (Poland) by Satellite InSAR—I: Room and Pillar Mine District. Land 2021, 10, 653. [Google Scholar] [CrossRef]
- Mazzanti, P.; Antonielli, B.; Sciortino, A.; Scancella, S.; Bozzano, F. Tracking Deformation Processes at the Legnica Glogow Copper District (Poland) by Satellite InSAR—II: Żelazny Most Tailings Dam. Land 2021, 10, 654. [Google Scholar] [CrossRef]
- Hanssen, R.F. Radar Interferometry: Data Interpretation and Error Analysis; Remote Sensing and Digital Image Processing; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2001; ISBN 978-0-306-47633-4. [Google Scholar]
- Massonnet, D.; Rossi, M.; Carmona, C.; Adragna, F.; Peltzer, G.; Feigl, K.; Rabaute, T. The Displacement Field of the Landers Earthquake Mapped by Radar Interferometry. Nature 1993, 364, 138. [Google Scholar] [CrossRef]
- Zebker, H.A.; Villasenor, J. Decorrelation in Interferometric Radar Echoes. IEEE Trans. Geosci. Remote Sens. 1992, 30, 950–959. [Google Scholar] [CrossRef] [Green Version]
- Ferretti, A.; Prati, C.; Rocca, F. Permanent Scatterers in SAR Interferometry. IEEE Trans. Geosci. Remote Sens. 2001, 39, 8–20. [Google Scholar] [CrossRef]
- Ferretti, A.; Prati, C.; Rocca, F. Nonlinear Subsidence Rate Estimation Using Permanent Scatterers in Differential SAR Interferometry. IEEE Trans. Geosci. Remote Sens. 2000, 38, 2202–2212. [Google Scholar] [CrossRef] [Green Version]
- Hooper, A. A Multi-Temporal InSAR Method Incorporating Both Persistent Scatterer and Small Baseline Approaches. Geophys. Res. Lett. 2008, 35. [Google Scholar] [CrossRef] [Green Version]
- Berardino, P.; Fornaro, G.; Lanari, R.; Sansosti, E. A New Algorithm for Surface Deformation Monitoring Based on Small Baseline Differential SAR Interferograms. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2375–2383. [Google Scholar] [CrossRef] [Green Version]
- Lanari, R.; Lundgren, P.; Manzo, M.; Casu, F. Satellite Radar Interferometry Time Series Analysis of Surface Deformation for Los Angeles, California. Geophys. Res. Lett. 2004, 31. [Google Scholar] [CrossRef]
- Ferretti, A.; Fumagalli, A.; Novali, F.; Prati, C.; Rocca, F.; Rucci, A. A New Algorithm for Processing Interferometric Data-Stacks: SqueeSAR. IEEE Trans. Geosci. Remote Sens. 2011, 49, 3460–3470. [Google Scholar] [CrossRef]
- Buffel, P.; Claes, S.; Gullentops, F. Kaartblad 26 Rekem. Toelichtingen Bij de Geologische Kaart van België-Vlaams Gewest; Belgische Geologische Dienst: Brussels, Belgium, 2001. [Google Scholar]
- Doornenbal, H.; Stevenson, A. Petroleum Geological Atlas of the Southern Permian Basin Area; EAGE: Bunnik, The Netherlands, 2010; ISBN 90-73781-61-2. [Google Scholar]
- Langenaeker, V. The Campine Basin: Stratigraphy, Structural Geology, Coalification, and Hydrocarbon Potential for the Devonian to Jurassic; Aardkundige Mededelingen Leuven University Press: Leuven, Belgium, 2000; Volume 10. [Google Scholar]
- Bouckaert, J.; Dusar, M. Arguments Géophysiques Pour Une Tectonique Cassante en Campine (Belgique), Active au Paléozoique Supérieur et Réactivée Depuis Le Jurassique Supérieur. Ann. Soc. Géol. Nord. 1987, 106, 201–208. [Google Scholar]
- Delmer, A. Carte des Mines du Bassin Houiller de la Campine; Belgische Geologische Dienst: Brussels, Belgium, 1963. [Google Scholar]
- Bless, M.J.M.; Felder, P.J.; Meessen, J.P.M.T. Late Cretaceous Sea Level Rise and Inversion: Their Influence on the Depositional Environment between Aachen and Antwerp. Ann. Soc. Géol. Belg 1986, 109, 333–355. [Google Scholar]
- Felder, P.J. Upper Cretaceous to Early Tertiary Deposits Santonian-Paleocene in Northeastern Belgium and South Limburg the Netherlands with Reference to the Campanian-Maastrichtian; Belgische Geologische Dienst: Brussels, Belgium, 1985. [Google Scholar]
- Deckers, J.; Vandenberghe, N.; Lanckacker, T.; De Koninck, R. The Pyrenean Inversion Phase in Northern Belgium: An Example of a Relaxation Inversion? Int. J. Earth Sci. 2016, 105, 583–593. [Google Scholar] [CrossRef]
- Vandenberghe, N.; Laga, P.; Steurbaut, E.; Hardenbol, J.; Vail, P.R. Tertiary Sequence Stratigraphy at the Souther Border of the North Sea Basin in Belgium. SEPM Spec. Publ. 1998, 60, 119–154. [Google Scholar] [CrossRef]
- Vandenberghe, N.; Van Simaeys, S.; Steurbaut, E.; Jagt, J.; Felder, P. Stratigraphic Architecture of the Upper Cretaceous and Cenozoic along the Southern Border of the North Sea Basin in Belgium. Neth. J. Geosci. 2004, 83, 155–171. [Google Scholar] [CrossRef] [Green Version]
- Camelbeeck, T.; Meghraoui, M. Large Earthquake in Northern Europe More Likely than Once Thought. Eos Trans. Am. Geophys. Union 1996, 77, 405–409. [Google Scholar] [CrossRef]
- Vanneste, K.; Camelbeeck, T.; Verbeeck, K.; Demoulin, A. Morphotectonics and Past Large Earthquakes in Eastern Belgium. In Landscapes and Landforms of Belgium and Luxembourg; Springer: Berlin/Heidelberg, Germany, 2018; pp. 215–236. [Google Scholar]
- Helsen, S.; Langenaeker, V. Burial History and Coalification Modelling of Westphalian Strata in the Eastern Campine Basin (Northern Belgium); Geological Survey of Belgium Professional Paper; Belgische Geologische Dienst: Brussels, Belgium, 1999; Volume 1. [Google Scholar]
- Langenaeker, V. Coalification Maps for the Westphalian of the Campine Coal Basin, 256th ed.; Geological Survey of Belgium Professional Paper; Belgische Geologische Dienst: Brussels, Belgium, 1992; Volume 6. [Google Scholar]
- Kampes, B.; Usai, S. Doris: The Delft Object-Oriented Radar Interferometric Software; Citeseer: Princeton, NJ, USA, 1999; Volume 16, p. 20. [Google Scholar]
- Rosen, P.A.; Gurrola, E.; Sacco, G.F.; Zebker, H. The InSAR Scientific Computing Environment. In Proceedings of the EUSAR 2012 9th European Conference on Synthetic Aperture Radar, Nuremberg, Germany, 23–26 April 2012; pp. 730–733. [Google Scholar]
- Rosen, P.; Hensley, S.; Peltzer, G.; Rogez, F.; Simons, M.; Crampe, F.; Lohmann, R. A Repeat Orbit Interferometry Package. 2000. Available online: https://trs.jpl.nasa.gov/handle/2014/14251 (accessed on 13 November 2022).
- Farr, T.G.; Rosen, P.A.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Kobrick, M.; Paller, M.; Rodriguez, E.; Roth, L. The Shuttle Radar Topography Mission. Rev. Geophys 2007, 45. [Google Scholar] [CrossRef] [Green Version]
- Chaussard, E.; Wdowinski, S.; Cabral-Cano, E.; Amelung, F. Land Subsidence in Central Mexico Detected by ALOS InSAR Time-Series. Remote Sens. Environ. 2014, 140, 94–106. [Google Scholar] [CrossRef]
- Cuenca, M.C.; Hanssen, R.; Hooper, A.; Arikan, M. Surface Deformation of the Whole Netherlands after PSI Analysis. In Proceedings of the Fringe 2011 Workshop, Frascati, Italy, 19–23 September 2011; pp. 19–23. [Google Scholar]
- Rietveld, H. Land Subsidence in the Netherlands. In Proceedings of the Third International Symposium on Land Subsidence, Venice, Italy, 19–25 March 1984; pp. 455–464. [Google Scholar]
- Devleeschouwer, X.; Declercq, P.-Y.; Flamion, B.; Brixko, J.; Timmermans, A.; Vanneste, J. Uplift Revealed by Radar Interferometry around Liège (Belgium): A Relation with Rising Mining Groundwater. In Proceedings of the Post-Mining Symposium, Nancy, France, 6 February 2008. [Google Scholar]
- D’hooge, L. Etude Hydrologique des Eaux des Mines en Campine. Travail de Fin D’étude; ULB Faculté des Sciences Appliquées: Brussels, Belgium, 1990. [Google Scholar]
- Dusar, M.; Verkaeren, P. Methane Desorption in Closed Collieries: Examples from Belgium; Central Mining Institute: Katowice, Poland, 1992. [Google Scholar]
- Deckers, J.; De Koninck, R.; Bos, S.; Broothaers, M.; Dirix, K.; Hambsch, L.; Lagrou, D.; Lanckacker, T.; Matthijs, J.; Rombaut, B. Geologisch (G3Dv3) en Hydrogeologisch (H3D) 3D-Lagenmodel van Vlaanderen; Vlaams Planbureau voor Omgeving: Brussels, Belgium, 2019. [Google Scholar]
- Christiaens, P. Expérience Dans Le Domaine Du Rabotage Au Siège de Beringen (= Ervaringen Met de Schavende Winning Op de Zetel Beringen). Ann. Mines Belg. 1971, 1971–1979, 933–954. [Google Scholar]
- Christiaens, P. Relations Entre le Soutènement Mécanisé et le Comportement du Toit; Université de Liège: Liège, Belgium, 1981. [Google Scholar]
- Dusar, M. Mining Subsidence Damage after Colliery Closure: Surface Expression of the Beringen Fault, Campine Coal Basin (NE Belgium); Red. D. Dittrich: Trier, Germany, 1999; p. 1. [Google Scholar]
- Declercq, P.-Y.; Walstra, J.; Hayen, R.; Shimoni, M.; Barbier, C.; Derauw, D.; Van Balen, K.; Verstrynge, E.; Urrego, L.E.B. Cartography of the Belgian Monuments at Risk via PSI Analysis of the Ground Movements, the GEPATAR Project. In Proceedings of the 5th International Geologica Belgica Meeting 2016, Mons, Belgium, 26–29 January 2016; Volume 125. [Google Scholar]
- Shimoni, M.; Lopez, J.; Walstra, J.; Declercq, P.-Y.; Bejarano-Urrego, L.; Verstrynge, E.; Derauw, D.; Hayen, R.; Van Balen, K. GEPATAR: A Geotechnical Based PS-InSAR Toolbox for Architectural Conservation in Belgium. In Proceedings of the 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, TX, USA, 23–28 July 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 5555–5558. [Google Scholar]
- Dach, R.; Lutz, S.; Walser, P.; Fridez, P. Bernese GNSS Software Version 5.2.; Astronomical Institute, University of Bern: Bern, Switzerland, 2015. [Google Scholar] [CrossRef]
- Helmert, F.R. Die Ausgleichungsrechnung Nach der Methode der Kleinsten Quadrate: Mit Anwendungen auf die Geodäsie, die Physik und die Theorie der Messinstrumente; Teubner; Forgotten Books: London, UK, 1924. [Google Scholar]
- Vervoort, A.; Declercq, P.-Y. Upward Surface Movement above Deep Coal Mines after Closure and Flooding of Underground Workings. Int. J. Min. Sci. Technol. 2018, 28, 53–59. [Google Scholar] [CrossRef]
Satellite | Track | Pass | Number of Scenes | Acquisition Period | Reference Point (° LON/LAT) | Master | Processing Software | Avg PS Density (PS/km2) |
---|---|---|---|---|---|---|---|---|
ERS-1/2 | 380 | Descending | 69 | 1992–2005 | 4.8583/50.4709 | 6 April 1997 | ROI_PAC, Doris, StaMPS | 56 |
ENVISAT | 380 | Descending | 67 | 2003–2010 | 4.8583/50.4709 | 12 August 2007 | ROI_PAC, Doris, StaMPS | 61 |
COSMO-SkyMed | / | Descending | 29 | 2011–2014 | 5.1183/51.1806 | 30 May 2012 | Doris, StaMPS | 164 |
Sentinel-1A | Path 88 track 163 Swath 1 and 2 | Ascending | 154 | 2016–2022 | 4.3575/50.7981 | 9 October 2019 | ISCE StaMPS | 31 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Declercq, P.-Y.; Dusar, M.; Pirard, E.; Verbeurgt, J.; Choopani, A.; Devleeschouwer, X. Post Mining Ground Deformations Transition Related to Coal Mines Closure in the Campine Coal Basin, Belgium, Evidenced by Three Decades of MT-InSAR Data. Remote Sens. 2023, 15, 725. https://doi.org/10.3390/rs15030725
Declercq P-Y, Dusar M, Pirard E, Verbeurgt J, Choopani A, Devleeschouwer X. Post Mining Ground Deformations Transition Related to Coal Mines Closure in the Campine Coal Basin, Belgium, Evidenced by Three Decades of MT-InSAR Data. Remote Sensing. 2023; 15(3):725. https://doi.org/10.3390/rs15030725
Chicago/Turabian StyleDeclercq, Pierre-Yves, Michiel Dusar, Eric Pirard, Jeffrey Verbeurgt, Atefe Choopani, and Xavier Devleeschouwer. 2023. "Post Mining Ground Deformations Transition Related to Coal Mines Closure in the Campine Coal Basin, Belgium, Evidenced by Three Decades of MT-InSAR Data" Remote Sensing 15, no. 3: 725. https://doi.org/10.3390/rs15030725
APA StyleDeclercq, P. -Y., Dusar, M., Pirard, E., Verbeurgt, J., Choopani, A., & Devleeschouwer, X. (2023). Post Mining Ground Deformations Transition Related to Coal Mines Closure in the Campine Coal Basin, Belgium, Evidenced by Three Decades of MT-InSAR Data. Remote Sensing, 15(3), 725. https://doi.org/10.3390/rs15030725