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Abstract: Strong-scattering medium can usually form a good sealing medium for oil and gas resources.
However, conventional elastic full-waveform inversion (EFWI) methods are difficult to build reliable
velocity models under the condition of lacking low-frequency information. The elastic direct envelope
inversion (EDEI) method has been proven to be able to model large-scale Vp and Vs structures of
strong-scattering media. The successive use of EDEI and EFWI can obtain fine structures of the strong
scatterers and their shielding areas. However, the inversion effects of inner velocity and bottom
boundaries of strong scatterers by the existing methods need to be improved. In this paper, we
propose the elastic direct envelope inversion with anisotropic total variation constraint (EDEI-ATV).
The anisotropic total variation (ATV) constraint has the advantage of making the velocity more
uniform inside the layer and sharper on boundaries, which can be used to improve the inversion
results of EDEI. During the iterations, the ATV constraint is directly applied to the update of Vp
and Vs, and the alternately iterative algorithm can achieve good results. After obtaining reliable
large-scale Vp and Vs structures, the EFWI with anisotropic total variation constraint (EFWI-ATV) is
performed to obtain high-precision Vp and Vs structures. Numerical examples verify the effectiveness
of the proposed method.

Keywords: elastic full-waveform inversion; elastic direct envelope inversion; strong scattering; total
variation constraint

1. Introduction

Full-waveform inversion (FWI) constructs subsurface parameter models by matching
the full-waveform information of simulated data and observed data [1,2]. The sensitiv-
ity kernel of the FWI can be simplified by using the Born approximation, so that the
gradient of FWI can be easily calculated by the adjoint-state method. In the absence of
low-frequency information, it is difficult for the traditional FWI method to model the
velocity of strong-scattering media. When multi-wave and multi-component cases are
considered, the nonlinearity of elastic full-waveform inversion (EFWI) is stronger, and
it is more difficult to model high-precision velocity in elastic strong-scattering media [3].
Strong-scattering media can usually form good storage media for oil and gas resources.
Therefore, it is of great practical significance to build high-precision Vp and Vs models for
elastic strong-scattering media.

In order to improve the velocity inversion of strong-scattering media, a series of
improved algorithms for FWI method have been proposed, such as the Laplace–Fourier
domain-waveform inversion method [4,5], the level set method [6], multi-dominant fre-
quency inversion method [7], deep learning method [8], edge-preserving smoothing algo-
rithm [9], compressed sensing and sparse constraint method [10], etc. The total variation
(TV) constraint has shown advantages in the FWI, which can make the velocity inside
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the layer more uniform and the boundary sharper [11–17]. Taking this advantage, the TV
constraint can play an important auxiliary role in parameter modeling of strong-scattering
media. Esser et al. applied the isotropic total variation (ITV) constraint (L2 norm total
variation constraint) in the acoustic adaptive-waveform inversion method, which success-
fully improves the accuracy and resolution of strong-scattering salt dome modeling [18].
Then, the hinge-loss strategy is introduced into the FWI with the ITV constraint, which
further improves the accuracy of salt dome and sub-salt velocity modeling [19]. Qiu et al.
proposed a FWI process based on steerable variation regularization, which simultaneously
uses anisotropic total variational (ATV) constraint (L1 norm total variational constraint)
and model space variation prior information as regularization items [20]. Peters and
Herrmann [21] pointed out that applying the TV regularization constraint to the misfit
function of FWI as a penalty function will cause the inversion result to become a function
of smoothness and compromise parameters. They proposed to apply the intersection of
the ITV and bound constraint on FWI. Yong et al. [22] proposed an adaptive primal–dual
hybrid gradient method to solve the waveform inversion problem with the ITV constraint.
The convergence rate and computational efficiency of this method are improved compared
with the primal–dual hybrid gradient method. Kalita et al. [23] use the TV constraint
FWI and an automated salt flooding strategy to obtain high-precision salt model building
with the lowest available frequency of 3Hz and a simple initial model. Most of the above
strong-scattering velocity modeling with TV constraint research studies are based on the
acoustic media. In this paper, the ATV constraint is used for the multiparameter model
building of elastic strong-scattering media.

The envelope data contains abundant ultra-low frequency information even if the
original seismic data lacks effective low-frequency information. Wu et al. proposed
the modulation-convolution signal model and the envelope inversion method [24,25] to
recover the large-scale structures of the subsurface media. According to the modulation-
convolution signal model, even if the source and seismic data lack low-frequency informa-
tion, the seismic envelope data still carry the intrinsic long-wavelength scattering response
of the subsurface medium. However, due to the chain rule used in deriving the gradi-
ent, conventional envelope inversion [24,26,27] cannot solve the inversion problem of
large-scale strong-scattering media. In order to overcome the problems of conventional
envelope inversion, Wu and Chen proposed the direct envelope Fréchet derivative and
the direct envelope inversion (DEI) method [28–30], which directly maps the ultra-low
frequency envelope data perturbation to the velocity perturbation and can invert the large-
scale strong-scattering velocity model without original low-frequency information. Chen
et al. [31] combined the DEI method with the wavefield direction decomposition method,
and proposed a reflection DEI method, which can improve the inversion effects of the ve-
locity structures in the strong-scattering shielding area. Chen et al. [32] and Wang et al. [33]
found that the envelope data based on Hilbert transform loses polarity information, and
considering polarity information in the process of DEI can improve the reconstruction of the
salt domes and subsalt structures. Chen et al. [34] further explored the physical meaning of
the signed envelope, pointed out its connection with the subsurface reflection coefficient
sequence, and proposed a multi-scale signed DEI method. Zhang et al. [35] proposed a
source-independent direct envelope inversion method, which effectively alleviates the
influence of source wavelet errors on the inversion results. Chen et al. [36] combined the
objective function of FWI and DEI and used the multi-offset inversion strategy to improve
the inversion effect of the DEI method for the strong-scattering salt dome model. Hu
et al. [37] constructed DEI in the time-frequency domain using the instantaneous amplitude
and phase, which effectively improved the inversion effect of strong-scattering salt domes
and sub-salt structures. Luo et al. [38] proposed an angle-domain DEI method according to
the radiation pattern difference in the velocity and density, and realized the simultaneous
inversion of the strong-scattering velocity and density based on acoustic media. Zhang
et al. [39] introduced wavefield direction decomposition and structure-guided perturbation
decomposition strategy in the process of DEI, which improves the inversion effects of
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salt dome and sub-salt structures. The latest studies have extended the DEI method to
elastic media, which can simultaneously provide reliable large-scale Vp and Vs structures
of strong-scattering media [40–42]. However, it is difficult for the existing DEI methods
to obtain the ideal uniform velocity inside the elastic strong scatterers. The modeling
effect of the bottom boundary of strong scatterers is also not ideal. Therefore, we propose
to introduce the anisotropic total variational constraint into the elastic direct envelope
inversion (EDEI) method.

In this paper, ATV constraint is applied in the process of EDEI, which can improve the
modeling effects of the inner velocity and bottom boundaries of strong scatterers. After
the reliable long-wavelength Vp and Vs structures are obtained, the EFWI with anisotropic
total variation constraint can obtain high-accuracy Vp and Vs structures of the strong-
scattering media. Finally, the proposed method is verified on the modified SEG/EAGE
(Society of Exploration Geophysicists/European Association of Geoscientists&Engineers)
salt dome model.

2. Review of Elastic Full-Waveform Inversion and Direct Envelope Inversion
2.1. Elastic Full-Waveform Inversion (EFWI)

The EFWI method conducts high-precision multiparameter model building by match-
ing the multi-component simulated and observed data. The objective function of EFWI is

σEFWI =
1
2

ns

∑
si

nr

∑
ri

∑
c
‖uc

ri,si − dc
ri,si‖

2, (1)

where ns and nr denote the total source and receiver number, respectively; si and ri denote
the source and receiver index, respectively; c denotes the direction index of the recordings
and c = x, y, z; u and d denote synthetic data and observed data, respectively. According to
the adjoint-state method and the chain rule, the gradient of σEFWI with respect to P-wave
velocity vp and S-wave velocity vs in 2D case can be written as [43]

∂σEFWI
∂vp

= −2ρvp

∫ T

0

(
∂ux

∂x
+

∂uz

∂z

)(
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x
∂x

+
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z
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)
dt, (2)
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[
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(
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∂x ·
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∂u+
z

∂z
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(

∂uz
∂x + ∂ux

∂z

)(
∂u+

z
∂x + ∂u+

x
∂z

)]
dt,

(3)

where ρ denotes density; ux and uz denote x- and z-components of the forward-propagated
source wavefield, respectively; u+

x and u+
z denote the x- and z-component of the back-

propagated residual wavefield, respectively. Due to the consideration of multiparameter
inversion, EFWI is more nonlinear than acoustic FWI. It is obviously more difficult to
carry out high-precision multiparameter modeling of elastic strong-scattering medium than
single parameter modeling.

2.2. Elastic Direct Envelope Inversion (EDEI)

The EDEI method can reconstruct large-scale strong-scattering velocity models in
the absence of original low-frequency information. The objective function of EDEI can be
written as

σEDEI =
1
2

ns

∑
si

nr

∑
ri

∑
c
‖esyn,c

ri,si − eobs,c
ri,si ‖

2
, (4)

where esyn and eobs denote the envelope of simulated and observed data, respectively.
In conventional envelope inversion, the gradient is calculated using the chain rule. The
envelope data perturbation is firstly mapped to the data perturbation and then mapped
to the velocity perturbation. The low-frequency advantages of the envelope data are
weakened a lot during this process. With direct envelope inversion, the envelope data
perturbation is directly mapped to velocity perturbation, so that we can handle large-scale
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and strong-scattering velocity perturbation [35]. In EDEI, the gradient of the objective
function shown in Equation (4) with respect to vp and vs can be calculated by means of
wave mode decomposition, which can be written as [37]

∂σEDEI
∂vp

= −2ρvp

ns

∑
si

nr

∑
ri

∫ T

0
Ep

syn

[
GT

e (∆E)
]

p
dt, (5)

∂σEDEI
∂vs

≈ −2ρvs

ns

∑
si

nr

∑
ri

∫ T

0

{
Es,x

syn

[
GT

e (∆E)
]

s,x
+ Es,z

syn

[
GT

e (∆E)
]

s,z

}
/µ2dt, (6)

where Ep
syn denotes forward-propagated P-wave envelope field; ∆E denotes envelope data

residual; [·]p denotes decomposed P-wave component; GT
e denotes transpose operator of en-

velope Green’s function; Es,x
syn and Es,z

syn denote x- and z-component of forward-propagated
S-wave envelope-field, respectively; [·]s,x and [·]s,z denote x- and z-component of decom-
posed S-wave envelope-field, respectively. We can see from Equations (5) and (6), with
wave mode decomposition, the Vp update mainly comes from P-wave perturbations and
Vs update mainly comes from S-wave perturbations. This approximation ignores the contri-
butions of the converted waves but can still give useful information of strong-scattering salt
bodies. Many approximations are involved in the derivation of the EDEI method, and the
inversion of large-scale strong scatterers is also difficult to obtain ideal uniform information
(such as uniform velocity inside the salt body). Therefore, we consider the imposition of
the ATV constraint in the EDEI process to improve the inversion stability and effects on the
interior and boundaries of strong scatterers.

3. EDEI with Anisotropic Total Variation Constraint (EDEI-ATV)
3.1. Anisotropic Total Variation (ATV) Constraint

The TV constraint is one of the commonly used regularization terms in seismic FWI.
Since the advantage of the TV constraint is to sharpen the image boundary and smooth
the interior of the image, it is very suitable for making the boundary of the velocity model
clearer and the velocity inside the salt dome more uniform during the inversion process.
According to the form of the TV constraints, it can be divided into isotropic total variation
(ITV) and anisotropic total variation (ATV) constraint, and the expressions are as follows

‖v‖ITV =
nz−1

∑
i=1

nx−1

∑
j=1

√(
vi,j − vi+1,j

)2
+
(
vi,j − vi,j+1

)2
+

nz−1

∑
i=1
|vi,nx − vi+1,nx|+

nx−1

∑
j=1

∣∣vnz,j − vnz,j+1
∣∣, (7)

‖v‖ATV =
nz−1

∑
i=1

nx−1

∑
j=1

{∣∣vi,j − vi+1,j
∣∣+ ∣∣vi,j − vi,j+1

∣∣}+ nz−1

∑
i=1
|vi,nx − vi+1,nx|+

nx−1

∑
j=1

∣∣vnz,j − vnz,j+1
∣∣, (8)

where v denotes velocity model; and nz and nx denote the grid points in the vertical
and horizontal direction, respectively. The ATV constraint is better than the ITV constraint
in suppressing noise and maintaining the continuity of fine structures [13]. Therefore, in
this paper, ATV constraint is applied to the EDEI process.

3.2. EDEI with ATV Constraint (EDEI-ATV)

The objective function of EDEI-ATV can be written as

σEDEI−ATV =
1
2

ns

∑
si

nr

∑
ri

∑
c
‖esyn,c

ri,si − eobs,c
ri,si ‖

2
+ λ‖v‖ATV . (9)

During the inversion process, the ATV constraint is directly imposed on the velocity
model. The constrain process of the Vp and Vs models is equivalent to solving the following
two problems

σATV−vp = ‖vk
p −

(
vk−1

p + α1∆vk
p

)
‖+ 2λ1‖vk

p‖ATV
, (10)
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σATV−vs = ‖vk
s −

(
vk−1

s + α2∆vk
s

)
‖+ 2λ2‖vk

s‖ATV , (11)

where α1 and α2 are the update step length of Vp and Vs model, respectively; ∆vk
p and ∆vk

s
are the update of Vp and Vs in the kth iteration, respectively; and λ1 and λ2 are the weight
coefficients for imposing the ATV constraint on the Vp and Vs model, respectively. In the
proposed EDEI-ATV method, the ATV constraint denoising algorithm is directly added
into the EDEI process. The ATV constraint denoising algorithm is actually introduced from
image processing field. The Vp and Vs model denoising problems are the same from the
perspective of image denoising. Therefore, it is the same when we apply ATV constraint on
Vp and Vs.

We can also see from Equations (9)–(11) that the ATV constraint denoising problem
and velocity inversion problem are iteratively solved. In the implementation, it is not
necessary to conduct ATV denoising in each iteration. In our experience, a small λ with
more iterations is almost equivalent to a large λ with fewer iterations. Additionally,
applying ATV denoising frequently will influence the convergence rate in the late stage of
the inversion process. In our tests, we apply ATV denoising every 50 iterations.

The ATV constraint problems shown in Equations (10) and (11) can be solved by the
Fast Gradient Projection (FGP) algorithm [44]. The FGP algorithm is easy to program and
has high calculation efficiency. Especially, when we solve the inverse problems of ITV
and ATV with FGP, we only need to make small modifications on the projection operator.
Therefore, we choose the FGP algorithm to solve the ATV constraint inversion problem in
this paper. Assume we define a linear operator L, which can be written as

L(p, q)i,j = pi,j + qi,j − pi−1,j − qi,j−1,
i = 1, . . . , nz, j = 1, . . . , nx.

(12)

The conjugate operator of L can be written as LT(x) = (p, q), where{
pi,j = xi,j − xi+1,j i = 1, . . . , nz− 1, j = 1, . . . nx,
qi,j = xi,j − xi,j+1 i = 1, . . . , nz, j = 1, . . . nx− 1.

(13)

Define PC as the orthogonal projection operator in the set C, and the upper and lower
bounds of the set C are w and l, respectively. PC can be written as

PC(x)i,j =


l xi,j < l

xi,j l ≤ xi,j ≤ w
w xi,j > w

. (14)

The core of the FGP algorithm is the iterative calculation of Equations (15)–(17).

(pii, qii) = Pξ

{
(rii, sii) +

1
8λ

LT PC

[(
mk−1 + α∆m

)
− λL(rii, sii)

]}
, (15)

tii+1 =
1 +

√
1 + 4t2

ii

2
, (16)

(rii+1, sii+1) = (pii, qii) +

(
tii − 1
tii+1

)(
pii − pii−1, qii − qii−1

)
, (17)

where α is the step length, ii is the current iteration number of the FGP algorithm, mk−1 is
the model obtained after (k− 1)th iteration, ∆m is the current model update, and Pξ is the
projection operator. If Pξ(p, q) = (r, s), then

ri,j =
pi,j

max
(
1,
∣∣pi,j

∣∣) i = 1, . . . , nz, j = 1, . . . , nx. (18)
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si,j =
qi,j

max
(
1,
∣∣qi,j
∣∣) i = 1, . . . , nz, j = 1, . . . , nx. (19)

Equation (15) shows the conventional gradient projection algorithm, which means to
search according to the gradient direction within the constraint range. When the gradi-
ent search direction exceeds the constraint range, the iteration direction is projected onto
the constraint boundary. Equations (16) and (17) are the improvements to the conven-
tional gradient projection algorithm by introducing intermediate variables t, r and s to
speed up convergence. In each iteration, the parameter model can be calculated using the
following equation

mk = PC

[(
mk−1 + α∆m

)
− λL(pN , qN)

]
, (20)

where N denotes the maximum iteration number of the FGP algorithm.
We conduct the ATV constraint denoising test in the following. Figure 1a shows a salt

dome model with random noise. The velocity inside the salt body is not uniform, and the
fine structures are not clear with the effects of noise. The denoising problem can be easily
solved by the ATV constraint optimization algorithm. With the FGP algorithm mentioned
above, the final denoising result is shown in Figure 1b. The weighting factor λ is 200, and
the iteration number is 30. When facing a new problem, we should conduct a test to choose
a suitable weighting factor. A small λ will cause noise residual, and a large λ will damage
effective structures. We can see that the noise is largely suppressed. The salt body is well
recovered with clear boundaries. The background velocity is retained with many detailed
weak-scattering structures.
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8a,b, we can see clear residual reflections because the initial models are linear gradient 
models without reflection layers. The adjoint sources in Figure 8c,d are very different from 
those in Figure 8a,b. The frequency band of the residuals is obviously lower and mainly 

Figure 1. ATV constraint denoising test. (a) Salt velocity model with random noise; (b) ATV constraint
denoising result.

4. Numerical Examples

We test the inversion effects of the proposed method on a modified SEG/EAGE
salt dome model. The true Vp and Vs models are shown in Figure 2a,b, respectively.
The waveform and frequency spectrum of the source wavelet are shown in Figure 3a,b,
respectively. The source wavelet is a Ricker wavelet after high-pass filtering, and the low-
frequency information below 3 Hz is cut off. The main frequency of the source wavelet is
about 9 Hz. The initial velocity models of Vp and Vs are shown in Figure 4a,b, respectively.
There is no prior information of strong scatterers in the initial Vp and Vs models.
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Figure 4. Initial velocity model. (a) Initial Vp model; (b) Initial Vs model.

Conventional EFWI is performed on the initial Vp and Vs models, and the inversion
results of Vp and Vs are shown in Figure 5a,b, respectively. We can find that due to the
lack of low-frequency information, the conventional EFWI can only recover part of the
top boundary of the strong scatterer, and cannot recover the interior velocity and shape
information of the strong scatterer.
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Starting with the velocity models shown in Figure 4, the unconstrained EDEI method
is carried out. The results of Vp and Vs are shown in Figure 6a,b, respectively. It shows that
although the shape of strong scatterers has been restored to a certain extent, the internal
velocity of the salt dome still deviates from the true value. In the unconstrained condition,
the results in Figure 6a,b are used as the initial model, and the conventional EFWI is
performed. The final Vp and Vs inversion results are shown in Figure 6c,d. We can see that
the velocity uniformity inside the salt dome is not good, and the lower boundary of the salt
dome is not fully described.
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Figure 6. Inversion results with and without ATV constraint. (a) Inverted Vp by EDEI; (b) Inverted
Vs by EDEI; (c) Inverted Vp by EDEI + EFWI; (d) Inverted Vs by EDEI + EFWI; (e) Inverted Vp by
EDEI-ATV; (f) Inverted Vs by EDEI-ATV; (g) Inverted Vp by EDEI-ATV + EFWI-ATV; (h) Inverted Vs
by EDEI-ATV + EFWI-ATV.

Taking the models shown in Figure 4 as the initial model, the EDEI-ATV method
is performed, and the obtained Vp and Vs models are shown in Figure 6e,f. We can see
that the large-scale Vp and Vs structures of the strong scatterers have been successfully
recovered, and the velocity information inside the salt dome is relatively close to the true
value. Using Figure 6e,f as initial models, the EFWI-ATV method is performed, and the
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final Vp and Vs results are shown in Figure 6g,h. It shows that the boundary information
and internal velocity of strong scatterers are well retrieved. The inversion effects of the
interior velocity, lower boundary and subsalt area of the salt dome are better than that of
the unconstrained case.

To further compare the inversion results in Figure 6, we plot some extracted traces, as
shown in Figure 7. For the large-scale velocity construction effect, the Vp and Vs inversion
results with ATV constraint are closer to the true model. The construction result of Vs
model is better than that of Vp model. For the final inversion results, the inversion results
with ATV constraint are better than those without constraints, whether in the interior or at
the boundary of the salt dome. The inversion effect of Vs is better than that of Vp. The final
results still have a good recovery of subsalt structures.
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Figure 7. Extracted traces comparison of inversion results. (a) Extracted traces comparison of inverted
Vp by EDEI and EDEI-ATV; (b) Extracted traces comparison of inverted Vs by EDEI and EDEI-
ATV; (c) Extracted traces comparison of inverted Vp by EDEI+EFWI and EDEI-ATV + EFWI-ATV;
(d) Extracted traces comparison of inverted Vs by EDEI + EFWI and EDEI-ATV + EFWI-ATV.

The adjoint sources of conventional EFWI and EDEI are shown in Figure 8. In
Figure 8a,b, we can see clear residual reflections because the initial models are linear
gradient models without reflection layers. The adjoint sources in Figure 8c,d are very
different from those in Figure 8a,b. The frequency band of the residuals is obviously
lower and mainly reflects large-scale scattering information. The data fitting results of
the inverted velocity models are shown in Figure 9. We can see that after conventional
inversion, there are relatively strong residuals in the difference profiles (Figure 9c,h) of the
observed data and synthetic data. The difference profiles (Figure 9e,j) corresponding to the
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ATV constraint inversion results has weaker residuals, which demonstrates that the ATV
constraint inversion results are better solutions compared with the conventional inversion
results.
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Figure 8. Adjoint sources comparison. (a) Z-component of the adjoint source of EFWI; (b) X-
component of the adjoint source of EFWI; (c) Z-component of the adjoint source of EDEI; (d) X-
component of the adjoint source of EDEI.
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data. Considering density inversion is a good way to reduce its effects on amplitude 
matching. When only considering the global change of data amplitude, the global corre-
lation misfit function is a good choice to ensure a good convergence. The source wavelet 
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Figure 9. Data fitting results. (a) Z-component observed data; (b) Z-component synthetic data on
Figure 6c,d; (c) Difference profile of Figure 9a,b; (d) Z-component synthetic data on Figure 6g,h;
(e) Difference profile of Figure 9a,d; (f) X-component observed data; (g) X-component synthetic data
on Figure 6c,d; (h) Difference profile of Figure 9f,g; (i) X-component synthetic data on Figure 6g,h;
(j) Difference profile of Figure 9f,i.
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5. Discussion and Conclusions

From the numerical examples above, we can see obvious improvements on the elastic
strong-scattering media reconstruction of the SEG/EAGE salt model. However, when
dealing with field data application, we may face some difficult problems, such as noises,
amplitude mismatch, source wavelet error, complex background structures, etc. Real noise
such as random noise and ground rolls should be removed before inversion. EDEI and
EFWI have the intrinsic ability to suppress a moderate level of random noise, but regular
noise such as ground rolls can be a problem and lead to bad results. The data processing
techniques and density change will influence the amplitude of the observed data. Consider-
ing density inversion is a good way to reduce its effects on amplitude matching. When only
considering the global change of data amplitude, the global correlation misfit function is a
good choice to ensure a good convergence. The source wavelet is the beginning condition
of the forward modeling algorithm, so it is an important factor for the inversion process. A
good source wavelet estimation and the source-independent inversion methods are both
effective ways to mitigate the effects of source wavelet errors on the inversion results.

In this paper, we propose an EDEI method with anisotropic total variation constraint.
The anisotropic total variational constraint is beneficial to make the internal velocity of the
structure uniform and the boundary sharp, which can improve the inversion effect of the
large-scale velocity structures of the salt dome. The anisotropic total variational constraint
problem and the inverse problem can be calculated alternately to achieve good constraint
effects. In this paper, the anisotropic total variational constraint is imposed on the inverted
Vp and Vs models, respectively. Using the EDEI-ATV inversion results as the initial velocity
models, the EFWI-ATV process can obtain better velocity construction of the salt dome.
The inversion results show that the depiction of the interior and boundary of the salt dome
has been significantly improved.
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