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Abstract: Numerical simulation is a powerful technique for slope stability assessment and landslide
hazard investigation. However, the physicomechanical parameters of the simulation results are
susceptible to uncertainty. Displacement back-analysis is considered an effective method for the
prediction of the geomechanical parameters of numerical models; therefore, it can be used to deal with
the parameter uncertainty problem. In this study, to improve the interpretability of the back-analysis
model, an analytical function relationship between slope displacements and physicomechanical
parameters was established using geographically weighted regression. By combining the least-
squares and linear-algebra algorithms, a displacement back-analysis method based on geographically
weighted regression (DBA-GWR) was developed; in particular, the multi-objective displacement
back-analysis was represented as an analytical problem. The developed method was subsequently
used for a slope of the Guiwu Expressway in Guangxi, China. Simulation experiments and GNSS real-
data experiments demonstrated that the GWR could achieve high-precision deformation modelling
in the spatial domain with model-fitting precision in the order of mm. Compared with state-of-the-art
methods, the precision of the simulated displacement with the proposed method was significantly
improved, and equivalent physicomechanical parameters with higher accuracy were obtained. Based
on the corrected numerical model, the most severely deformed profiles were forward-analysed,
and the simulated deformation and distribution patterns were found to be in good agreement with
the field investigation results. This approach is significant for the determination of geomechanical
parameters and the accurate assessment of slope safety using monitoring data.

Keywords: slope; numerical simulation; displacement back-analysis; GWR; analytic function model; GNSS

1. Introduction

With the expansion of human activities and the intensification of global climate change,
engineering accidents due to landslides and slope collapse have been occurring in large
numbers, posing a major threat to human life and property safety [1]. Combining physi-
comechanical mechanisms to understand their evolutionary processes and mechanical
behaviours is crucial to ensuring slope safety and preventing disasters [2,3]. Numerical
simulation techniques play an important role in slope stability assessment and landslide
hazard investigation. The finite element method, finite difference method, and discrete
element method are widely used to understand and manage slopes [4–8]. These methods
are easy to implement, but the physicomechanical parameters are of great importance.
Although the physicomechanical parameters of materials can be measured using field
tests and laboratory experiments, if these measured parameters do not suitably represent
the real physicomechanical parameters, the numerical results will deviate from the actual
situation [9]. Displacement is the most direct reflection of the change in the slope state
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and is easily obtained. Therefore, back-analysis using field displacements is considered an
effective means to correct numerical models [10–12].

Generally, displacement back-analysis is represented as an optimization problem for
the objective function. Its application consists of two procedures: the forward procedure
and the backward procedure [13]. Currently, machine-learning models are commonly
used in forwarding procedures to improve computational efficiency, such as support
vector machines [14–16], back-propagation neural networks [17,18], and long short-term
memory networks [19]. Among the backward procedures, genetic algorithms [20,21], firefly
algorithms [22], ant colony algorithms [23], particle swarm optimization [24,25], and other
methods have been used to compute optimal parameters with good performance.

Various scholars have presented considerations from the perspective of data processing
and parameter estimation. For multi-objective back-analysis, multi-objective optimization
methods, such as the non-dominated sorting genetic algorithm and Bayesian updating,
have been introduced [26,27]. Investigations have also indicated that, when multiple
different types of displacement data are employed, the weighted optimization method
and multi-objective optimization method have higher precision than the single-objective
optimization method [28,29]. In addition, the methods reported above determine the
optimal parameters by minimizing the displacement error function, and the inversion
results can only be a set of parameters that can accurately simulate the displacement [30].
For this issue, the authors of [31,32] proposed methods of displacement back-analysis based
on machine learning (DBA-ML), which use the displacement and target parameters as
input and output layers and train the learning model with the strategy of minimizing the
target parameter error.

The aforementioned methods constitute the dominant approaches in the knowledge
framework of displacement back-analysis. However, least-squares optimization models and
machine-learning models are employed to describe displacement back-analysis problems.
This raises issues related to the evaluation of the back-analysis results, since the implicit
function model is employed. In the case of missing analytical function expressions, the
problem of the uniqueness and accuracy of the solution is still worth exploring, especially for
the multi-objective optimization back-analysis method. The influence of measurement errors
on the back-analysis results and the propagation law also pose challenges [27,33]. This is a
core issue for which consensus has not yet been reached among researchers and practitioners.

By using a multidisciplinary and combined approach, this study aimed to provide an-
swers to the following questions: What else can we do after obtaining ground deformation
data using GNSS, synthetic aperture radar interferometry (InSAR), and other techniques?
Can the displacement back-analysis problem be expressed in terms of analytical func-
tions? Are the equivalent parameters obtained by optimization back-analysis methods and
DBA-ML methods reliable and stable? For this purpose, a spatial statistical method [34]—
geographically weighted regression (GWR)—was employed to construct an analytical
function model linking slope displacements and physicomechanical parameters. A novel
back-analysis method is proposed where the multi-objective displacement back-analysis is
represented as an analytical problem. The innovation lies in the establishment of the ana-
lytical function model for the displacement back-analysis problem, which aims to improve
the interpretability of the back-analysis model. The validity of the proposed method was
verified by taking a slope with a GNSS monitoring system constructed as an example.

2. Materials and Methods

This section presents the study site and the proposed back-analysis method. For the
purpose of expressing the displacement back-analysis problem in terms of an analytic func-
tional equation, a displacement back-analysis method based on GWR is proposed. First, the
study area and numerical model are presented. Then, the basic formulas of the GWR are
introduced in Section 2.3. Finally, we describe how to implement the back-analysis process.
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2.1. Study Area

The Shangtan landslide is an old landslide located in Zhaoping county, Guangxi
province, China (Figure 1), that occurred in 2007 due to the effects of heavy rainfall.
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Figure 1. Location of the study site.

According to field investigations, the stratigraphy consists mainly of Quaternary (Q)
and Devonian (D) deposits. On the basis of the genesis type, the Quaternary sediments
can be divided into alluvial and collapse accumulation layers [35,36]. The alluvial layer
is distributed on the front edge of the landslide and consists of grey-yellow sub-clay. The
depth of the sub-clay is less than 2 m on the left, while the depth on the right is deeper
and contains minor gravels. The K195+770~K196+060 section is a landfill area, and the
soil slope has been formed through manual grinding. The colluvium consists of gravelly
soil with a gravel content of 50% to 80% and a thickness of 1 m to 10.5 m. The Nahkaoling
Formation is predominantly a purplish-red muddy siltstone, and the original rock structure
is hard to determine. The lithology is shallowly exposed in the section from K195+100 to
K195+600, and the rest is deeply buried.

2.2. Numerical Model and Monitoring System

Based on the geological investigation data and the topographic data for sections
K195+460 to K195+950, a numerical mesh model was developed (Figure 2). The bottom
elevation of the model was 100.0 m and the maximum difference in slope elevation was
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59.2 m, with the highest elevation being 210.6 m. The lengths in the X and Y directions were
490.0 m and 171.0 m, respectively, and the element type was wedge-shaped, with dimen-
sions between 4.0 m and 5.0 m. The Mohr–Coulomb model was adopted, and the physi-
comechanical values from laboratory experiments and previous studies are summarized in
Table 1 [31,32]. For the numerical analysis, the bottom of the model was fixed-boundary
constrained and the top surface was unconstrained. The phased elasto-plastic solution
method was employed to calculate the initial ground stress.
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Figure 2. The numerical mesh model of the study site.

Table 1. Summary of the main characteristics of the materials.

Parameter Symbol Unity Sub-Clay 1–3 Gravel Soil Rock

Dry volumetric
weight ρ kg×m−3 2200 2200 2900

Bulk modulus K kPa 20 60 1300
Shear modulus G MPa 13 36 800

Cohesion c kPa 10–16 18 48
Angle of friction φ (◦) 10–14.5 16 40,000

Biot modulus E MPa 400 1000 -
Infiltration
coefficient n % 50 50 -

In November 2018, in the field investigation, prominent deformation characteristics
were still found on this slope: wall cracking, gutter deformation, hill collapse, etc. (Figure 3).
Considering the safety of the residents and the normal operation of the highway, a GNSS
online monitoring system was constructed and started to operate in April 2019 [37]. The
monitoring contents include the ground displacement, rainfall, and site environment, and
the locations of the monitoring stations are shown in Figure 4. Stations GD01–GD07 are
designed to monitor the ground displacement, and GD08 is located on the roof of the civil
building opposite the slope as a relatively stable reference station. The GNSS results are
obtained using relative static positioning with a 1 h solution strategy [38]. A GFZ-01 digital
rain gauge is located at the same location as GD08. Three cameras are placed along the
road to monitor the safety of the landslide and the road. The contents and methods of the
monitoring system are described in Table 2.
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Table 2. Monitoring system contents and methods.

No. Content Method Monitoring Instrument Monitoring Interval

1 Displacement GNSS Huace H3 GNSS Receiver 1 h
2 Rainfall Rain gauge GFZ01 digital rain gauge 20 min
3 Environment Video Hikvision surveillance camera Real time

2.3. GWR for Slope Physical Modelling

GWR is an extension of the conventional least-squares regression method. It assumes
that the regression coefficients are multidimensional functions of the geographic location.
GWR is an important tool for modelling the heterogeneity of spatial relationships [39,40].
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In slope physical modelling, slopes have complex topographic and geological features, and
their deformations show notable spatial heterogeneity. To establish a functional relationship
between the physicomechanical parameters of a slope and its displacement, it should be
assumed that the regression coefficients are three-dimensional functions of the spatial
location. Let Yi be the displacement of i monitoring stations and X the physicomechanical
parameters of the formation. The GWR function model used for slope physical modelling
can be rewritten as follows [41]:

Yi = β0(xi, yi, zi) +
d
∑

k=1
βk(xi, yi, zi)Xik + εi ,

i = 1, 2, · · · , n k = 1, 2, · · · , d
(1)

where Yi and Xik are the dependent and independent variables, respectively; xi, yi, zi are
the spatial location coordinates of a point; βk(xi, yi, zi) is a function of the kth regression
coefficient; and β0(xi, yi, zi) and εi are the constant and error terms of the regression model,
respectively. In the GWR model, each coefficient βk(x, y, z) has a continuous second-order
partial derivative for the spatial location coordinate. Given a spatial location (xm, ym, zm),
and according to the Taylor expansion of the multivariate function, the coefficients can be
approximated as:

βk(x, y, z) ≈ βk(xm, ym, zm) + β
(x)
k (xm, ym, zm)(x− xm)

+β
(y)
k (xm, ym, zm)(y− ym) + β

(z)
k (xm, ym, zm)(z− zm)

(2)

where β
(x)
k (xm, ym, zm), β

(y)
k (xm, ym, zm), and β

(z)
k (xm, ym, zm) are the partial derivatives of

βk(x, y, z) with respect to x, y, z at (xm, ym, zm), respectively. According to the least-squares
principle, the least-squares objective function constructed for any point (xm, ym, zm) is:

f (β(xm, ym, zm)) =
n
∑

i=1
{Yi −

d
∑

k=0
[βk(xm, ym, zm) + β

(x)
k (xm, ym, zm)(x− xm)

+β
(y)
k (xm, ym, zm)(y− ym) + β

(z)
k (xm, ym, zm)(z− zm)]Xik

}2
wi(xm, ym, zm)

(3)

For this weighted least-squares problem, the solutions for the regression coefficients
can be expressed with matrix notation. Let Id+1, 0d+1 be a unit matrix of order d + 1 and a
zero-square matrix, respectively, and let X(xm, ym, zm) = [X1(xm, ym, zm), X2(xm, ym, zm)].

X1(xm, ym, zm) =


1 X11 · · ·X1d x1 − xm (x1 − xm)X11 · · · (x1 − xm)X1d
1 X21 · · ·X2d x2 − xm (x2 − xm)X21 · · · (x2 − xm)X2d
...

... · · ·
...

...
... · · ·

...
1 Xn1 · · ·Xnd xn − xm (xn − xm)Xn1 · · · (xn − xm)Xnd

 (4)

X2(xm, ym, zm) =


y1 − ym (y1 − ym)X11 · · · (y1 − ym)X1d z1 − zm(z1 − zm)X11 · · · (zn − zm)X1d
y2 − ym (y2 − ym)X21 · · · (y2 − ym)X2d z2 − zm(z2 − zm)X21 · · · (zn − zm)X2d
...

...
...

...
...

...
yn − ym (yn − ym)Xn1 · · · (yn − ym)Xnd zn − zm(zn − zm)Xn1 · · · (zn − zm)Xnd

 (5)

By taking the partial derivative of Equation (3) with respect to βk(um, vm, tm)
(k = 0, 1, · · · , d) and setting it as equal to 0, an estimate of the regression coefficient
can be obtained:

^
β(xm, ym, zm) = (β̂0(xm, ym, zm), · · · , β̂d(xm, ym, zm))T

= (Id+1, 0d+1, 0d+1, 0d+1)[XT(xm, ym, zm)W(xm, ym, zm)

X(xm, ym, zm)]−1XT(xm, ym, zm)W(xm, ym, zm)Y

(6)
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where W(xm, ym, zm) = diag(w1, w2, · · · , wn) is the spatial-weights matrix; its computation
is described in Section 2. The estimated values of the regression coefficients for each
sampling point can be obtained by taking (xm, ym, zm) = (xi, yi, zi)(i = 1, 2, · · · , n).

^
β(xi, yi, zi) = (β̂0(xi, yi, zi), · · · , β̂d(xi, yi, zi))

T
(7)

Then, the fitted value of the response quantity Y at the sampling point i can be
calculated with the following equation:

^
Yi = Xi

^
β(xi, yi, zi)

= Xi(Id+1, 0d+1, 0d+1, 0d+1)[XT(xi, yi, zi)W(xi, yi, zi)

X(xi, yi, zi)]
−1XT(xi, yi, zi)W(xi, yi, zi)Y

(8)

where Xi is the ith row of the matrix X. Generally, in practical applications, it is easier to
perform programming and calculations by using the matrix representation of Equation (8):

^
Y = (Ŷ1, Ŷ2, · · · , Ŷn)

T
= LY (9)

L =


(XT

1 , 01×3(d+1))[X
T(x1, y1, z1)W(x1, y1, z1)X(x1, y1, z1)]

−1
XT(x1, y1, z1)W(x1, y1, z1)

(XT
2 , 01×3(d+1))[X

T(x2, y2, z2)W(x2, y2, z2)X(x2, y2, z2)]
−1

XT(x2, y2, z2)W(x2, y2, z2)

...

(XT
n , 01×3(d+1))[X

T(xn, yn, zn)W(xn, yn, zn)X(xn, yn, zn)]
−1

XT(xn, yn, zn)W(xn, yn, zn)

 (10)

Finally, based on the fitted and observed values, the residual sum of squares (RSS) of
the model and its variance estimates can be obtained as follows:

σ̂2 =
RSS

tr((I− L)T(I− L))
=

^
Y

T

(I− L)T(I− L)
^
Y

tr((I− L)T(I− L))
(11)

2.4. Displacement Back-Analysis Method Based on GWR

The traditional optimal back-analysis method calculates the objective function error
value using Equation (12), and the equivalent physicomechanical parameters are obtained
when the objective function is optimal [42]:

VObj =
n

∑
i=1

piv
2
i =

n

∑
i=1

pi[Si(X)− Li]
2 (12)

where L = (L1, L2, · · · , Ln)
T contains n mutually independent observations,

p = diag(p1 p2 · · · pn) is the corresponding weight matrix, Si(X) is the displacement
calculated using numerical simulation, and VObj is the objective function.

The intelligent optimal back-analysis method is an enhancement of the traditional
method, but the essence of the algorithm is still based on minimizing the error between the
observed and simulated displacements. When i > 1, there are i error values accumulated
in the objective function. Then, there is a conflict problem within the multi-objective
function; i.e., when the parameters are adjusted to optimize a certain error value, this
results in the deterioration of other error values. In this situation, the solution to the
multi-objective optimization problem is not unique [43,44]. To avoid this problem, as
well as to describe the displacement back-analysis problem with analytical functions, a
displacement back-analysis method based on GWR is proposed. First, GWR is employed to
obtain the analytical equations for the displacement back-analysis problem. Then, by using
the least-squares (LS) method and linear algebra (LA), the multi-objective displacement
back-analysis is transformed into an analytical problem.

Before obtaining new observations, the stations recorded displacement data for a
period of time. When the predisposing factors were known, the data for all stations
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during that period could be modelled with Equation (1) using GWR. The solution for the
regression coefficient matrix from Equation (6) is critical, and the weights in the equation
can be calculated using a bisquare kernel function or a Gaussian kernel function [41,45]:

wi(m) =

{ [
1− (dim/h)2

]2
dim ≤ h

0 dim > h
(13)

wi(m) = exp(−(dim/h)2) (14)

where dim is the distance from sampling point i to spatial point m, h is the bandwidth
value, and the optimal bandwidth value hopt can be obtained by searching with the cross-
validation (CV) method [46,47].

CV(h) = n
(n−tr(L(h)))2

n
∑

i=1

(
Yi −

^
Yi(h)

)2

hopt = min
h>0

CV(h)
(15)

where n is the number of spatial points;
^
Yi(h) and L(h) correspond to Equations (9) and (10),

respectively; and h is the adopted bandwidth. After the optimal bandwidth is obtained, the
regression coefficient matrix can be resolved, and the fitted values for each station and the
residual sum of squares can be calculated according to Equations (9)–(11). The regression
equations with variable coefficients are expressed below:

A
n×(d+1)

· X
(d+1)×1

− Y
n×1

= 0 (16)

where n and Y are the numbers of stations and their displacements, respectively, and d is
the number of physicomechanical parameters. A is the coefficient matrix of the variable
coefficient regression model, and the first column of the matrix is the constant term of the
regression coefficient, so X = [1X1 · · ·Xd]

T. Since the estimated parameter X contains the
constant term of the regression coefficient, it is necessary to attach s constraints to X.

Φ
s×1

(X) = 0 (17)

If the physical triggering factors of the slope deformation can be measured, constraints
can also be attached to them, such as the change in groundwater level. When newly
observed displacements are available, Equations (16) and (17) can be solved. Generally,
n + s ≥ d + 1. When n + s = d + 1 and there is no conflict between the equations, the
linear-algebra (LA) algorithm can be used to find the analytical solution to the equations.
When n + s > d + 1, the least-squares (LS) algorithm can be used to find the optimal

solution to the overdetermined system of equations with X = (ATA)
−1

ATY. Here, the
solution will be optimally unbiased.

The flowchart for the proposed DBA-GWR method is shown in Figure 5.

2.5. Instructions on Implementation of the Back-Analysis Method

Generally, the displacements calculated with numerical simulation represent the
deformation generated by the whole process. Partial displacement usually occurs before the
monitoring stations are deployed, which is called loss displacement, as shown in Figure 6.
If the monitoring displacement, which is lower than the actual value, is considered the
actual total displacement and compared with the simulated displacement, there will be
inevitable bias. Although several approaches for calculating the loss displacement have
been reported in the literature [48,49], on the whole, the loss displacement has an uncertain
and empirical nature compared to the directly obtained monitoring displacement. Here, a
new strategy is proposed. The relative displacement obtained from monitoring is used to
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fit the simulation results from a certain deformation process. Taking slope excavation as an
example, excavation starts from the moment t1, and the displacement tends to stabilize by t2
after the end of the excavation. The relative displacement S12 obtained at moment t1 → t2
can be used to fit the simulated displacement, and the equivalent physicomechanical slope
parameters are easily obtained using the back-analysis method. In this study, relative
displacement was used for modelling and back-analysis.
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Coordinate conversion is an easily neglected aspect when implementing displacement
back-analysis methods, especially in slope applications. Techniques such as real-time
kinematic (RTK) positioning and unmanned aerial vehicle (UAV) photogrammetry are
commonly used for slope topography measurements, and topographic data are used for
mesh modelling [50]. Techniques such as the inclinometer, total-station, GNSS, and InSAR
techniques are commonly used for slope ground and underground deformation measure-
ment [51–53]. The measurement coordinate systems of the different techniques are distinct;
in particular, the measurement system used with the inclinometer technique is a local coor-
dinate system. When the coordinate system used for the displacement measurement is not
consistent with the mesh model, there is systematic deviation between the simulated and
measured displacements. Therefore, before implementing the displacement back-analysis
method, appropriate means must be employed to render the coordinate systems of the
mesh model consistent with those of the displacement measurements. The coordinate
conversion method can be found in the literature [54–56].

The equivalent physicomechanical parameters determined with displacement back-
analysis are generally verified by comparison with field measurements, including direct

and indirect verification. Direct validation compares the equivalent parameters
~
Xd with

the test results Xd, and the relative error percentage (REP) can be used as the accuracy
index of the parameters. Indirect validation compares the field monitoring results Yn of

the monitoring stations with the simulation results
^
Yn by incorporating the equivalent

parameters into the numerical model, and the root-mean-square error (RMSE) is often used
as the accuracy index of displacement.

REP =

∣∣∣∣~
Xi − Xi

∣∣∣∣/Xi × 100%

RMSE =

√
1
n

n
∑

i=1

(
^
Yi − Yi

)2 (18)

3. Results
3.1. Simulation Experiments

The proposed method was validated by using simulated data prior to the real-data
experiments. The aim was to obtain an error-free slope dataset and to avoid the influence
of coordinate-system bias on the back-analysis results.
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3.1.1. GWR Modelling

Thirty-two points were selected as ground displacement monitoring stations on the
slope according to the principle of equal spacing: the data from 26 stations were used for
GWR modelling and the remaining 6 stations were used for model validation (Figure 7a).
Taking the mesh model at X = 254 m as a vertical section, three lines were selected as un-
derground displacement monitoring stations, one of which was used for model validation
(Figure 7b). By designing two scenarios (Table 3), two sets of slope displacement results,
shown in Figure 7c–f, were obtained using simulation with FLAC3D software [57]. Finally,
the data from the monitoring stations were exported to obtain a set of relative displacement
data for GWR modelling and validation.

Remote Sens. 2023, 15, x FOR PEER REVIEW 12 of 23 
 

 

3.1.1. GWR Modelling 
Thirty-two points were selected as ground displacement monitoring stations on the 

slope according to the principle of equal spacing: the data from 26 stations were used for 
GWR modelling and the remaining 6 stations were used for model validation (Figure 7a). 
Taking the mesh model at X = 254 m as a vertical section, three lines were selected as 
underground displacement monitoring stations, one of which was used for model valida-
tion (Figure 7b). By designing two scenarios (Table 3), two sets of slope displacement re-
sults, shown in Figure 7c–f, were obtained using simulation with FLAC3D software [57]. 
Finally, the data from the monitoring stations were exported to obtain a set of relative 
displacement data for GWR modelling and validation. 

 
Figure 7. Simulation datasets for the slope: (a,b) the setting of ground and underground displace-
ment monitoring stations; the simulation results for the surface and profile, respectively, corre-
sponding to (c,d) situation 1 and (e,f) situation 2. The length, width, and height in (a,b) correspond 
to the dimensions of the numerical model. (c–f) share the same colour bar. 

Table 3. Parameter settings for different situations. 

Plan 
Cohesion (kPa) Angle of Friction (°) 

Water (m) 
1c 2c  3c  1 2  3  

Initial 13 14.5 17 16.5 13 14 A face 
Situation 1 12 13.5 16 16 12.25 13 ↑0.5 
Situation 2 11 12.5 15 15.5 11.5 12 ↑0.5 

* Where “a face” refers to the water surface in Figure 2, and ↑ indicates rising water levels. 

Six of the physicomechanical parameters and water-level-variation parameters 
shown in Table 3 were selected as the independent variables of the model. The 

Figure 7. Simulation datasets for the slope: (a,b) the setting of ground and underground displacement
monitoring stations; the simulation results for the surface and profile, respectively, corresponding
to (c,d) situation 1 and (e,f) situation 2. The length, width, and height in (a,b) correspond to the
dimensions of the numerical model. (c–f) share the same colour bar.

Table 3. Parameter settings for different situations.

Plan
Cohesion (kPa) Angle of Friction (◦)

Water (m)
c1 c2 c3 φ1 φ2 φ3

Initial 13 14.5 17 16.5 13 14 A face *
Situation 1 12 13.5 16 16 12.25 13 ↑0.5
Situation 2 11 12.5 15 15.5 11.5 12 ↑0.5

* Where “a face” refers to the water surface in Figure 2, and ↑ indicates rising water levels.
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Six of the physicomechanical parameters and water-level-variation parameters shown
in Table 3 were selected as the independent variables of the model. The displacements
for the modelling stations in Figure 7a,b were used as response quantities for the GWR
modelling. Two strategies were used to search for the optimal bandwidth. In strategy 1, the
same bandwidth h was adopted for the ground stations and the underground stations. In
strategy 2, different bandwidths were used for ground stations and underground stations:
h1 and h2, respectively. The model bandwidth was searched for using the CV criterion. The
optimal bandwidth was h = 126 m for strategy 1 and h1 = 105 m, h2 = 21 m for strategy 2.
The data were remodelled according to the obtained optimal bandwidth, and the model
bias is shown in Figure 8. For the ground stations, the modelling performance with the
two strategies was comparable. However, there were significant differences between the
underground stations. The RMSE and the maximum bias of the model calculated with
strategy 2 were 0.59 mm and 1.26 mm, respectively, which were better than those calculated
with strategy 1, for which the RMSE and maximum bias were 1.24 mm and 2.18 mm,
respectively. This indicates that using strategy 2 for bandwidth searching can result in
GWR slope modelling with better fitting performance.
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3.1.2. Back-Analysis Based on GWR

In the previous section, we demonstrated that it is feasible to establish an analytical
function model of displacements and physicomechanical parameters using GWR. There-
fore, when the relative displacement data from monitoring stations are available, the
proposed DBA-GWR method can be employed to obtain the equivalent physicomechanical
parameters for a period. To verify the feasibility of the method, four sets of slope relative-
displacement data were obtained based on the parameters in Table 4 and applied for the
back-analysis. The popular DBA-BPNN [31] method was employed using the displacement
and target parameters as input and output layers, and the learning model was trained with
the strategy of minimizing the target parameter error. This model enables high-accuracy
predictions and, hence, this method was used for comparison. Unlike the proposed method,
DBA-BPNN is an implicit function model. The training data for machine learning were
obtained using the orthogonal test method.
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Table 4. Four sets of parameters for simulating the slope deformation.

Sets
Cohesion (kPa) Angle of Friction (◦)

Water (m)
c1 c2 c3 φ1 φ2 φ3

1 10 11.5 14 15 10.75 11 ↑0.5
2 9.5 11 13.5 14.5 10.25 10.5 ↑0.5
3 9 10.5 13 14 9.75 10 ↑0.5
4 8.5 10 12.5 13.5 9.25 9.5 ↑0.5

↑ indicates rising water levels.

The accuracy of the inversion results for the four sets was counted with the REP, and
an REP lower than 10% was used as the parameter tolerance interval for evaluation. As
shown in Figure 9, the inversion results obtained with DBA-BPNN were correct for the data
in sets 1 and 2. However, the data in sets 3 and 4 showed unsatisfactory performance, with
some parameters located outside the interval. The accuracy rate of DBA-BPNN was only
75% (the accuracy rate was equal to the number of REPs lower than 10% divided by the
number of equivalent parameters). Compared to the DBA-BPNN method, the DBA-GWR
method achieved a higher accuracy rate of 100%, and the obtained parameters all lay within
the interval. After that, the equivalent parameters determined with the DBA-GWR method
were used in the forward calculation, and the simulated displacements for the validation
stations were obtained. After statistical analysis, the precision with the first sets of data was
lower than that with the other sets, but the RMSE and maximum bias were only 3.3 mm
and 4.8 mm, respectively. This indicates that the proposed method could not only obtain
more accurate equivalent parameters but also had good displacement precision.
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Through the above simulation data experiments, we verified the feasibility of using
GWR for slope physical modelling and parameter inversion. For the equivalent physi-
comechanical parameter inversion, in addition to the improvement in the accuracy rate, it
was more meaningful that the proposed method could obtain the analytical expressions
for the displacement back-analysis problem. In particular, the inversion results for the
least-squares estimation were optimally unbiased.

3.2. Real Data Experiments
3.2.1. Monitoring Data

The online monitoring system recorded the development of the slope deformation
from April 2019 to the end of 2019. Figure 10 shows the cumulative deformation time-
series curve and the monthly rainfall time-curve for the slope (the horizontal displacement
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is mainly in the y direction, and the x direction is negligible). It should be noted that,
before establishing the mesh model, we rotated the digital elevation model (DEM) to make
the slope direction correspond to the y direction of the coordinate system. Second, we
performed coordinate conversion of the monitoring data to make them consistent with
the coordinate system of the mesh model. Figure 10 shows that the slope had three stages
in 2019 consisting of slow deformation, evenly accelerated deformation, and variable
accelerated deformation, with the largest deformation in the y direction. The displacements
of the monitoring stations GD03 and GD04 were alarming, with a maximum deformation
rate of 148.4 mm/d. The displacement of the relatively stable station GD08 was less than
10 mm, which indicates that the station is relatively stable and the GNSS monitoring results
are reliable. Furthermore, the effect of intensive rainfall on the slope deformation rate was
significant, indicating that rainfall is the main factor inducing the accelerated deformation
of this slope.
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3.2.2. Modelling and Back-Analysis

The GNSS data indicated that the slope experienced a small accelerated deformation in
May, which levelled off at the end of the month. This section uses the relative displacement
data from 4/21 to 5/20 for GWR modelling. It is well-known that, during periods of
concentrated rainfall, the reduction of soil suction and the consequent loss of shear strength
can trigger shallow landslides [58]. Therefore, the shear strength parameters of the sub-clay
layer were considered as target parameters. The GNSS displacements recorded from 5/21
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to 6/20 were used for the back-analysis. The physical modelling parameters and validation
parameters for both periods were obtained with the long short-term memory network
algorithm predictions [32] and are shown in Table 5.

Table 5. Modelling parameters and validation parameters for different stages.

Time
Cohesion (kPa) Angle of Friction (◦)

Water (m)
c1 c2 c3 φ1 φ2 φ3

Original data 16 15 16 15 15 17 A face
5/21 15.1 14.1 14.1 14.0 15.3 16.2 ↑0.4
6/21 14.2 13.2 13.2 13.1 14.2 15.2 ↑0.9

↑ indicates rising water levels.

In the GWR modelling process, we selected the bisquare kernel function and Gaussian
kernel function to calculate the spatial weight matrix, and the optimal bandwidths calcu-
lated with the CV criterion were 190 m and 110 m. However, the modelling performances of
the two kernel functions were comparable, and the RMSEs of the models were both 1.2 mm.
The modelling results using the bisquare kernel function are shown in Figure 11a. The
model-fitting results were in good agreement with the measured results, and the maximum
bias was 3.9 mm, which indicated that the model had high precision.
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Both the DBA-BPNN and the proposed DBA-GWR methods were employed for the
back-analysis. In the GWR model, in addition to the three combinations of shear strength
parameters, the independent variables contained a constant and a value for the water-level
change. Therefore, two constraints were added, as in Equation (17). Figure 11b shows the
accuracy of the inversion results, and the REP was lower than 10%, the error tolerance
interval for the parameters. Both methods determined the equivalent physicomechanical
parameters with a perfect accuracy rate, but the proposed method had a lower error and
higher stability than DBA-BPNN. Based on the equivalent parameters determined by the
two methods, the horizontal and vertical displacements of the seven GNSS monitoring
stations were obtained through simulation, as shown in Figure 11c. It can be seen that
the displacements calculated by the DBA-GWR method deviated less from the measured
displacement data. The quantitative results show that the RMSEs of the DBA-BPNN and
DBA-GWR methods were 1.1 mm and 0.8 mm, respectively. The horizontal displacement
of the GD04 monitoring station was the largest, and the bias of the DBA-GWR method was
only 1.2 mm. The above results demonstrate the effectiveness of the proposed method.

3.2.3. Stability Assessment

Throughout the GNSS time-series curves recorded in 2019 (Figure 10), the deformation
development at GD03 and GD04 underwent three stages; namely, initial deformation, even
deformation, and accelerated deformation. These two stations entered the variable accel-
erated deformation stage from the beginning of July, and the accumulated displacement
increased rapidly, with maximum displacement rates of 119.6 mm/d and 148.4 mm/d.
According to the theory of slope creep-slip damage [59], assuming that the slope is not
disturbed by external factors, it can be considered that the slope of this section is dam-
aged. However, rainfall is the dominant factor inducing accelerated deformation of the
slope. Therefore, the stability of this slope cannot be simply assessed with the three-stage
displacement law.

Numerical simulation techniques provide a powerful analytical means to gain insight
into landslide damage mechanisms. This experiment combined the displacement back-
analysis method, finite difference method, and strength reduction method to investigate
the stability of the slope at the section where GD03 and GD04 are located. Since rainfall
infiltration increases groundwater pressure, these increased pressures in turn induce slope
movement. Therefore, the fluid–structure interaction model was used for the slope. The
equivalent parameters obtained with the DBA-GWR method were used in the numerical
model, and the safety factor of the slope was obtained using the tensile–shear strength
reduction method (FOS = 1.84), which indicated that the slope was stable in late June.
Figure 12a,b show the simulation results for the displacement in the critical state (FOS = 1).
It can be seen that the slope deformation was larger in the horizontal direction, which is
consistent with the GNSS monitoring results. Horizontally, GD03 and GD04 are located
in the severely deformed area. On 24 July 2019, the field investigation results revealed
significant cracks around station GD03, as shown in Figure 12c,d. Vertically, the displace-
ment direction of the toe of the slope moved upwards through shear damage. This was
consistent with the bulges found at the toe of the slope, as shown in Figure 12e,f, which
were found on the lower slope. These results and phenomena confirm the accuracy of the
numerical simulation and back-analysis results.

Figure 12a shows that the horizontal displacements of GD03 and GD04 in the critical
state were 2.880 m and 4.291 m, respectively. These results comprise a set of displacement
thresholds that can be used to determine whether the slope is likely to fail. Using numerical
simulation to analyse the damage mechanism in slopes is of great significance for disaster
warnings relating to unstable slopes.
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4. Discussion

The proposed DBA-GWR method can provide analytical solutions for displacement
back-analysis problems, significantly improving the interpretability of models. It is worth
investigating whether the increase in interpretability influences the accuracy of a model.
Machine-learning prediction models trained with minimal errors in the physicomechanical
parameters can guarantee the accuracy of the equivalent parameters, which is why we
employed DBA-BPNN as a benchmark method for comparison in our experiments. Here,
we also employed the optimized back-analysis method for the inversion of the measured
data, using a well-trained BPNN model instead of the forward calculation of the numerical
simulation and the PSO algorithm as an optimization-seeking method. The precision of
the displacement and the accuracy of the equivalent parameters for the three methods are
statistically presented in Table 6. The accuracy rate was calculated with the same definition
as in Section 3.1.2.

Table 6. Precision and accuracy of equivalent parameters obtained with different methods.

Method
Precision (mm) Accuracy

RMSE Bias (max) Accuracy Rate REP (max)

Optimal
back-analysis 0.9 2.3 83.3% 10.2%

DBA-BPNN 1.1 2.2 100.0% 7.7%
DBA-GWR 0.8 1.6 100.0% 2.0%

Compared with the DBA-BPNN method, the optimized back-analysis method had
a higher displacement precision. However, the accuracy of the equivalent parameters
was unsatisfactory. This is reasonable since the optimized back-analysis method is based
on the optimization criterion of minimizing the displacement errors between simulated
and measured values. The local optimum problem and initial value dependence problem
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affecting the optimal back-analysis method have been frequently discussed [29]. These
problems represent the limitations of the objective function optimality algorithm. The
objective function has a unique optimal solution only when it is proven to be concave or
convex in the interval [33]. Nevertheless, this scheme is optimal for displacement fitting but
not for equivalent parameters. In contrast, the DBA-BPNN method, the network model of
which is trained with the criterion of minimizing the errors in the mechanical parameters,
led to the prediction of equivalent parameters with higher accuracy (Table 6). The proposed
DBA-GWR method performed better than the optimized back-analysis method and DBA-
BPNN method. On the one hand, this was attributed to the high precision of the GWR
model (i.e., variable coefficient regression equations), which could accurately express the
functional relationship between the displacements and the target parameters. On the other
hand, the DBA-GWR method employs the least-squares method to solve the equations,
and the parameters obtained had optimal unbiased characteristics. From the viewpoint of
parameter estimation, this is not available with other implicit function models.

In practical applications, observed data often exhibit non-stationarity in a temporal
and spatial sense [60–62]. The GWR model employed in this paper was static. When the ob-
served data have notable temporal non-stationarity, the results of GWR inversion may have
a certain bias. As highlighted by studies such as those dealing with real estate modelling
and traffic flow modelling, stationary GWR models are unlikely to be supported [46,63]. To
date, most back-analysis models still belong to the category of static models. The observed
data had dynamic temporal characteristics, and there is a lack of research on back-analysis
using time-varying monitoring data. GTWR is a spatial and temporal dynamic modelling
approach that takes into account both the temporal and spatial properties of data. It has
been shown to perform satisfactorily in the fields of earth science, environmental science,
and public health [64–67]. Therefore, GTWR can be considered for slope spatial and tempo-
ral dynamic modelling and back-analysis. Furthermore, Bayesian updating may be another
choice that can take into account temporal issues in the back-analysis problem [68]. These
would be interesting future projects for us.

5. Conclusions

Uncertainty in physicomechanical parameters has a significant impact on the design,
construction, and stability assessment of unstable slopes. Displacement back-analysis appears
to be an effective means for determining equivalent physicomechanical slope parameters.

In this study, a novel displacement back-analysis method based on geographically
weighted regression was proposed. Furthermore, in the context of measurement data
processing, coordinate transformation and equivalent parameter quality evaluation were
added to the existing back-analysis framework. Simulation and real-data experiments were
conducted, and it was found that the proposed DBA-GWR method could significantly im-
prove the computational accuracy compared to the advanced methods. In addition, another
superior aspect of DBA-GWR was the establishment of an analytical function model for the
displacement back-analysis problem. With the support of the least-squares algorithm, the
multi-objective displacement back-analysis was turned into a simple analytical problem,
and the solution for the back-analysis was unique.

The context of this study is the rapid development of modern deformation monitoring
technology and the gradual enrichment of monitoring content. Potential methods face the
challenges of multi-objective optimization, error impact analysis, and the uniqueness of
the solutions existing in geotechnical inversions. The method proposed here provides a
potential tool.
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