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Abstract: The structure from motion (SfM) method has achieved great success in 3D sparse reconstruc-
tion, but it still faces serious challenges in large-scale scenes. Existing hybrid SfM methods usually
do not fully consider the compactness between images and the connectivity between subclusters, re-
sulting in a loose spatial distribution of images within subclusters, unbalanced connectivity between
subclusters, and poor robustness in the merging stage. In this paper, an efficient and robust hybrid
SfM method is proposed. First, the multifactor joint scene partition measure and the preassignment
balanced image expansion algorithm among subclusters are constructed, which effectively solves the
loose spatial distribution of images in subclusters problem and improves the degree of connection
among subclusters. Second, the global GlobalACSfM method is used to complete the local sparse
reconstruction of the subclusters under the cluster parallel framework. Then, a decentralized dynamic
merging rule considering the connectivity of subclusters is proposed to realize robust merging among
subclusters. Finally, public datasets and oblique photography datasets are used for experimental
verification. The results show that the method proposed in this paper is superior to the state-of-the-art
methods in terms of accuracy and robustness and has good feasibility and advancement prospects.

Keywords: structure from motion; hybrid SfM methods; partition-merge strategy; compactness;
connectivity; robustness

1. Introduction

Structure from motion (SfM) is a process for estimating 3D scene structure and camera
pose from a group of unstructured images. It is also called sparse reconstruction in the 3D
reconstruction process [1,2]. SfM photogrammetry is widely used in many areas, such as
geoscience [3], augmented reality [4,5], physical geography [6,7], archaeology [8,9], and
autonomous navigation [10,11]. SfM includes three parts: feature extraction and matching,
initial camera pose estimation, and bundle adjustment. According to the different initial
camera pose estimation methods, SfM methods can be roughly divided into incremen-
tal [12–15], global [16–19], and hybrid [20–23] methods. The hybrid method combines
incremental and global methods, that is, the partition-merge strategy [22], which has the
characteristics of high efficiency and the ability to process large-scale scenes composed of
tens of thousands or even hundreds of thousands of image data, and it effectively prevents
error accumulation, drift problems, and memory bottlenecks [24,25].

According to the different partition-merge strategies, hybrid methods can be di-
vided into hierarchical methods and flat methods. Hierarchical methods use hierarchical
agglomerative clustering technology for scene partitioning and merging of large-scale
datasets [22,26–30], but these methods need to initialize the leaf nodes of a tree with
agglomerative clustering and use the bottom-up method for scene reconstruction and
merging, so they lack a global perspective. The number of partitioned subgraphs is large,
which easily leads to redundant calculations and merge failure. The flat method divides
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the dataset into several subclusters of the same size, and can use multicore technology
or perform parallel reconstruction of small scenes on the distributed computing system,
and the merging rules are relatively simple [20,31–34]. However, there are at least two
problems in the existing flat methods: (1) Scene division stage: After subcluster clustering,
the spatial distribution of images in the subcluster is relatively loose. When the subcluster
is expanding, the efficiency of the expanded image is low, and the connectivity between
the subclusters is not considered. (2) Subcluster merging stage: Due to the long merging
path, the existing methods tend to cause error accumulation, which leads to the sparse
reconstruction failure of the whole scene.

Therefore, this paper proposes an efficient and robust hybrid SfM method for large-
scale scenes. The main contributions include the following three aspects:

(1) Image clustering with compact spatial distribution: To avoid the image clustering
result of a weak connection degree in subclusters, a multifactor joint scene partition
measure was constructed, including the number of image pairs with homologue
points, the overlapping area of the image, and the number of common neighbors of
the image;

(2) Image expansion considering connectivity: To improve the image expansion efficiency
and ensure as much connectivity among subclusters as possible, a complete rate-
guided preallocation equalization image expansion algorithm among subclusters
is proposed;

(3) Robust subcluster merging: To avoid the large error accumulation problem caused
by the long merging path of subclusters, a multilevel merging rule considering the
subcluster connectivity is proposed. To ensure the accuracy of the merged subclusters
as much as possible, considering the global perspective, the optimal internal camera
parameter of the two subclusters to be merged was selected as the internal camera
parameter of the merged cluster block.

The structure of this paper is as follows. The existing flat hybrid SfM methods and
their shortcomings are introduced in Section 2. An efficient and robust hybrid SfM method
for large scale is described in Section 3. The experiments and results analysis are presented
in Section 4. The conclusions of this algorithm are introduced in Section 5.

2. Related Works

Because the hybrid SfM adopts the partition-merging processing strategy, this kind of
method shows the incomparable advantages of the traditional SfM method in the large-scale
scene sparse reconstruction problem. According to the different partition-merge strategies,
the existing hybrid methods can be roughly divided into two categories: hierarchical
methods and flat methods. The method in this paper belongs to the second category, so our
discussion of earlier work focuses on the flat hybrid SfM method.

2.1. Existing Flat Hybrid SfM Method

To better adapt the initial camera pose estimation to large-scale images, scholars have
continued to carry out research related to planar hybrid SfM methods, focusing on the two
phases of scene partitioning and subcluster merging.

Bhowmick et al. [35] proposed a flat hybrid SfM, which directly divided the image
dataset into N subclusters without establishing a tree structure, and merged the common
camera pose and scene information of each subcluster after independent reconstruction,
thus improving the efficiency and robustness of subcluster merging. Sweeney et al. [36]
clustered the dataset through the distributed camera model and then merged each clustering
result. On this basis, Zhu et al. [32] introduced the completeness and size constraint into
scene partitioning to improve the connectivity between subclusters on the premise of
ensuring the same size of all subclusters to ensure the robustness of subcluster merging.
Lu et al. [33] took the image neighbor matrix obtained from the feature matching results
as the input of the segmentation algorithm and reordered the images by repeatedly using
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the matrix bandwidth reduction algorithm to solve the subgraph discontinuity problem
caused by the normalized cut.

Existing flat methods continuously improve and develop the two stages of scene
partitioning and subcluster merging. On this basis, Chen et al. [20] proposed a graph-based
method that regarded large-scale SfM as a graph problem. In the subcluster partition
stage, the large-scale dataset is partitioned into several subclusters by a graph structure. In
the merge stage, the minimum spanning tree in graph theory is used to find the optimal
merging path to complete the merge task. The basic principle of this method is as follows:

Step 1: Subcluster partitioning, specifically subdivided into image clustering and
image expansion. In the image clustering stage, each image is regarded as a node of the
graph, the edge in the graph represents the connectivity between images, and the weight of
the edge is the number of matching feature points between the geometrically filtered image
pairs (the number of points with homologue points). In the image expansion process, the
graph concept is extended to the subcluster level, and the subcluster is regarded as the
node in the graph. The edge weight in the graph is the number of lost edges after adjacent
subclusters are cut; to construct a maximum spanning tree, image edges are collected from
the tree and sorted in descending order. Finally, the lost edges are added to the clusters
that do not meet the completion readiness rate constraint.

Step 2: After the image dataset in the scene is divided into several subclusters, the
subclusters can be reconstructed by the parallel local SfM method until all subclusters
complete sparse reconstruction.

Step 3: Merge the subcluster reconstruction results. The similarity transformation is
calculated by using the overlapping information between subclusters, and the disturbance
of outliers is processed by RANSAC. The base subclusters and the optimal merging path
are selected, and the leaf nodes are merged layer by layer from bottom to top through the
precalculated transformation parameters. Finally, all the subclusters are transformed into a
unified coordinate system.

2.2. Deficiencies of Existing Methods

The existing methods are very mature in the aspect of local sparse reconstruction of
subclusters. However, in the subcluster division and merging stage, at least the spatial
distribution of the images inside the subclusters is loose. When the subclusters expand, the
efficiency of the expanded images is low, the connectivity between the subclusters is not
considered, and the subcluster merging is not sufficiently robust.

(1) The spatial distribution of images in the subcluster is loose: the first step in the
subcluster partition stage is image clustering. The clustered images have the problem
of weak connectivity. To meet the reconstruction accuracy requirements, it is generally
necessary to ensure a high degree of overlap between the captured images, so the angle
between the camera shooting direction and the vertical direction of the ground may be
very large (such as the oblique camera mounted on the UAV), as shown in Figure 1, camera
Cb. Therefore, in 3D space, the images collected by the camera far away from the ground
object (Cb) and the image collected by the camera close to the ground object (Ca) may still
have some overlap and can form an image pair with the homologue point as the correlation
factor, but this image pair generally has a weak association. As shown in Figure 1, cameras
Ca and Cb of the two stations, with distance d, correspond to images Ia and Ib. There is a
small overlap region between the two images, and the homologue points in the overlap
region can satisfy the geometric filtering condition to form an image pair that can be used
in the next stage of camera pose estimation. The existing methods use normalized cuts for
image clustering, which may divide this type of image pair (Ia and Ib in Figure 1) into the
same subcluster. The blue part in Figure 2 is a certain subcluster, block1, whose image is
divided into two parts of spatial fracture.
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Figure 2. Diagram of the spatial discontinuity of image clustering.

(2) Low efficiency of subcluster expansion and lack of consideration for subclus-
ter connectivity:

The image expansion of existing methods adds images associated with lost edges
to subclusters that do not satisfy the completeness constraint. First, according to the

completeness formula η(i) = ∑j 6=i|Ci∩Cj|
Ci

(where Ci and Cj are represented as subclusters
i and j, respectively), we determine whether the current image to be added satisfies the
preset completeness rate. The process is subcluster-by-subcluster and lost edge-by-edge
cyclic, which consumes more time when faced with large-scale image expansion. The
existing methods only add images associated with lost edges to the subclusters with the
least number of images first under the constraint of completeness rate and do not consider
the connectivity with the neighbor subclusters.

(3) The lack of subcluster merging robustness:
There are two main reasons for the lack of subcluster merging robustness: first, the

subcluster connectivity is not strong; second, the benchmark cluster needs to be selected, and
the merging path may be long, so the merging of subclusters easily causes error accumulation.
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3. Methodology

In view of the shortcomings of the existing methods, an efficient and robust hybrid
SfM method for a large scale is proposed in this paper. The core content includes three
parts: (1) Scene partitioning. To avoid weakly associated image clustering results in
subclusters, that is, an image pair with a loose, empty three-dimensional distribution, a
multifactor joint image clustering measure is constructed with a multifactor union of the
number of image pairs with homologue points, image overlap area, and the number of
common image neighbors. To improve the image expansion efficiency while ensuring
the connectivity between subclusters as much as possible, an intercluster balanced image
expansion algorithm guided by the completeness constraint is proposed. (2) Local sparse
reconstruction of subclusters. The robust and accurate global GlobalACSfM technique
is used to complete the local sparse reconstruction of each subcluster, and this stage can
be computed in parallel under the cluster architecture. (3) Multilevel subcluster merging
considering subcluster connectivity. To avoid the large error accumulation problem caused
by the long merging path of subclusters, a multilevel merging rule that considers subcluster
connectivity is proposed. To ensure the accuracy of the merged subclusters as much as
possible, considering the global perspective, the optimal camera internal parameter in the
two subclusters is selected as the camera internal parameters of the cluster block. The
flowchart of this method is shown in Figure 3.
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3.1. Scene Partitioning

Scene partitioning is the first stage of the hybrid SfM method, whose main purpose
is to divide the original scene into several related small scenes (hereinafter referred to



Remote Sens. 2023, 15, 769 6 of 23

as subclusters). Scene partitioning includes two steps: image clustering and subcluster
expansion. Image clustering divides the original scene into N nonoverlapping subclusters
by a clustering algorithm. Subcluster expansion adds repeated images to subclusters so
that there are enough overlapping images between adjacent subclusters and enhances
the connectivity between subclusters. For the problems of weak image connectivity and
even spatial discontinuity in the image clustering results and low expansion efficiency and
uneven connectivity in the image expansion in the existing methods, effective solutions are
proposed in this paper.

3.1.1. Image Clustering Algorithm Based on Multifactor Joint Measure

Image clustering divides the scene into several nonoverlapping subclusters. Similar
to the existing method [20], the image clustering algorithm in this paper completes image
division by constructing the graph, calculating the edge weights in the graph, and using
normalized cut [37]. The detailed steps are as follows:

Step 1: Build the graph. The clustering process in this paper is carried out on the
graph. The image is taken as the node in the graph, and the connection between the images
is taken as the edge in the graph to build the camera graph G = {V, E}, where the node
Vi ∈ V represents the camera Ci ∈ C, Eij ∈ E and the edge weight w

(
Eij
)

represents the
connection relation between the image pair Ci and Cj. Subcluster clustering divides all the
cameras represented by graph G = {V, E} into a group of N subclusters represented by
graph {Gk|Gk = {Vk, Ek}}, and the subclusters do not overlap each other.

Step 2: Construction of edge weights. The edge weight w
(
Eij
)

in graph G = {V, E}
is constructed to measure the connection relationship between two nodes. The existing
method takes the number of points with homologue points of the image pair as the weight,
and the weight function of the number of points with homologue points after normaliza-
tion is:

wpij =
pnum

min
(

f eati, f eatj
) , (1)

where f eati, f eatj is the number of feature points of each image pair i, j and pnum is the
number of points with the homologue points of the image pair. It is generally believed
that the larger wpij is, the stronger the correlation between image pairs will be. If only
the number of points with homologue points is used to calculate the edge weight, weakly
connected image pairs with a long spatial distance may be divided into the same subcluster,
while image pairs with a short spatial distance but a relatively small number of points
with homologue points may be divided into different subclusters, resulting in the spatial
distribution of images within the subcluster being loose or even fragmented (as shown in
blue block1 in Figure 2). Furthermore, it may lead to the rupture of the local reconstructed
free network of the subcluster.

To solve the above problems, based on Formula (1), this paper introduces the overlap-
ping area of image pairs, scene correlation degree information, and the number of points
with homologue points to construct a new weight function w

(
Eij
)
. Among them, the over-

lapping area of the image pair is the representation of the same ground area captured in the
two images in the image space. If the overlap area of an image pair is small, it is considered
that the image pair is more likely to be weakly connected. The common neighbor number
of images represents the number of images with the same ID in the neighbor set of two
images in an image pair. The greater the number of common neighbors, the more likely
the image pair is to be strongly connected. The number of points with homologue points
in an image pair represents the number of matched feature points in two images, and the
more points there are with homologue points, the stronger the correlation between the
two images.

(1) The normalized overlap area of the image pair:

waij = max

(
pareai

areai
,

pareaj

areaj

)
, (2)
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where pareai , pareaj represents the number of pixels occupied by the external polygons in
the distribution range of the points with homologue points on their respective images.
Due to the difference in the angle of view, the distribution range of the homologue points
on the left and right visual images on the same image pair may be slightly different. For
the convenience of calculation, the maximum value is adopted in this paper. areai, areaj
represent the respective image area of images i, j. The larger the overlap area factor of the
image pair, the more likely the image pair is to be strongly connected.

(2) Normalized scene correlation factor:

wmij =
comnum

max(matchnum)
, (3)

where comnum is the number of common associated images of the image pair, that is, the
number of common neighbor images contained in all image pairs composed of two images
i, j, and matchnum is the maximum number of associated images shared by all image pairs
in the scene. The more associated images the left and right visual images of the image pair
have in the whole scene, the stronger the connection relation of the image pair is.

In this paper, the above three indicators are combined and regularized to construct a
new weight function as follows:

w
(
Eij
)
= α× waij + β× wpij + δ× wmij , (4)

where α, β, δ are the weights of the above three different factors (empirical values of 50, 30,
and 20 are selected in this paper).

Step 3: Image clustering. First, the subcluster image scale is determined to determine
the number of subclusters to be divided. The subcluster image scale should be moderate.
Considering the limitations of computer memory and computing efficiency, the subcluster
image scale should not be too large. Then, a normalized cut is used to divide the established
graph. Finally, to facilitate subcluster expansion in the next stage, the image pairs that
were disconnected in the process of subcluster clustering are collected and arranged in
descending order by weight to construct the fracture relationship table Elost:

Elost =
{

εk1k2,i|k1, k2 ∈ [K], i ∈|εk1k2

∣∣}, (5)

where K is the number of subclusters, k1, k2 represents two subclusters in the cluster pair,
and εk1k2 represents the matching pair that is broken during the partition.

3.1.2. Subcluster Expansion Algorithm Considering Partition Connectivity

After image clustering, image expansion of subclusters is performed to ensure the
connectivity between neighboring subclusters and facilitate the merging of local sparse
reconstruction results of subsequent subclusters. Based on the existing methods [20], an
intercluster balanced image expansion algorithm guided by completeness is proposed to
improve the image expansion efficiency and to consider the balanced connectivity of the
expanded images of neighboring subclusters. The specific steps are as follows:

Step 1: Calculate the ratio to be expanded. Calculate the ratio of the target subcluster
to the number of neighborhood clusters to be expanded:

rkikj
=

Elost|kikj

sum
(

Elost|ki

) , (6)

where Elost|ki
represents the total number of image pairs interrupted by subcluster i dur-

ing the partition process, and Elost|kikj
represents the number of images interrupted by

subcluster i and its neighborhood cluster j during the partition process.
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Step 2: Calculate the number of images to be expanded. Combined with the complete-
ness rate ηi and the allocation ratio calculated by Formula (6), the extended image number
of the target subcluster i and its neighborhood subcluster j is calculated as follows:

Nkikj
= rkikj

×
(
ηi × clusterki

− expandki

)
, (7)

ηi =
∑j 6=i

∣∣Gi ∩ Gj
∣∣

Gi
, (8)

expandki
=

 0
∑
i 6=j

Nkikj

i f i does not expand
i f i has done the expansion

, (9)

where clusterki
represents the number of the current images of subcluster i, expandki

represents the number of expanded images of current subcluster i, and Gi, Gj represents
two different subclusters.

Step 3: Image addition. Nkikj
, the number to be expanded, is calculated by Formula (7),

and the one with the smaller scale is selected among the cluster pairs to be expanded,
restoring the first Nkikj

matching pairs with the highest weight in Elost to balance the size of
the subclusters.

After the above two stages of image clustering and subcluster expansion, the images
contained in the scene are divided into multiple subclusters of comparable size, with more
compact image connectivity within the subclusters and reasonable and balanced connectiv-
ity established between the subclusters and neighboring subclusters by repeating images.

3.2. Local 3D Sparse Reconstruction of Subclusters

After subcluster partitioning, all subclusters need to be reconstructed individually
using the local SfM approach. Unlike the hybrid hierarchical SfM method, the method in
this paper belongs to the hybrid planar SfM method, which partitions large-scale scene
data of tens of thousands or even hundreds of thousands of images into several or even
tens of subscenes in a planar subcluster division so that either incremental SfM or global
SfM methods can be chosen for the reconstruction of subscenes.

Unlike the previous hybrid SfM [20,31–33] that used incremental SfM for local sparse
reconstruction, the local sparse reconstruction of subclusters is performed using global SfM.
Compared with incremental SfM, the global SfM-based local sparse reconstruction strategy
has the following advantages:

1. Global SfM does not require frequent global bundle adjustment, so it is more efficient
in the local sparse reconstruction of subclusters.

2. There is no need to consider the risk of drift caused by incremental SfM local recon-
struction, so the subcluster partitioning size in this paper can be as large as possible.
The subcluster size can be set to hundreds or even thousands of images to reduce
image number redundancy between subclusters and subcluster merging times.

3. The local SfM of subclusters adopts the global SfM, which has less possibility of drift
and error accumulation. Therefore, only one global bundle adjustment is required
during the subcluster merging process, which improves the efficiency of subclus-
ter merging.

The GlobalACSfM method [35] used in this paper has been integrated into the open
source library OpenMVG, which has been experimentally verified to be more efficient
than incremental SfM is. The robustness of the method is better due to the use of an
adaptive inverse estimation model for the initial pose estimation of the camera, as well as
the use of adaptive thresholding to better reject noise and delineate interior points. The
GlobalACSfM source code address is https://github.com/openMVG/openMVG, accessed
on 24 December 2022.

Due to uncertainties such as image matching accuracy and flight sensor calibration
characteristics, it is not guaranteed that all images in a subcluster will be successfully

https://github.com/openMVG/openMVG
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registered. If a subcluster has more image registration failures in local sparse reconstruction,
it may cause the connectivity of that subcluster with other subclusters to decrease or it may
even become an isolated subcluster, making the subcluster merge fail. Therefore, in this
paper, a quality assessment of the sparse reconstruction results is performed after local
sparse reconstruction. If the image registration of the subcluster sparse reconstruction
result is less than 95% of the image size of the subcluster (the value is more reasonable
after experimental verification), the local sparse reconstruction of the subcluster is judged
to have failed. The set of camera internal parameters and aberration parameters with the
smallest reprojection error in its neighboring subclusters is selected as the camera internal
parameters and aberration parameters of the subcluster, and local sparse reconstruction is
performed again to improve the robustness of this method.

3.3. Multilevel Subcluster Merging Considering Subcluster Connectivity

Subcluster merging is the final stage of hybrid SfM. In particular, when dealing with
large image datasets, the existing methods are more prone to accumulate large merging
errors or even merging failures due to the insufficient number of duplicate images or
common structure points between neighboring subclusters or the long merging paths of
these subclusters during the merging process. To solve this problem, the optimal merging
path based on the minimum height tree (MHT) to select the benchmark cluster and other
subclusters in the existing method [20] is no longer used, and the multilevel merging
rule that considers the subcluster connectivity is proposed, which no longer selects the
benchmark cluster but instead a decentralized multilevel merging process, and the merging
process considers the global perspective. The specific steps are as follows:

Step 1: Build the set of subclusters to be merged. The local SfM reconstruction results of
subclusters in Section 2.1 are judged by a simple quality check. If the number of registered
images of a subcluster is small or the reprojection error is large, the local SfM reconstruction
of this subcluster is considered to have failed and it cannot be included in the set of
subclusters to be merged.

Step 2: Centerless method of selecting the cluster pairs to be merged. First, the
subcluster with the largest number of neighboring clusters (or the best connectivity) is
selected from the set of subclusters to be merged as the subcluster to be merged. Then, all
subclusters paired with this subcluster are counted, the number of common images of the
cluster pair is prioritized as the merging weight, and the neighboring subclusters with the
highest priority are selected to form the cluster pair to be merged with the subcluster.

Step 3: Perform the merge operation. Since neighboring subclusters in the cluster pair
to be merged may have been merged with other subclusters, different merging operations
are applied depending on the merging of neighboring subclusters.

• The case where neither of the two subclusters has been merged. First, the feature points
of the common image of the current cluster pair are collected, the 3D structure points
corresponding to the feature points are used to perform alignment transformation
(translation, rotation, scaling), and the camera internal parameters, image, and its
external parameters and 3D structure points of the subcluster are merged into a new
cluster block. Then, to solve the camera internal parameter consistency problem,
the common camera internal parameter of two subclusters is combined with the 3D
structure points of the cluster block for the rear intersection, the reprojection error
is calculated, and the group with a smaller reprojection error is taken as the camera
internal parameter of the cluster block.

• The case where the neighboring subclusters have been merged. First, the cluster
blocks to be merged with subclusters are searched and determined. Then, the feature
points of the common images of the current subcluster and the cluster block are
collected, the corresponding 3D structure points of the feature points are used to
perform alignment transformation (translation, rotation, and scaling), and the camera
internal parameters, image, and its external parameters and 3D structure points of
the subcluster are merged into the cluster block. Finally, to solve the camera internal
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parameter consistency problem, the common camera internal parameter of subclusters
and cluster blocks is combined with the 3D structure points of the cluster block for
rear intersection, the reprojection error is calculated, and the group with smaller
reprojection error is taken as the camera internal parameter of the cluster block.

Step 4: The subclusters that were merged in step 3 are removed from the set of
subclusters to be merged, and steps 2–3 above are performed cyclically until all subclusters
are merged. Then, the cluster blocks continue to merge until a complete scene is formed,
and the merging process is the same as the above steps.

After the subcluster merging process, to ensure the accuracy of the sparse reconstruc-
tion results of the scene, the method in this paper adopts the idea of the literature [30]
to perform another global bundle adjustment for the sparse reconstruction results of the
merged scene, which is used to adjust the image poses, camera internal parameters, and
the 3D structure points of the scene. In this paper, the work is conducted using Ceres
Solvers [38], a library for nonlinear optimization with excellent performance, which is
commonly used to optimize image poses (rotation matrix and translation matrix), cam-
era internal parameters (including focal length, image principal point, radial aberration,
tangential aberration), and 3D spatial point coordinates.

4. Experiment and Results
4.1. Experimental Data and Environment

The method proposed in this paper is embedded into the IMS software, which is a
reality modelling software that was independently developed by the authors at the Chinese
Academy of Surveying and Mapping. Multiple publicly available datasets of different
sizes [39,40] and field-collected tilt-photography datasets were used for experimental
verification. The detailed parameters of the experimental data are shown in Tables 1 and 2.
The subcluster local SfM in the second stage of the proposed method can be computed
in parallel using the cluster architecture of IMS software, so the experimental operating
environment is a computing cluster consisting of one master node and five subnodes,
where the master node is a workstation with Windows 10 64-bit operating system, an Intel
Core i7-11700X CPU with a dominant frequency of 2.50 GHz, and 64 GB of memory; the
subnodes are ordinary desktops with the Windows 10 64-bit operating system, an Intel
Core Gold6132 CPU with a dominant frequency of 2.60 GHz, and 64 GB of memory. In
addition, SIFT [41] provided by vlfeat is used to extract feature points in this paper.

Table 1. Public dataset information.

Dataset Number of Images Image Size

Graham-Hall 100 5616 × 3744
South-Building 128 3072 × 2304

Person-Hall 330 5616 × 3744
Echillais-Church 353 5616 × 3744

Gerrard-Hall 1273 5616 × 3744

4.2. Experimental Result of Subcluster Partitioning

To verify the effectiveness of subcluster partitioning in this paper, experimental validation
and a description of experimental results are conducted from three aspects: image pair com-
pactness of image clustering, image expansion connectivity, and image expansion efficiency.

4.2.1. Image Clustering Compactness Verification

Three sets of oblique photography datasets Area 6 and Area 7 with rich and complex
feature types (containing dense building areas, roads, vegetation, waters, etc.) were selected
for comparison experiments between the proposed method and the traditional method [20]
in the same environment.
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Table 2. Aerial oblique photographic dataset information.

Dataset Number of Images GSD (cm) Area (km2)
Image Size

Ortho Oblique

Area 1 162 4.08 0.075 5472 × 3648 5472 × 3648
Area 2 637 3.37 0.30 5472 × 3648 5472 × 3648
Area 3 2776 2.26 1.24 6000 × 4000 6000 × 4000
Area 4 5265 1.30 0.32 6000 × 4000 6000 × 4000
Area 5 8221 3.37 6.42 5472 × 3648 5472 × 3648
Area 6 11,795 6.50 40.30 11,674 × 7514 8900 × 6650
Area 7 34,364 3.00 10.62 7952 × 5304 7952 × 5304
Area 8 39,040 2.00 2.30 6000 × 4000 6000 × 4000
Area 9 48,335 1.20 2.93 6000 × 4000 6000 × 4000
Area 10 10,500 1.20 0.58 6000 × 4000 6000 × 4000

Area 6 data have the characteristics of higher acquisition height and larger ground
resolution (GSD), and it is easier to have a large inclination angle between image pairs.
With the same subcluster partition scale, the traditional method tends to partition the
less connected images into a subcluster, and the partitioning result is incompact or even
spatially discontinuous. As shown in the overall situation of subcluster partitioning (the
upper-left corner of Figure 4a), there is spatial overlap in the positions of the images
contained in adjacent subclusters; both subclusters A1 and A2 show the loose phenomenon
of consecutive lost images in the airstrip; the images contained in three subclusters A4,
A5, and A6 show two to three small, aggregated groups, all of which show a spatial
discontinuity. As seen in the overall situation of the subcluster partition in the upper-left
corner and the image position distribution of D1 ∼ D6 subclusters in Figure 4b, none of
the results of the proposed method have image loosening or spatial discontinuity, and the
subcluster partitioning results are more compact. This is because the weight calculation
method of the multifactor union of the normalized cut function proposed in this paper
takes the number of homologue points of the image pair, the overlap area of the image,
and the number of common neighbors of the image pair as the factors to measure the
connectivity of the image pair from different perspectives.
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side is the result of the traditional method, and the right side is the result of the proposed method.
(a,b) The dataset is Area 6, and the subcluster partition size is 1800, where the top left is the overall
partition results, and A1~A6 are the results of the six subclusters partitioned. (c,d) The dataset is
Area 7, and the subcluster partition size is 5000.

4.2.2. Subcluster Expansion Connectivity and Efficiency Verification

To verify the effectiveness of the proposed method in terms of subcluster expansion
connectivity and efficiency, a comparison experiment was designed between the proposed
method and the traditional method [20] in the same environment.

(1) Experimental result of subcluster expansion connectivity.
Using the experimental data Area 5, Area 6, and Area 7 and based on the scene

partitioning results of the image clustering method in this paper, repeated images were
added between neighboring subclusters using the subcluster expansion algorithm in the
traditional method and the method proposed in this paper to ensure the connectivity
between neighboring subclusters and facilitate the merging of subcluster reconstruction
results. The subcluster completeness rate η = 0.5 was set in the experiment, and the
number of neighboring subclusters with connectivity (presence of repeated images) with
subclusters and the number of repeated images between them were counted.

In Figure 5, the number of edges between nodes in (b) and (d) are both more than in
(a) and (c), and the number of edges between nodes in (f) and (e) are equal. The histogram
in Figure 6 is more intuitive, which indicates that the proposed method is better than the
traditional method in terms of image expansion connectivity.Remote Sens. 2023, 15, x FOR PEER REVIEW 13 of 25 
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the number in the box represents the subcluster ID; the edge represents the connectivity between
nodes, and the number attached to the edge represents the number of repeated images added between
nodes due to the expansion. (a,b) The dataset is Area 6, with a subcluster partition size of 1800;
(c,d) the dataset is Area 5, with a subcluster division size of 1000; (e,f) the dataset is Area 7, with a
subcluster division size of 5000.
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with a subcluster division size of 5000.
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(2) Experimental result of expansion efficiency
To verify the superiority of the efficiency of the proposed expansion algorithm, five

sets of data of different sizes, Area 3, Area 6, Area 7, Area 8, and Area 9, were selected to
measure the time consumed in the expansion stage using the proposed method and the
traditional method [20], as shown in Table 3.

Table 3. Image expansion efficiency statistics.

Dataset Number of Images Subcluster Size Traditional
Method (ms)

The Proposed
Method (ms)

Area 3 2776 500 2713 43
Area 6 11,795 2000 48,589 67
Area 7 34,364 2000 938,433 439
Area 8 39,040 2000 772,184 355
Area 9 48,335 2000 5,678,460 1340

As shown in Table 3, the efficiency of the proposed algorithm is faster than that of
the traditional method on datasets of different sizes, and the advantage of the proposed
algorithm becomes increasingly significant as the size of the dataset (the number of images)
increases. For example, the number of images in Area 3 is 2776, and the time consumed
by the proposed method is 1.58% that of the traditional method; the number of images in
Area 9 is 48,335, and the time consumed by the proposed method is only 0.024% that of the
traditional method.

For example, in Area 3 of Table 3, the number of images is 2776, and the time consumed
by this method is 1.58% that of the traditional method; in Area 9, the number of images is
48,335, and the time consumed by this method is only 0.024% that of the traditional method.
This is mainly because the image expansion in this paper adopts the preassignment strategy,
which avoids the frequent adjustment of the subclusters to be added and the number of
assigned images in the expansion process.

4.3. Experimental Result of Subcluster Merging Robustness

In terms of subcluster merging, the traditional method suffers from a low merging
success rate. A multilevel subcluster merging rule that considers subcluster connectivity
is proposed. To verify the robustness of the proposed method in subcluster merging, two
public datasets, Echillais-Chuich and Granham-Hall, and a set of oblique photography
data, Area 3, were used as experimental data. To ensure the rigor of the experiments,
both the subcluster partitioning and subcluster local SfM steps before subcluster merging
were performed using the proposed method. Subcluster merging was performed using
the traditional GraphSfM method [20] and the merging rules proposed in this method. In
addition, for a fuller comparative analysis, we added the well-known incremental SfM
method Colmap [39], the global SfM method OpenMVG [35], and the hybrid SfM method
3Df [27] as control groups. The experimental results are shown in Figure 7 and Table 4.

Combining Figure 7 and Table 4, for the Echillais-Church data, all five methods could
be reconstructed successfully, and the reprojection errors were all less than 0.5 pixels.
However, for the Graham-Hall data, both the 3Df method and the GraphSfM method failed
to reconstruct, the number of successfully registered images for the GraphSfM method was
too small (Table 4), and the merging results were confusing (Figure 7). This is mainly due to
the poor connectivity during subcluster merging, resulting in too few repeated images and
common structure points among subclusters. Therefore, the exact chi-square coordinate
transformation parameters could not be calculated.

4.4. Experimental Result of Accuracy and Time Comparative

To verify the overall performance of the proposed method, the reconstruction accuracy
and efficiency of the proposed method, the most advanced incremental SfM method
Colmap [39], the global SfM method OpenMVG [35], the hybrid SfM method 3Df [27], and
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GraphSfM [20] were compared and analyzed using publicly available datasets and oblique
photography datasets. The experiments were conducted on a single computing node, and
the experimental results are shown in Tables 5–8.
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Table 4. Subcluster merge precision statistics. (Nc: number of registered images; Np: number of
structure points; Err: reprojection error (MSE), in pixels).

Echillais-Church Graham-Hall Area 3

Colmap
Nc 288 1260 2688
Np 232,244 452,965 1,588,456
Err 0.31 0.57 1.34

OpenMVG
Nc 342 1213 2694
Np 634,240 981,723 1,467,779
Err 0.48 0.52 0.72

3Df
Nc 352 886 2713
Np 102,129 149,796 954,076
Err 0.31 0.36 0.35

GraphSfM
Nc 352 855 1627
Np 181,424 1,189,188 1,308,133
Err 0.39 0.36 0.45

Ours
Nc 352 1265 2697
Np 22,576 49,893 191,845
Err 0.29 0.31 0.33
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Table 5. Public dataset accuracy statistics. (Nc: number of registered images; Np: number of structure
points; Err: reprojection error (MSE), in pixels; — represents reconstruction failure).

Gerrard-Hall South-Building Person-Hall Echillais-Church Graham-Hall

Colmap
Nc 100 128 330 288 1260
Np 56,426 86,972 179,168 232,244 452,965
Err 0.48 0.41 0.48 0.31 0.57

OpenMVG
Nc 99 128 329 343 —
Np 33,280 86,465 788,726 634,240 —
Err 0.47 0.30 0.45 0.48 —

3Df
Nc 100 128 — — —
Np 20,235 25,065 — — —
Err 0.28 0.31 — — —

GraphSfM
Nc 100 128 328 352 —
Np 54,914 57,311 130,432 181,424 —
Err 0.33 0.27 0.33 0.39 —

Ours
Nc 100 128 330 353 1259
Np 4811 6759 19,783 22,576 49,893
Err 0.24 0.27 0.28 0.29 0.31

Table 6. Oblique photography dataset accuracy statistics. (Nc: number of registered images; Np:
number of structure points; Err: reprojection error (MSE), in pixels; — represents reconstruction
failure; *** represents the reconstruction time is more than fifteen days).

Area 1 Area 2 Area 3 Area 4 Area 10

Colmap
Nc 162 637 2688 *** ***
Np 72,655 448,023 1,588,456 *** ***
Err 0.49 0.53 0.94 *** ***

OpenMVG
Nc 162 637 2694 5265 10,499
Np 68,409 448,206 1,467,779 2,270,331 4,684,135
Err 0.70 0.75 0.72 0.69 0.74

3Df
Nc 162 637 2713 5250 10,497
Np 54,801 220,078 954,076 2,219,910 2,885,045
Err 0.26 0.35 0.35 0.34 0.73

GraphSfM
Nc 162 637 — — 10,493
Np 47,634 302,216 — — 5,744,895
Err 0.50 0.54 — — 0.45

Ours
Nc 162 637 2713 5265 10,499
Np 14,179 40,376 191,845 440,580 882,847
Err 0.22 0.30 0.33 0.33 0.34

As shown in Tables 5 and 6, the proposed method could successfully perform sparse
reconstruction on both the public dataset and the oblique photography dataset, and the
main accuracy indexes, such as the number of registered images, the number of recovered
structure points, and the reprojection error, all performed well and had high robustness.
The GraphSfM method failed in sparse reconstruction on both types of datasets, such as
the Graham-Hall data in Table 5 and Area 3 and Area 4 data in Table 6. In addition, on the
public dataset and the oblique photographic dataset, the proposed method in this paper
recovered only 3% to 20% of the structure points compared to the other methods.

The Colmap method performed better on the public dataset, but on the oblique
photography dataset, the reconstruction time was exceedingly long when the number of
images exceeded 5000, as in Table 6 for data Area 4 and Area 6, where the reconstruction
time is indicated as ***. The OpenMVG method also failed when performing sparse
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reconstruction on the public dataset Graham-Hall. 3Df, a typical representative of open-
source hybrid SfM methods, also performed poorly in terms of robustness.

Table 7. Public dataset efficiency statistics. (Tp: local reconstruction time; TMeg: subcluster merging
time; TBA: global bundle adjustment time; T∑: total time. - represents no merging operation, such as
with 3Df where scene partitioning is not performed with less than 1000 images, and time is no longer
counted; — represents failure, time unit: seconds).

Gerrard-Hall South-Building Person-Hall Echillais-Church Graham-Hall

Colmap T∑ 183 298 981 2257 19,384

OpenMVG
Tp 9 30 1366 241 —

TBA 25 97 3878 867 —
T∑ 34 127 5244 1108 —

3Df

Tp 12 19 — — —
TMeg - - — — —
TBA 1 1 — — —
T∑ 13 20 — — —

GraphSfM
Tp 271 214 729 680 —

TBA 4 3 8 1 —
T∑ 275 217 747 741 —

Ours

Tp 101 181 3220 1235 4814
TMeg 1 1 48 59 34
TBA 2 14 19 40 630
T∑ 103 196 3287 1334 5478

Table 8. Oblique photography dataset efficiency statistics. (Tp: local reconstruction time; TMeg:
subcluster merging time; TBA: global bundle adjustment time; T∑: total time. - represents no merging
operation, such as with 3Df where scene partitioning is not performed with less than 1000 images, and
time is no longer counted; — represents failure, time unit: seconds; *** represents the reconstruction
time is more than fifteen days).

Area 1 Area 2 Area 3 Area 4 Area 10

Colmap T∑ 341 5451 7,563,501 *** ***

OpenMVG
Tp 20 343 1466 7639 41,367

TBA 30 896 2446 18,083 44,627
T∑ 50 1239 3912 25,722 85,994

3Df

Tp 23 402 1112 1809 22,143
TMeg - - 106 2136 2694
TBA 1 134 6 548 1912
T∑ 24 536 1224 4493 27,531

GraphSfM
Tp 179 2372 — — 180,570

TBA 5 73 — — 17,320
T∑ 184 2445 — — 197,890

Ours

Tp 88 918 1408 2092 20,666
TMeg 1 3 90 34 494
TBA 4 23 227 1245 623
T∑ 93 944 1725 3371 21,783

In terms of efficiency, it can be seen in Tables 7 and 8 that (1) the proposed method in
this paper did not perform the best in terms of the time required for sparse reconstruction
(the 3Df method is the fastest) for both the open dataset and the skewed photographic
dataset, but the time advantage of the proposed method in this paper became increasingly
significant as the number of data increased. Compared with GraphSfM, which also uses a
planar hybrid SfM framework, the efficiency of this paper’s method was higher, with the
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proposed method consuming 90.3% to 12.0% of GraphSfM’s time. (2) Overall, the time of
the proposed method was not the shortest (3Df was the fastest) on the public dataset and
the oblique photography dataset. However, as the data size increased, the gap between
the time of the proposed method and the time of 3Df gradually decreased. For example,
from Area 1 with 162 images and Area 4 with 5265 images, the time multiple of the two
was reduced from 4 times to about 2 times. (3) When the number of images reached more
than 10,000, the proposed method required less time than the 3Df method did, and the time
complexity has obvious advantages. For example, for Area 10 with 10,500 images, the time
consumption of the proposed method was only 80.6% of that of the 3Df method.

4.5. Large-Scale Aerial Image Dataset

To verify the performance of the proposed method on large-scale datasets, Area 6,
Area 7, Area 8, and Area 9 were used as experimental data for statistical accuracy and
efficiency of sparse reconstruction. Due to the large scale of the experimental data, the
proposed method was integrated into the cluster architecture of IMS software for parallel
computation (one master node and five subnodes; the detailed configuration is described
in Section 3.1).

Combining Table 9 and Figure 8, under the abovementioned cluster mode, the pro-
posed method could still perform sparse reconstruction with high efficiency while satisfying
accuracy, which indicates that the proposed method is also more applicable to large-scale
datasets. Taking the dataset Area 7 as an example, the total number of images was 34,435,
the number of successfully registered images was 33,961, the reprojection error was only
0.35 pixels, and the reconstruction (the sum of subcluster partitioning, subcluster local
reconstruction, and subcluster merging) time was 1038 min. The high quality of the 3D
model (clear and realistic contours) can be seen in the local detail image on the rightmost
of Figure 8a, which also reflects the high accuracy of the sparse reconstruction.

Table 9. Reconstruction results of the large-scale image dataset. (N: number of images; Nc: number
of registered images; Np: number of structure points; Err: reprojection error (MSE); T: reconstruction
time, in minutes).

Data N Nc Np Err T

Area 6 11,795 11,326 890,934 0.33 178
Area 7 34,435 33,961 2,854,957 0.35 628
Area 8 39,040 38,819 3,354,213 0.34 1066
Area 9 48,335 48,146 3,957,959 0.35 1359
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results, the middle-right is the 3D model reconstruction results corresponding to the middle-left, and
the rightmost is the detail display of the 3D model reconstruction results. (a) The result of oblique
image dataset Area 7; (b) the result of oblique image dataset Area 8; (c) the result of oblique image
dataset Area 9.

5. Discussion
5.1. Comparative Analysis of Subcluster Partitioning

To verify the effectiveness of subcluster partitioning in this study, experimental com-
parison and analysis were conducted from three aspects: image pair compactness of image
clustering, image expansion connectivity, and image expansion efficiency.

5.1.1. Image Clustering Compactness Analysis

In the first stage of subcluster partitioning, i.e., image clustering, a multifactor joint
normalized cut function weight calculation method is proposed to verify that the image
clustering results of the proposed method do not contain image pairs with weak connectiv-
ity or spatial discontinuity when facing multiview image partitioning with high overlap
and large inclination angles.

Figure 4e,f show the subcluster division results of another set of data. Compared with
Area 6, the data of Area 7 are different in terms of acquisition height, ground resolution
(GSD), route planning, and data scale. For example, the corresponding data of (a) and (b)
were collected using tic-tac-toe route planning, whereas for (c) and (d), the corresponding
data were collected using five-way flight path planning. As seen from the subcluster
partitioning results in Figure 4a–d, the subcluster partitioning results of the traditional
methods have different degrees of image loosening or spatial discontinuity, while the
partitioning results of the proposed method are more compact and adaptable.

5.1.2. Subcluster Expansion Connectivity and Efficiency Analysis

In the first stage of subcluster division, i.e., image expansion, the traditional method [3]
has problems such as poor connectivity between subclusters and low efficiency, and this
study makes targeted improvements to address the above two aspects.

(1) Experimental comparison analysis of subcluster expansion connectivity.
In Figure 5, the number of edges between nodes in (b) and (d) are both more than in

(a) and (c), and the number of edges between nodes in (f) and (e) are equal. The histogram
in Figure 6 is more intuitive, which indicates that the proposed method is better than the
traditional method in terms of image expansion connectivity. Comparing the numbers
attached to the edges between nodes, as in Figure 5a,b, the proposed method is more
balanced than the traditional method in terms of repeated image assignment. This is
mainly because the proposed intercluster balanced image expansion algorithm guided by
completeness solves the problem of low efficiency of extended image and the connectivity
among subclusters in traditional methods [3].

(2) Experimental comparison analysis of expansion efficiency.
Since the repeated images are added cyclically subcluster-by-subcluster and lost edge-

by-edge in the expansion of traditional methods, it consumes more time when faced with
large-scale expansion. For this reason, the completeness-guided intercluster balanced
expansion algorithm is proposed.

As seen in Table 3, the efficiency of the proposed algorithm is faster than that of
the traditional method on datasets of different sizes, and the advantage of the proposed
algorithm becomes increasingly significant as the size of the dataset (the number of images)
increases. This is mainly because the proposed image expansion algorithm adopts a
preassignment strategy, which avoids the frequent adjustment of the subclusters to be
added and the number of assigned images in the expansion process.
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5.2. Comparative Analysis of Subcluster Merging Robustness

In terms of subcluster merging, the traditional method suffers from a low merging
success rate. A multilevel subcluster merging rule that considers subcluster connectivity
is proposed.

Combining Figure 7 and Table 4, the three groups of data could be successfully
reconstructed using the proposed method. Compared with other methods, the number of
registered images was basically the same, the number of structure points recovered was
less, and the reprojection error was less than 0.5 pixels.

However, for the Graham-Hall data, both the 3Df method and the GraphSfM method
failed in reconstruction, the number of successfully registered images for the GraphSfM
method was too small (Table 4), and the merging results were confusing (Figure 7). This
was mainly due to the poor connectivity during subcluster merging, resulting in too few
repeated images and common structure points among subclusters. Therefore, the exact
chi-square coordinate transformation parameters could not be calculated.

For the Area 3 data, the GraphSfM method merged scene was also incomplete, and the
number of successfully registered images using the GraphSfM method was less (Table 4),
and the failure reason is the same as above. In contrast, the subclusters of the three datasets
using the proposed method were successfully merged, and are comparable to the advanced
incremental Colmap method and the global OpenMVG method in terms of the number of
registered images and reprojection error of the scene reconstruction.

5.3. Accuracy and Time Comparative Analysis

To verify the overall performance of the proposed method, the reconstruction accuracy
and efficiency are used as two main indicators for comparative analysis.

As shown in Tables 5 and 6, the GraphSfM method failed in sparse reconstruction
on both types of datasets, such as the Graham-Hall data in Table 5 and the Area 3 and
Area 4 data in Table 6. The main reasons include the following three aspects: (1) the image
clustering results of the GraphSfM method may contain image pairs with weak connectivity
or spatial discontinuity, resulting in a looser distribution of images in the subclusters; (2) the
GraphSfM method does not consider the connectivity balance between subclusters and
neighboring subclusters in image expansion; (3) the global optimal merging path selected
based on the minimum height tree (MHT) in the GraphSfM method cannot guarantee the
sufficient number of repeated images and common structure points required for merging.
The proposed method proposes effective solutions to these three problems, so the proposed
method can successfully perform sparse reconstruction with excellent accuracy.

In addition, on the public dataset and the oblique photographic dataset, the proposed
method recovered fewer structure points than the other methods did, as shown in the
Np values in Tables 5 and 6. The reasons mainly include two aspects: first, in the local
3D sparse subcluster reconstruction stage, GlobalACSfM was used in this study. This
method uses an adaptive inverse estimation model to estimate the initial pose of the
camera, and can use adaptive thresholds to correctly remove most noise and divide interior
points. Therefore, the number of structure points of each subcluster is less than that of the
other methods; second, in the subcluster merging stage, this paper proposes a multilevel
subcluster merging considering subcluster connectivity. To ensure the accuracy of the 3D
sparse reconstruction of the entire scene after merging, if two subclusters meet the merging
conditions, the overlapping area of the two subclusters will be triangulated and adjusted
when merging, and the 3D structure points of the area will be regenerated as the merged
subcluster structure point.

In terms of efficiency, it can be seen from Tables 7 and 8 that, compared with GraphSfM,
which also uses a planar hybrid SfM framework, the efficiency of the proposed method
is higher. This is mainly because the proposed method adopts a global strategy in the
subcluster sparse local reconstruction stage, which makes the number of parameters for a
single solution decrease significantly, while GraphSfM adopts an incremental approach,
which requires frequent global bundle adjustment. In addition, when the number of
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images reaches more than 10,000, the proposed method requires less time than the 3Df
method does, and the time complexity has obvious advantages. This is mainly because
the 3Df method sets a lower limit on the number of images using hybrid SfM; when the
number of images is greater than 1000, the 3Df method will enable hybrid SfM, and its
hierarchical division-merging strategy leads to a lower time complexity than that of the
proposed method.

6. Conclusions

Existing hybrid SfM methods are mature in subcluster local sparse reconstruction,
but at least in subcluster partitioning and subcluster merging, there are still problems
such as noncompactness (weak connectivity) among images contained in subclusters, low
efficiency and failure to consider subcluster connectivity in image expansion, and less
robust subcluster merging. A large-scale hybrid SfM method with compact partitioning
and a multilevel merging strategy is proposed. First, subcluster partitioning is performed
using a multifactor joint normalized cut function and an inter-subcluster balanced image
expansion algorithm guided by completeness. Second, the local sparse reconstruction
of subclusters is performed using a global GlobalACSfM method in a cluster parallel
framework. Finally, a multilevel merging rule is formulated to perform subcluster merging
considering subcluster connectivity.

Experimental verification and analysis were conducted using public datasets and
oblique photographic datasets, and the conclusions are as follows:

1. Image clustering in the subcluster partitioning stage. The multifactor joint normalized
cut function weight calculation method proposed in this paper improves the compact-
ness of subcluster images, especially when facing the partitioning of multiview images
with high overlap and large inclination angles. The image clustering results of this
method will not contain image pairs with weak connectivity or spatial discontinuity.

2. Image expansion in the subcluster partitioning stage. The completeness-guided image
expansion algorithm proposed in this paper enhances the inter-subcluster connectivity
as well as the balance, and the expansion efficiency is high, especially when facing
large-scale datasets.

3. Subcluster merging stage. A multilevel subcluster merging rule that considers sub-
cluster connectivity is proposed. Compared with the existing state-of-the-art methods,
the proposed method can conduct subcluster merging on both public data and oblique
photographic datasets and shows superiority.

4. Accuracy and time. The proposed method is compared with four advanced methods,
Colmap, OpenMVG, 3Df, and GraphSfM, and the proposed method has the best
performance in terms of reconstruction success rate, accuracy, and time.

5. Large-scale aerial image dataset. Under the cluster parallel computing framework,
the proposed method performs well in terms of accuracy and time.

The multilevel subcluster merging rules proposed in the subcluster merging stage of
this paper can only be adapted to the sequential execution of subcluster merging by a single
compute node at present. In the next step, the merging rules can be improved to adapt to
the cluster parallel architecture to further improve the efficiency of the proposed method.
In addition, the proposed method cannot perform three-dimensional sparse reconstruction
of ground images collected by mobile terminals such as mobile phones, because some
ground images may have little or no overlap. In subsequent research, a hybrid SfM suitable
for ground imagery data will be investigated.
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