Simulation of Transient Topside Layer in the Martian Ionosphere
Abstract
:1. Introduction
2. Model of Daytime Martian Ionosphere and Descriptions
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Patzold, M.; Tellmann, S.; Hansler, B.; Hinson, D.; Schaa, R.; Taylet, G.L. A sporadic third layer in the ionosphere of Mars. Science 2005, 310, 837–839. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hinson, D.P.; Simpson, R.A.; Twicken, J.D.; Tyler, G.L.; Flasar, F.M. Initial results from radio occultation measurements with Mars Global Surveyor. J. Geophys. Res. 1999, 104, 26997–27012. [Google Scholar] [CrossRef]
- Jakosky, B.M.; Lin, R.P.; Grebowsky, J.M.; Luhmann, J.G.; Mitchell, D.F.; Beutelschies, G.; Priser, T.; Acuna, M.; Andersson, L.; Baird, D.; et al. The Mars Atmosphere and Volatile Evolution (MAVEN) Mission. Space Sci. Rev. 2015, 195, 3–48. [Google Scholar] [CrossRef]
- Rishbeth, H.; Mendillo, M. Ionospheric layers of Mars and Earth. Planet. Space Sci. 2004, 52, 849–852. [Google Scholar] [CrossRef]
- Grebowsky, J.M.; Benna, M.; Plane, J.M.C.; Collinson, G.A.; Mahaffy, P.R.; Jakosky, B.M. Unique, non-Earthlike, meteoritic ion behavior in upper atmosphere of Mars. Geophys. Res. Lett. 2017, 44, 3066–3072. [Google Scholar] [CrossRef] [Green Version]
- Crismani, M.; Schneider, N.; Plane, J.; Evans, J.S.; Jain, S.K.; Chaffin, M.S.; Carrillo-Sanchez, J.D.; Deighan, J.I.; Yelle, R.V.; Stewart, A.I.F.; et al. Detection of a persistent meteoric metal layer in the Martian atmosphere. Nature Geosci. 2017, 10, 401–404. [Google Scholar] [CrossRef]
- Hanson, W.B.; Sanatani, S.; Zuccaro, D.R. The martian ionosphere as observed by the viking retarding potential analyzers. J. Geophys. Res. 1977, 82, 4351–4363. [Google Scholar] [CrossRef]
- Mayyasi, M.; Withers, P.; Fallows, K. A sporadic topside layer in the ionosphere of Mars from analysis of MGS radio occultation data. J. Geophys. Res. Space Phys. 2018, 123, 883–900. [Google Scholar] [CrossRef]
- Mukundan, V.; Thampi, S.V.; Bhardwaj, A. M3 electron density layer in the dayside ionosphere of Mars: Analysis of MAVEN ROSE observations. Icarus 2022, 384, 115062. [Google Scholar] [CrossRef]
- Zhang, M.H.G.; Luhmann, J.G.; Kliore, A.J.; Kim, J. A post-Pioneer Venus reassessment of the Martian dayside ionosphere as observed by radio occultation methods. J. Geophys. Res. 1990, 95, 14829–14839. [Google Scholar] [CrossRef]
- Lillis, R.J.; Fillingim, M.O.; Peticolas, L.M.; Brain, D.A.; Lin, R.P.; Bougher, S.W. Nightside ionosphere of mars: Modeling the effects of crustal magnetic fields and electron pitch angle distributions on electron impact ionization. J. Geophys. Res. 2009, 114, E11009. [Google Scholar] [CrossRef] [Green Version]
- Terada, N.; Machida, S.; Shinagawa, H. Global hybrid simulation of the Kelvin-Helmholtz instability at the Venus ionopause. J. Geophys. Res. 2002, 107, 1471. [Google Scholar] [CrossRef]
- Zhang, Z.; Orosei, R.; Huang, Q.; Zhang, J. Topside of the Martian ionosphere near the terminator: Variation with season and solar zenith angle and implications for the origin of the transient layers. Icarus 2015, 251, 12–25. [Google Scholar] [CrossRef] [Green Version]
- Kopf, A.J.; Gurnett, D.A.; DiBraccio, G.A.; Morgan, D.D.; Halekas, J.S. The transient topside layer and associated current sheet in the ionosphere of Mars. J. Geophys. Res. Space Phys. 2017, 122, 5579–5590. [Google Scholar] [CrossRef] [Green Version]
- Shinagawa, H.; Cravens, T. The ionospheric effects of a weak intrinsic magnetic field at Mars. J. Geophys. Res. 1992, 97, 1027–1035. [Google Scholar] [CrossRef]
- Collinson, G.A.; McFadden, J.; Grebowsky, J.; Mitchell, D.; Lillis, R.; Withers, P.; Vogt, M.F.; Benna, M.; Espley, J.; Jakosky, B. Constantly forming sporadic E-like layers and rifts in the martian ionosphere and their implications for earth. Nat. Astron. 2020, 4, 486–491. [Google Scholar] [CrossRef]
- Fox, J.L.; Yeager, K.E. Morphology of the near-terminator Martian ionosphere: A comparison of models and data. J. Geophys. Res. 2006, 111, A10309. [Google Scholar] [CrossRef]
- Andrews, D.J.; André, M.; Opgenoorth, H.J.; Edberg, N.T.; Diéval, C.; Duru, F.; Gurnett, D.A.; Morgan, D.; Witasse, O. Oblique reflections in the Mars Express MARSIS data set: Stable density structures in the Martian ionosphere. J. Geophys. Res. Space Phys. 2014, 119, 3944–3960. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.-S.; Nielsen, E. Possible hydrodynamic waves in the topside ionospheres of Mars and Venus. J. Geophys. Res. 2002, 107, SIA-2. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.-S.; Nielsen, E. Wavelike structures in the Martian topside ionosphere observed by Mars Global Surveyor. J. Geophys. Res. 2003, 108, 5078. [Google Scholar] [CrossRef]
- Wang, X.-D.; Wang, J.-S.; Nielsen, E.; Zou, H. “Hook” structure in MARSIS ionogram and its interpretation. Geophys. Res. Lett. 2009, 36, L13103. [Google Scholar] [CrossRef]
- Mendillo, M.; Phillips, S.R.; Narvaez, C.; Mayyasi, M.; Thiemann, E.; Benna, M.; Eparvier, F.; Chamberlin, P.; Mahaffy, P.; Andersson, L. On the altitude patterns of photo-chemical-equilibrium in the Martian ionosphere: A special role for electron temperature. J. Geophys. Res. Space Phys. 2021, 126, e2020JA028366. [Google Scholar] [CrossRef]
- Balan, N.; Bailey, G.J.; Abdu, M.A.; Oyama, K.I.; Richards, P.G.; MacDougall, J.; Batista, I.S. Equatorial plasma fountain and its effects over three locations: Evidence for an additional layer, the F3 layer. J. Geophys. Res. 1997, 102, 2047–2056. [Google Scholar] [CrossRef]
- Jiang, C.; Yang, G.; Liu, J.; Zhao, Z. Reply to Comment by Lynn et al. on “A study of the F2 layer stratification on ionograms using a simple model of TIDs”. J. Geophys. Res. Space Phys. 2020, 125, e2020JA027785. [Google Scholar] [CrossRef]
- Jiang, C.; Yang, G.; Liu, J.; Zhao, Z. A study of the F2 layer stratification on ionograms using a simple model of TIDs. J. Geophys. Res. Space Phys. 2019, 124, 1317–1327. [Google Scholar] [CrossRef]
- Schunk, R.; Nagy, A. Ionospheres: Physics, Plasma Physics, and Chemistry; Cambridge University Press: New York, NY, USA, 2000. [Google Scholar]
- Tobiska, W.K. SOLAR2000 Irradiances for Climate Change Research, Aeronomy and Space System Engineering. Adv. Space Res. 2004, 34, 1736–1746. [Google Scholar] [CrossRef]
- Verner, D.A.; Yakovlev, D.G. Analytic FITS for Partial Photoionization Cross Sections. Astron. Astrophys. Suppl. Ser. 1995, 109, 125–133. [Google Scholar]
- Verner, D.A.; Ferland, G.J.; Korista, K.T.; Yakovlev, D.G. Atomic Data for Astrophysics. II. New Analytic Fits for Photoionization Cross Sections of Atoms and Ions. arXiv 1996. [Google Scholar] [CrossRef] [Green Version]
- Morgan, D.D.; Gurnett, D.A.; Kirchner, D.L.; Fox, J.L.; Nielsen, E.; Plaut, J.J. Variation of the Martian ionospheric electron density from Mars Express radar soundings. J. Geophys. Res. 2008, 113, A09303. [Google Scholar] [CrossRef] [Green Version]
- Vogt, M.F.; Withers, P.; Fallows, K.; Andersson, L.; Girazian, Z.; Mahaffy, P.R.; Benna, M.; Elrod, M.K.; Connerney, J.E.; Espley, J.R.; et al. MAVEN observations of dayside peak electron densities in the ionosphere of Mars. J. Geophys. Res. Space Phys. 2017, 122, 891–906. [Google Scholar] [CrossRef]
- Yiğit, E.; Medvedev, A.S.; Hartogh, P. Variations of the Martian Thermospheric Gravity-wave Activity during the Recent Solar Minimum as Observed by MAVEN. Astrophys. J. 2021, 920, 69. [Google Scholar] [CrossRef]
- Matta, M.; Galand, M.; Moore, L.; Mendillo, M.; Withers, P. Numerical simulations of ion and electron temperatures in the ionosphere of Mars: Multiple ions and diurnal variations. Icarus 2014, 227, 78–88. [Google Scholar] [CrossRef]
- Bailey, D.K. The geomagnetic nature of the F2 layer longitude effect. J. Geophys. Res. 1948, 53, 35–39. [Google Scholar] [CrossRef]
- Sen, H.Y. Stratification of the F2 layer of the ionosphere over Singapore. J. Geophys. Res. 1949, 54, 363–366. [Google Scholar] [CrossRef]
- Yiğit, E.; England, S.L.; Liu, G.; Medvedev, A.S.; Mahaffy, P.R.; Kuroda, T.; Jakosky, B.M. High-altitude gravity waves in the Martian thermosphere observed by MAVEN/NGIMS and modeled by a gravity wave scheme. Geophys. Res. Lett. 2015, 42, 8993–9000. [Google Scholar] [CrossRef] [Green Version]
- Terada, N.; Leblanc, F.; Nakagawa, H.; Medvedev, A.S.; Yiğit, E.; Kuroda, T.; Hara, T.; England, S.L.; Fujiwara, H.; Terada, K.; et al. Global distribution and parameter dependences of gravity wave activity in the Martian upper thermosphere derived from MAVEN/NGIMS observations. J. Geophys. Res. Space Phys. 2017, 122, 2374–2397. [Google Scholar] [CrossRef]
- Collinson, G.; McFadden, J.; Mitchell, D.; Grebowsky, J.; Benna, M.; Espley, J.; Jakosky, B. Traveling ionospheric disturbances at Mars. Geophys. Res. Lett. 2019, 46, 4554–4563. [Google Scholar] [CrossRef]
- Jiang, C.; Yokoyama, T.; Wei, L.; Yang, G.; Zhao, Z. Nonlinear Simulation of Ionospheric Irregularities at Mars. Astrophys. J. 2021, 909, 47. [Google Scholar] [CrossRef]
- Tian, R.; Jiang, C.; Yang, G.; Yin, W.; Zhang, Y.; Zhao, Z. Solar Cycle and Seasonal Variability of Martian Ionospheric Irregularities from Mars Atmosphere and Volatile Evolution Observations. Astrophys. J. 2022, 931, 18. [Google Scholar] [CrossRef]
- Jiang, C. Chuajiang/Simulation-of-Transient-Topside-Layer-in-the-Martian-Ionosphere: V1; Version v1; Zenodo: Geneva, Switzerland, 2022. [Google Scholar] [CrossRef]
Reaction | Rate Constant, cm3/s |
---|---|
(a) | |
(b) | |
(c) | |
(d) | k1 = 9.6 × 10−11 |
(e) | k2 = 1.6 × 10−10 |
(f) | k3 = 8.0 × 10−10 |
(g) | k4 = 9.8 × 10−12 |
(h) | k5 = 1.3 × 10−10 |
(i) | k6 = 1.2 × 10−12 |
(j) | k7 = 1.1 × 10−9 |
(k) | |
(l) | |
(m) | |
(n) |
Run Modes | Description |
---|---|
Case 1 | Electron temperature is constant in the simulation. |
Case 2 | Electron temperature varies with the gradients of the electron temperature and vertical velocity, . |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, C.; Tian, R.; Wei, L. Simulation of Transient Topside Layer in the Martian Ionosphere. Remote Sens. 2023, 15, 770. https://doi.org/10.3390/rs15030770
Jiang C, Tian R, Wei L. Simulation of Transient Topside Layer in the Martian Ionosphere. Remote Sensing. 2023; 15(3):770. https://doi.org/10.3390/rs15030770
Chicago/Turabian StyleJiang, Chunhua, Rong Tian, and Lehui Wei. 2023. "Simulation of Transient Topside Layer in the Martian Ionosphere" Remote Sensing 15, no. 3: 770. https://doi.org/10.3390/rs15030770
APA StyleJiang, C., Tian, R., & Wei, L. (2023). Simulation of Transient Topside Layer in the Martian Ionosphere. Remote Sensing, 15(3), 770. https://doi.org/10.3390/rs15030770