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Abstract: Due to the complex and variable climate structure in Southwest China (SW), the impacts
of climate variables on vegetation change and the interactions between climate factors remain
controversial, considering the uncertainty and complexity in the relationships between climate factors
and vegetation in this region. In this study, the CRU TS v. 4.02 from 1982 to 2017 and the annual
maximum (P100), upper quarter quantile (P75), median (P50), lower quarter quantile (P25), minimum
(P5), and mean (Mean) of GIMMS NDVI were utilized to reveal the main and interaction effects of
significant climate variables on vegetation development at the level of SW and the core areas (CAs)
of typical climate type (including T+ *–P+ *, T+ *–P–, T+ *–P+, and NSC) using the simple moving
average method, a multivariate linear model, the slope method, and the Johnson–Neyman method.
The obtained regression relationships between NDVI, temperature, and precipitation were verified
successfully by constructing multiple linear models with interaction terms. Within the T+ *–P– CA,
precipitation had the main impact; meanwhile, in the SW and other CAs, the temperature had the
main effect. In general, most of the significant moderating effects of temperature (precipitation)
on vegetation growth predominantly increased with the increase in precipitation (temperature).
Nevertheless, the significant moderating effect varied in different regions and directions. In the
SW area, when the temperature/precipitation was in the range of [4.73 ◦C, 5.13 ◦C]/[730.00 mm,
753.95 mm], the impact of temperature/precipitation on NDVI had a significant positive regulating
effect with respect to the precipitation/temperature. Meanwhile, in the NSC/T+ *–P+ * areas, when
the temperature/precipitation was in the range of [15.99 ◦C, 16.03 ◦C]/[725.17 mm, 752.82 mm],
the impact of temperature/precipitation on NDVI has a significant negative moderating role with
respect to the precipitation/temperature. Overall, our study provides a modern context for clearly
uncovering the complexity of the effect of climate alteration on vegetation development, allowing for
clarification of the alterations in vegetation development due to climate change.

Keywords: interaction; simple slope method; Johnson–Neyman analysis; moderator variable; typical
climate types

1. Introduction

Over the last century, the global climate has significantly warmed. Along with the
heterogeneous distribution of global precipitation, this has greatly affected the structure
and function of various ecosystems [1–6]. As an essential part of the global terrestrial ecosys-
tem, vegetation plays an important “indicator” role in the study of global change [7–9].
Therefore, exploring the mechanisms of the response of vegetation growth processes to
climate change at the regional or global scale is a hot topic regarding vegetation–climate
relationships under the continuous global climate warming trend. This has significant
theoretical research value for shedding light on the relationship between climate change
and terrestrial ecosystems [3,5,7–11]. Numerous studies have shown that climate warm-
ing causes significant changes in regional and global vegetation cover, as climate factors
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control 54% of vegetation growth changes, thus acting as key factors limiting global grass-
land vegetation productivity, explaining 32–39% of global crop yield changes [3,11–15].
Among these factors, temperature and precipitation have particularly significant impacts
on vegetation growth, serving as key climate parameters to study the response of veg-
etation to climate change. Temperature factors limit vegetation growth over 33% of the
earth [16], primarily disseminated within the high northern latitudes and high altitude
zones [17,18], such as the Arctic [19], Northern Vegetation [20], North America [21], and
the Qinghai–Xizang Plateau region [22]. When compared with medium and low latitudes,
in the high northern latitudes and at high altitudes, climate warming appears to be even
more significant [17], potentially amplifying the length of the vegetation development
season, enhancing photosynthesis, and significantly increasing the phenological period
of the vegetation growth season (i.e., phenological start date advanced and phenological
end date delayed) to promote vegetation growth [23–25], becoming the primary driver of
vegetation development [26]. Similarly, precipitation changes indirectly affect the structure
and function of ecosystems by triggering various feedback processes [18]. In this line, it has
been reported that precipitation factors predominantly limit the development of vegetation
in more than two-fifths of the land vegetation surface [16], especially in arid/semi-arid
regions, where interannual vegetation activities are limited by precipitation. For example,
vegetation activities in tropical Africa [27], Eurasia [7], and the Great Plains of the United
States [28] have been shown to be positively correlated with precipitation [29].

Researchers have recently discovered that the interactions between climate factors
(primarily temperature and precipitation) cause vegetation growth to generally show com-
plex, non-linear responses in both temporal and spatial scales [30,31], significantly reducing
the reliability of the relationships between climate variables and vegetation, and further
expanding the uncertainty and complexity [32]; for example, alterations in temperature
and precipitation and their compound changes have been shown to lead to changes at the
plant and even terrestrial ecosystem level [31]. Precipitation and temperature, individually
and simultaneously, explained 46.19%, 31.85%, and 10.31% (88.35% in total) of vegetation
primary productivity in the Inner Mongolia Plateau [33]. The NDVI of vegetation types
in semi-humid and semi-arid areas in northern China is affected by topographic factors
and hydrothermal distribution, where the reaction to precipitation was more grounded
than that to temperature [34,35]. Moreover, vegetation productivity in Nepal is limited
principally by water supply at lower elevations (dominated by summer monsoon) and
temperature at higher elevations [36]. The reaction of vegetation activity to climate warm-
ing within the Qinghai–Xizang Plateau is positively governed by precipitation; that is, the
positive impacts of higher temperature and precipitation on plant leaf phenology include
reaching the start date earlier and delaying the end date of the phenology, thus prolonging
the growing season of vegetation [24,37]. The positive reaction to precipitation might be
upgraded with an increase in temperature, specifically in the arid alpine steppe, where
precipitation overwhelmingly constrains the reaction of vegetation growth to temperature
increases [5,18]. When precipitation is inadequate, an increase in temperature may not
strengthen vegetation activity and can lead to vegetation browning; on the contrary, in
wet periods, the more water that is available, the more sensitive the response to tempera-
ture [38]. In addition, the reaction of phenological data to various factors is complicated
and non-linear; for example, the daylight length, average temperature, and precipitation in
autumn may further prolong the end date of phenology. In contrast, the daylight length
and average temperature in summer advance the end date of vegetation growth [39], and
a variety of interactions between temperature and precipitation from late winter to early
spring determine the spatio-temporal changes in phenological start dates. The temper-
ature sensitivity of phenological end dates increases with precipitation [40]. Studies on
regional climate–vegetation relationships have also given controversial results; for exam-
ple, some studies have shown that water availability is a major limiting factor for plant
growth [41] and phenological changes [42] on the Tibetan Plateau. However, other studies
have highlighted temperature as an essential limiting factor in cold environments [43].
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Based on the above studies, there indeed exists an interaction between local climate
and vegetation change. However, due to the non-linear response of vegetation to climate
change and the interactions between climate variables, the influence of climate variables
on vegetation change still needs to be clarified [14,20]. In order to improve upon the
above studies, a careful study of the specific interactions between climate factors and
vegetation growth is required. In addition, more and more studies have recognized the
role of asymmetric warming; for example, the effect of diurnal temperature difference
on vegetation in the Tibetan Plateau is asymmetrical, which plays an essential role in
controlling plant phenology and vegetation dynamics [44–47]. The biophysical feedback
effects of vegetation have also been demonstrated. Over the past 30 years, the combined
biophysical feedback associated with the greening of the Earth has mitigated 12% of global
surface warming [48]. During 2003–2012, forest loss led to average biophysical warming
of land. Emissions from land-use change reached about 18% of the global biogeochemical
signal caused by CO2 [49]. Meanwhile, in the SW of China, under the influence of westerly
winds, the South Asian monsoon, and the East Asian monsoon, a comparatively complex
and variable climate-type transmission design has formed [35–37,50–52]; together with the
context of prolonged global climate warming [3,4,38,39,53], this has made the uncertainty
and complexity of the relationships between vegetation development and climate variables
within the region more prominent [9,35,54]. In this current study, the direct impacts of
single climate factors, such as precipitation and temperature, on NDVI in the SW of China
are their predominant focus. There have been comparatively few studies on the main effects
and interaction impacts of climate components on vegetation development, specifically, the
reaction regulation of one factor (moderator variable, such as precipitation) on vegetation
with respect to another factor (independent variable, such as temperature), and how to
decide the direction (negative and positive regulation) of the moderator variable, as well as
quantifying the value range of the independent variable when the moderator variable has
a significant regulatory effect on vegetation growth. Furthermore, different hydrothermal
conditions are required in different vegetation life cycle growth stages, and global climate
change presents prominent regional characteristics [11,55,56]. Consequently, we posed
the following scientific questions: (1) How do we disclose the effects of climate change
interactions (main effects and interaction effects) on vegetation growth? (2) How can we
characterize and quantify the interaction/moderating effect of climate factors in influencing
vegetation growth?

2. Materials and Methods

Based on the core areas (CAs) of typical climate type—including those with a sig-
nificant increase in both temperature and precipitation (T+ *–P+ *), a significant increase
only in temperature and a decrease (T+ *–P−) or increase (T+ *–P+) in precipitation, and no
significant change (NSC)—screened by Wang and An [11], the annual characteristic values
of maximum (P100), upper quarter quantile (P75), median (P50), lower quarter quantile (P25),
minimum (P5), and mean (Mean) of GIMMS NDVI were selected to assess the develop-
ment status of vegetation at distinctive stages, while the moving average method [11,57],
multiple linear models [31], simple slope method [58], and Johnson–Neyman method [59]
were utilized to examine the main effect and interaction impact of climate factors on vege-
tation development in SW and the CAs, as well as determining the adjustment direction
of moderator variables and quantifying the value range of single climate factors having a
significant influence on NDVI, in order to successfully unveil the influence of climate on
vegetation development and enhance the interpretation rate of vegetation growth under
climate change, thus providing an essential theoretical basis.

2.1. Research Area

Referring to the common zoning concept [50], the Southwestern China Region alluded
to in this investigation, with the idea of broader geological suggestion and thought of
vegetation and scene settings, ranges between 21.14–36.48◦N and 83.87–110.19◦E, with a
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mean yearly temperature of 5.76 ◦C and mean yearly precipitation of 768.4 mm for the
period 1901–2017 [6]. This region covers the eastern Qinghai–Xizang Plateau, the Himalaya
Mountains, Yun-Gui Plateau, the Hengduan Mountains, Sichuan Basin, Zoige Plateau, and
other landscape units (Figure 1a) [6,11,60]. The entire zone spans the Yunnan–Guizhou–
Sichuan–Chongqin within the aggregate and parts of Qinghai and Xizang, as well as
the unique climate of the Qinghai–Xizang Plateau, which has a substantial effect on the
territorial and global climate of East Asia [51,52,60], making it a central region of research
at domestic and international levels [6,11,52,60].
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The whole region is mainly Ides the Qinghai–Tibet Plateau alpine vegetation region,
subtropical evergreen broad-leaved forest region, tropical monsoon rain forest, and tropical
rain forest, covering 13 vegetation zones. According to each vegetation zone’s distribution
area and location, the study was further divided into six vegetation sub-zones (the alpine
vegetation region, the east region, the northwest region, the west-central region, and the
northwest regions of sub-tropical evergreen broad-leaved forest, and tropical monsoon
forest; detailed in Figure 1b) [11,60]. Twelve vegetation types were distributed in the
study area, including needleleaf forest, mixed needleleaf broadleaf forest, broadleaf forest,
scrub, desert, steppe, grass–forb community, meadow, swamp, alpine vegetation, cultural
vegetation, and vegetation-less areas (Figure 1c) [11,60].

2.2. Acquisition and Analysis of Research Data
2.2.1. Information Sources and Processing

(1) The high-resolution gridded climatic variables data set (CRU_TS4.02) was down-
loaded from the Climate Research Unit, the University of Anglia, U.K. (detailed in Table 1),
with a resolution of 0.5◦ × 0.5◦ [61]. This data set has been regularly utilized as a de-
pendable climate information source when considering worldwide or territorial designs
of climate alteration and related environmental impacts (see, e.g., Wang and An [11];
Wang et al. [6]; Buermann et al. [62]). Referring to the existing literature [6,11,53], and
combined with the earliest and the most extended GIMMS NDVI3g time arrangement [63],
we chose 1982–2017 as the most appropriate period. China’s vegetation zoning data were
obtained from the resource environment cloud platform, and the SW district was divided
into six major sub-regions (Figure 1b) [11,60].

Table 1. The source of main data and related description.

Name Sources Resolution Web Site Access Date Format

GIMMS NDVI3g GIMMS 8 × 8 km
https:

//ecocast.arc.nasa.gov/
data/pub/GIMMS/

18 November 2018 .nc4

CRU_TS4.02 Climate Research Unit 0.5◦ × 0.5◦ https://crudata.uea.ac.
uk/cru/data/hrg/ 28 June 2019 .nc

Global Artificial
Impervious Area

Tsinghua university
data 30 × 30 m http://data.ess.tsinghua.

edu.cn 31 December 2019 .tif

China’s vegetation
zoning data

Resource and
Environment Science

and Data Center
— http://www.resdc.cn/

data.aspx?DATAID=133 1 December 2017 .shp

(2) The GIMMS NDVI3g, with a time step of 15 d and spatial grid of 8 km, was
obtained from the Global Inventory Monitoring and Modeling Studies from January 1982
to December 2015 (detailed in Table 1). Due to the high occurrence of days with clouds
and precipitation in the SW, we utilized Savitzky–Golay filtering [64] and the Maximum–
Value–Composite approach [6,11,60] to correct for some of the obstructions, such as clouds,
climate, precipitation climate conditions, and sun height. We calculated:

NDVImi = Max
(

NDVImij
)

(1)

NDVI =

m
∑
1

12
∑
1

NDVImi

12 ∗m
(2)

where NDVImi denotes the NDVI in the mth year and ith month (m = 1, 2, . . . , 34, i = 1, 2,
. . . , 12), NDVImij denotes the NDVI of the first or second 15 days in NDVImi (j = 1, 2), and
NDVI denotes the multi-year average of NDVI. We only selected NDVI with a threshold
greater than 0.1 as adequate vegetation, according to [11,65], in order to prepare for the
following research and analysis.

As human activities significantly influence both the manufactured impenetrable re-
gions and artificial vegetation invasion, all such areas were excluded by considering the

https://ecocast.arc.nasa.gov/data/pub/GIMMS/
https://ecocast.arc.nasa.gov/data/pub/GIMMS/
https://ecocast.arc.nasa.gov/data/pub/GIMMS/
https://crudata.uea.ac.uk/cru/data/hrg/
https://crudata.uea.ac.uk/cru/data/hrg/
http://data.ess.tsinghua.edu.cn
http://data.ess.tsinghua.edu.cn
http://www.resdc.cn/data.aspx?DATAID=133
http://www.resdc.cn/data.aspx?DATAID=133
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Global Artificial Impervious Area (detailed in Table 1) [66] and vegetation classification
data (Figure 1c).

In order to better and comprehensively display the changing trend of vegetation,
according to Wang and An [11], the annual maximum (P100), upper quarter quantile
(P75), median (P50), lower quarter quantile (P25), minimum (P5), and mean (Mean) of
GIMMS NDVI were used to assess the yearly comprehensive, diverse development stages
of vegetation separately. The calculations taken after the steps:

Mean =

12
∑
1

NDVImi

12
(3)

P100 = Max(NDVImi) (4)

P5 = Min(NDVImi) (5)

Then, we used the MATLAB programming language to calculate:

P75 = prctile( sort(NDVImi), 75) (6)

P50 = prctile( sort(NDVImi), 50) (7)

P25 = prctile( sort(NDVImi), 25) (8)

(3) As the terrain in SW is comparatively fragmented, the actual relationship of climate
change impacts on the environment may be simplified by using a 0.5◦ × 0.5◦ resolution;
thus, the cubic spline interpolation method was used to down-scale the resolution to
0.25◦ × 0.25◦ [67]. At the same time, in ArcGIS10.6, all of the data sets in this study were
extrapolated to the grid data with a resolution of 0.25◦ × 0.25◦ by bilinear interpolation.

2.2.2. Research Methods

(1) The moving average method was utilized to obtain a comparatively smooth unused
climate arrangement, which could more naturally represent the climate change trend [11,57].
The formula was:

pj =
i+L−1

∑
i=j

xi
L

(9)

where L = 15 years is the sliding window, referring to Fu [10]; i is the sequence number;
and j = (L− 1)/2.

(2) Multiple linear regression with interactive terms
The multiple linear regression model is one of the most common total regression

models, which can be used to successfully explore the correlations between multiple
variables and reflect the overall trends of the relationships between variables. As climate
factors (e.g., temperature, precipitation) do not independently influence the development of
vegetation but, instead, tend to interact, multiple linear models with interaction terms were
adopted to consider the combined effect of temperature and precipitation on NDVI [31].
The formula model was as follows:

Y = β0 + β1X1 + β2X2 + β12X1X2 + ε (10)

where Y, X1, and X2 represent the dependent variable and the independent variables (X1
and X2), respectively; β0 is the constant term of the regression model; β1 and β2 are the
regression coefficients of X1 and X2, respectively, demonstrating the influence of X1 and
X2 on the main effect of Y; β12 is the interaction coefficient of X1 and X2, representing the
influence of X1 and X2 on the interaction of Y; and ε is the random error term. Before
calculation, Y, X1, and X2 should be standardized in order to eliminate the influence of
their different dimensionalities on the model.

(3) Simple slope method
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In order to further investigate the impact of temperature and precipitation on vegeta-
tion development, the point selection method was conducted for simple slope analysis [58].
First, temperature and precipitation were taken as the independent variable and moderator
variable, respectively, and the mean and mean ± standard deviation (mean ± 1SD) of
the moderator variables were selected to proceed to regression. Finally, the regression
coefficients and significance tests of the dependent variables and independent variables
were calculated under the conditions of the three selected groups of moderator variables.

Assuming X1 and X2 as the independent variable and the moderator variable, we can
rewrite Formula (10) as:

Y = (β0 + β2X2) + (β1 + β12X2)X1 + ε (11)

that is,
Y = µ0 + µ1X + ε (12)

In the equation, µ0 = β0 + β2X2 and µ1 = β1 + β12X2 are called the simple intercept
and slope, respectively; that is, (β1 + β12X2) represents the simple slope. Under the
condition that X2 is equal to the mean, mean + SD, and mean − SD, the regression Y
against X1 can be established using the magnitude and sign of the regression slope to
characterize the magnitude and direction of the moderator variable [68].

A t-test was conducted for significance analysis of a simple slope (β1 + β12X2), calcu-
lated as follows:

t =
β1 + β12X2√

se2
1 + 2X2cov(β1, β12) + X2

2se2
12

(13)

where se1, se12, and cov(β1, β12) are the standard errors and covariance of β1 and β12,
respectively. With the moderator variable X is equal to mean, mean + SD, and m–an − SD,
the t-values were respectively calculated. When |t| was greater than t0.05(n− k− 1), we
considered the simple slope β1 + β12X2 to be significant at the 0.05 level [58].

(4) Johnson–Neyman procedure
The Johnson–Neyman method (J-N method) is an extension of the point selection

method [59], which can be used to overcome the shortcomings of the point selection method
effectively. In this method, we calculate the interaction between the independent variable
X1 and the moderator variable X2 within the value range of X2, then determine the critical
point where the simple slope of the independent variable X1 is significant with respect to
the dependent variable Y, and select the value range that has a significant influence on the
simple slope. Hayes [69] and Spiller et al. [70] have recommended the J-N method as a
simple slope test. The main steps are as follows:

Step 1: Determine the critical value:

tcrit = t0.05(n− k− 1) (14)

Step 2: Substitute Formula (14) with Formula (13):

t2
crit

(
se2

1 + 2X2cov(β1, β12) + 2X2
2se2

12

)
= (β1 + β12X2)

2 (15)

Step 3: Rewrite Formula (15) with X2 as the primary term:(
t2
critse2

12 − β2
12

)
X2

2 +
(

2t2
critcov(β1, β12)− 2β1β12

)
X2 +

(
t2
critse2

1 − β2
1

)
= 0 (16)

that is,
AX2

2 + BX2 + C = 0 (17)

Where
A = t2

critse2
12 − β2

12 (18)

B = 2t2
critcov(β1, β12)− 2β1β12 (19)
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C = t2
critse2

1 − β2
1 (20)

Step 4: The solution of the binary first-order Equation (17) X2 is the critical point of
the moderator variable X2 [71]:

X′2 =
−B−

√
B2 − 4AC

2A
(21)

X′′2 =
−B +

√
B2 − 4AC

2A
(22)

Step 5: According to the two critical points calculated by Formulas (21) and (22), we
obtain the value range of the moderator variable X2 with a simple slope β1 + β12X2 that
is significantly not zero, considering that the actual value range of X2 is [X2min, X2max].
According to the results of Hayes [69], the obtained values were divided into four cases for
analysis (Table 2).

Table 2. Test results when the simple slope β1 + β12X2 was significant. X2 is the moderator variable;
X2min and X2max refer to the greatest and least values of X2, respectively; and X′2 and X′′2 are the
solutions of the binary first-order Equation (17) for X2.

Types Criterion Range of Possible Values of
the Moderator Variable

Sort 1 X2min < X′2 < X′′2 < X2max
[
X′2, X′′2

]
,
[
X2min, X′2

]
or
[
X′′2 , X2max

]
Sort 2 X2min < X′2 < X2max < X′′2

[
X2min, X′2

]
or
[
X′2, X2max

]
Sort 3 X′2 < X2min < X′′2 < X2max

[
X2min, X′′2

]
or
[
X′′2 , X2max

]
Sort 4 X′2 < X2min < X2max < X′′2 [X2min, X2max] or Ø

Step 6: We used the SPSS plug-in PROCESS (http://www.afhayes.com; accessed on 6
December 2020) developed by Hayes in order to conduct a simple slope test for window
operation, significantly promoting its use in practical applications [69].

3. Results
3.1. Main and Interaction Effects of Climatic Factors on Vegetation Growth

The multiple linear regression with interactive terms effectively established the regres-
sion relationship between NDVI and temperature and precipitation (p < 0.05), except for P75
in the T+ *–P+ area and P5 in the NSC area. The NDVI in the T+ *–P+ * areas (except P5) was
significantly negatively affected by temperature (p < 0.05), while a significant positive main
effect of temperature (p < 0.05) was observed in SW and other CAs (Table 3). Meanwhile,
the NDVI presented a significantly negative main effect of precipitation (p < 0.05) in the
NSC area and a significantly positive main effect (p < 0.05) in SW, T+ *–P+ *, and T+ *–P–

areas. Overall, the NDVI in T+ *–P+ areas was mainly affected by precipitation (i.e., the
influence of precipitation on NDVI was greater than that of temperature), while the NDVI
in other CAs was mainly affected by temperature. In the SW (except P100), T+ *–P– (except
P100), NSC (except P5), T+ *–P+ (except P100–P50), and T+ *–P+ * (except P75–P25) areas, the
interactive effects of temperature and precipitation on NDVI were negative.

http://www.afhayes.com
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Table 3. Multiple linear regression results of vegetation NDVI with temperature and precipitation
using a 15-year sliding window. T+ *–P+ *, significant increases in temperature and precipitation; T+ *–P−, a
significant increase in temperature related to a decrease in precipitation; T+ *–P+, a significant increase
in temperature related to an increase in precipitation; NSC, no significant change. “+/−” in the
upper right corner denotes an increase/decrease in temperature or precipitation; Temperature ×
Precipitation represents the interaction term between temperature and precipitation; R2 represents the
entire model’s overall coefficient of determination. “*” and “**” to the right of the numbers represent
the significance of the regression coefficient and overall model at the 0.05 and 0.01 levels, respectively.

Annual
Characteristic

Value

Characteristic
Index Value SW T+ *–P+ * T+ *–P– T+ *–P+ NSC

Temperature 0.64 ** −1.43 ** 0.68 ** 0.73 * 0.58 **

Mean Precipitation 0.41 ** 0.91 * 1.05 ** −0.09 −0.34 *
Temperature × Precipitation −0.19 ** −0.09 −0.07 −0.30 −0.29

R2 0.97 ** 0.67 ** 0.94 ** 0.59 ** 0.69 **

Temperature 0.92 ** −1.63 ** 0.87 ** 0.23 0.45 *

P100
Precipitation 0.23 ** 1.36 ** 0.95 ** 0.65 −0.47 *

Temperature × Precipitation 0.05 −0.11 0.10 0.03 −0.27
R2 0.96 ** 0.75 ** 0.91 ** 0.68 ** 0.64 **

Temperature 0.67 ** −1.66 ** 0.36 ** -0.67 0.50 **

P75
Precipitation 0.45 ** 1.75 ** 1.10 ** 0.26 −0.42*

Temperature × Precipitation −0.11 0.14 −0.09 0.38 −0.25
R2 0.95 ** 0.71 ** 0.94 ** 0.37 0.64 **

Temperature 0.63 ** −1.29 ** 0.68 ** 0.84 ** 0.62 **

P50
Precipitation 0.40 ** 0.50 1.03 ** 0.11 −0.21

Temperature × Precipitation −0.17 * 0.07 −0.09 0.16 −0.30
R2 0.92 ** 0.79 ** 0.91 ** 0.80 ** 0.63 **

Temperature 0.42 ** −0.91 * 0.53 ** 0.93 ** 0.66 **

P25
Precipitation 0.46 ** 0.12 1.09 ** −0.31 0.67 **

Temperature × Precipitation −0.32 ** 0.15 −0.18 * −0.57 * −0.24
R2 0.90 ** 0.68 ** 0.94 ** 0.81 ** 0.70 **

Temperature 0.42 ** −0.68 0.80 ** 0.74 ** −0.42

P5
Precipitation 0.41 ** 0.02 0.93 ** −0.24 −0.30

Temperature × Precipitation −0.40 ** −0.20 −0.12 −0.74 ** 0.40
R2 0.97 ** 0.45 * 0.89 ** 0.80 ** 0.36

3.2. Quantifying Interactive Effects of Temperature and Precipitation on Vegetation

In order to further assess the interaction between the climate variables (temperature
and precipitation) on NDVI, temperature (precipitation) and precipitation (temperature)
were successively taken as independent variables and continuous moderators, and simple
slope and J–N analyses were conducted to determine the moderating effect of precipita-
tion (temperature) on the regression equation determined by temperature (precipitation)
and NDVI.

3.2.1. The Regulating Effect of Precipitation on the Relationship between Temperature and NDVI

When the precipitation was controlled, the temperature effectively explained the
variation of NDVI in most cases (p < 0.05; Figure 2). In T+ *–P+ * areas (except for k0
and k−1 at P5), where NDVI diminished steadily with an increase in temperature, the
trend was increased in the SW region and other CAs. At the same time, precipitation
significantly moderated the regression value of temperature and NDVI (YNDVI–T), which
likewise altered with the increase in temperature. For example, in the SW region (except
P5), when the temperature was less than 5.23 ◦C, 5.30 ◦C, 5.17 ◦C, 5.13 ◦C, or 5.13 ◦C, the
precipitation played a prominent positive moderating role on YNDVI–T; meanwhile, with
increased temperature, the moderating role diminished. Meanwhile, at P100, P50, P25, and
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P5, when the temperature was more significant than 4.73 ◦C, 18.05 ◦C, 5.78 ◦C, and 5.32 ◦C,
respectively, precipitation played a prominent positive or negative moderating role on
YNDVI–T, where the moderating role increased with the increase in temperature.
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Figure 2. The regulating effect of precipitation on the relationship between temperature and NDVI.
Mean and mean ± 1SD denote the regression equations established by temperature and NDVI when
the precipitation was set as the mean and mean ± 1SD, respectively, and the corresponding simple
slopes are k0 and k±1. Significant intervals indicate the temperatures at which the precipitation
presented a significant moderating effect, according to the J–N analysis range. The observation
interval represents the actual observation interval of temperature. A significant observation interval
indicates the actual temperature range for which the precipitation presented a significant regulation
effect. Note: (a–f) refer to Mean, P100, P75, P50, P25, and P5, respectively; (1–5) refer to SW, T+ *–P+ *,
T+ *–P–, T+ *–P+, and NSC, respectively. * p < 0.05, ** p < 0.01, *** p < 0.001.

According to the J–N method, the precipitation regulation effect in the T+ *–P+ area (at
Mean, P75, and P50), T+ *–P+ * area (at P50–P5), and NSC area (at P50) was not significant,
but there was a significant moderating effect of precipitation in other cases. In the six
eigenvalue periods (Mean, P100–P5) in the SW region, when the temperature was in the
range of [4.72 ◦C, 5.23 ◦C], [4.73 ◦C, 5.31 ◦C], [4.72 ◦C, 5.30 ◦C], [4.72 ◦C, 5.17 ◦C], [4.72 ◦C,
5.13 ◦C], and [4.72 ◦C, 5.13 ◦C] (observed temperature [4.72 ◦C, 5.31 ◦C]), respectively,
the precipitation had a significant positive regulation impact on kNDVI–T (Appendix A,
Figure A1a). Furthermore, the direction and scope of the significant moderating effect of
precipitation differed at different stages of vegetation growth in the CAs.
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3.2.2. The Regulating Effect of Temperature on the Relationship between Precipitation and NDVI

When the temperature was regulated, precipitation (except NSC area and T+ *–P+ area)
could successfully explain the variation trend of NDVI. With increasing precipitation, NDVI
progressively declined in the NSC area but increased in SW and other CAs (Figure 3). At the
same time, the temperature significantly moderated the regression value of precipitation
and NDVI (YNDVI–P), which likewise changed with the increase in precipitation. For
example, in the period of P75–P25 in the T+ *–P+ * area, when the precipitation was less
than 815.53 mm, 821.35 mm, and 756.89 mm, the temperature had a significant negative
moderating effect on YNDVI–P while, with increasing precipitation, the moderating role
diminished. Meanwhile, in the Mean, P100, and P5 periods in the T+ *–P+ * area, when the
precipitation was more significant than 647.51 mm, 622.59 mm, and 725.17 mm, respectively,
the temperature had a significant negative moderating effect on YNDVI–P while, with an
increase in precipitation, the temperature regulation effect increased.
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Figure 3. The regulatory effect of temperature on the relationship between precipitation and NDVI.
Mean and mean ± 1SD denote the regression equations established between precipitation and NDVI
when the temperature was set to the mean and mean ± 1SD, respectively, and the corresponding
simple slopes are k0 and k±1. Significant interval indicates the precipitation at which the temperature
presented a significant moderating effect, according to the J–N analysis range. The observation
interval represents the actual observation interval of precipitation. Significant observation interval
indicates the actual precipitation range for which the temperature presented a significant regulating
effect. Note: (a–f) refer to Mean, P100, P75, P50, P25, and P5, respectively, while (1–5) refers to the SW,
T+ *–P+ *, T+ *–P–, T+ *–P+, and NSC areas, respectively. * p < 0.05, ** p < 0.01, *** p < 0.001.
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According to the J–N method, the temperature moderating effect at P100 and P75 in the
T+ *–P+ area was not significant; however, there were significant temperature moderating
effects in other cases. In the Mean and P100–P5 periods in the SW region, when the precipi-
tation was in the range of [730.00 mm, 759.88 mm], [730.00 mm, 759.88 mm], [730.00 mm,
759.88 mm], [730.00 mm, 753.95 mm], and [730.00 mm, 754.85 mm] (observed precipitation,
[730.00 mm, 759.88 mm]), respectively, the temperature had a significant positive regulation
effect on kNDVI–P (Appendix A, Figure A1b). Furthermore, the direction and scope of the
significant moderating effect of temperature varied at different vegetation growth stages in
the CAs. In general, the significant regulatory impact of temperature was negative in the
NSC area and positive in the SW and other CAs.

4. Discussion
4.1. Simple Slope Analysis

Numerous studies have demonstrated that vegetation growth is typically influenced
by multiple climate factors, being closely related to hydrothermal conditions (particularly
temperature and precipitation) [11,37,60,72], which present complex non-linear interactions
under diverse spatial patterns and time scales [30,31]. The multiple linear regression equa-
tions established by considering the interaction could effectively establish the regression
relationship between NDVI, temperature, and precipitation (p < 0.01), except for the T+ *–
P+ * (at P5), NSC (at P5), and T+ *–P+ (at P75) areas. The mean value of the overall coefficients
of determination (R2) in the regression equation was as follows (Table 3): SW (0.94 ± 0.02)
> T+ *–P– area (0.92 ± 0.02) > T+ *–P+ * area (0.68 ± 0.11) > T+ *–P+ area (0.67 ± 0.16) > NSC
area (0.61 ± 0.11), demonstrating that the vegetation growth in the SW and the CAs may
be well-explained by temperature and precipitation variables and their interaction, which
was essentially consistent with the results of Han et al. [33] in the Inner Mongolia Plateau,
where precipitation, temperature, and their interaction explained 88.35% of the change in
vegetation primary productivity.

In the T+ *–P+ * area (except P5), the temperature had a significant negative main effect
(p < 0.01), while there were significant positive main effects in SW and other CAs (p < 0.01).
This demonstrated that temperature in SW and CAs (except the T+ *–P+ * area) plays a
promoting role in vegetation growth, in agreement with the outcomes of other researchers
in high altitude and northern high latitude regions [17–22]. With the aggravation of global
warming, the length of vegetation growing season has increased, and photosynthesis has
strengthened [23–26]. Meanwhile, in the T+ *–P+ * area, with an increase in temperature,
evaporation is accelerated, the water in the soil is reduced, and the water availability is
reduced, thus inhibiting vegetation growth [35,39]. As precipitation is the primary water
source in the soil, vegetation growth may be affected by soil moisture; with an increase
in precipitation, soil moisture tends to increase [7,27,28,73]. In this study, precipitation in
the SW, T+ *–P+ *, and T+ *–P– areas predominantly presented a significant positive main
effect (p < 0.01); particularly, in the T+ *–P+ * area, less precipitation could depress soil water
content, leading to precipitation becoming the major limiting factor in this region [74]. For
example, vegetation growth has been positively correlated with precipitation in tropical
Africa [27], Eurasia [7], and the Great Plains of the United States [28]. Nonetheless, vegeta-
tion growth was inhibited when the precipitation surpassed the threshold of vegetation
response to precipitation. In the NSC areas, Mean, P100, and P75 were the periods of concen-
trated precipitation, with more precipitation, more water vapor, and more cloudy weather,
which is not conducive to air circulation and solar radiation absorption, leading to negative
vegetation growth [60].

4.2. Johnson–Neyman Analysis

We comprehensively analyzed the significant effects of temperature and precipitation
on vegetation growth, and it was determined that the T+ *–P– was mainly affected by the
main effect of precipitation. In contrast, the SW and other CAs were affected primarily by
temperature (Table 3). The interaction effect of temperature and precipitation on NDVI was
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positive in the SW, T+ *–P– (at P100), T+ *–P+ (at P100–P50), and T+ *–P+ (at P75–P25) areas,
which may have been due to the temperature, precipitation, and their combination having
promoting effects on vegetation growth. The simple slope of temperature (precipitation) ob-
tained by combining Figures 2 and 3 increased with increasing precipitation (temperature),
suggesting that, at this point in time (e.g., at P100 in the SW), the precipitation concentration
distribution and higher temperature jointly promoted the growth of vegetation, similar to
the result of the study of Cong [18] on grassland in the central plateau of the region. The
effect of temperature on vegetation activity during the growing season was positively regu-
lated by precipitation, and the positive impact of precipitation on vegetation development
increased with the increase in temperature. In contrast, the negative interaction of other
annual values may have been due to the negative interaction between the non-synchronicity
of temperature and precipitation in the months when different characteristic values arise.
When precipitation is inadequate, the temperature rises, and evaporation speeds up, thus
diminishing soil moisture and consequently reducing the water supply in the upper soil,
leading to the browning of foliage [38,39]. On the contrary, in the period of high precip-
itation, with more water available, the excess water might repress the development of
vegetation [74]. Shen et al. [5] have pointed out that the response of vegetation activity
in the Qinghai–Xizang Plateau to warming is governed by precipitation, especially in the
alpine steppe, where precipitation is low. In comparison, vegetation in areas with more
precipitation is more sensitive to temperature. Further, combined with J–N analysis results,
we discovered that the temperature in the NSC area (except for the P25 and P50 periods)
was within [15.99, 16.03], and precipitation had a significant negative regulation effect on
kNDVI–T. In contrast, the temperature in the SW and other CAs was in the ranges of [4.73 ◦C,
5.13 ◦C], [−1.91 ◦C, −1.39 ◦C], [5.79 ◦C, 6.38 ◦C], and [6.31 ◦C, 6.36 ◦C], and precipitation
played a significant positive moderating role (Appendix A, Figure A1a). In the T+ *–P+ *

area, precipitation was in the range of [725.17 mm, 752.82 mm], and the temperature had a
significant negative regulation effect on kNDVI–P; meanwhile, in the SW and other CAs, the
positive regulation effect was significant in the ranges [730.00 mm, 753.95 mm], [780.74 mm,
836.89 mm], [825.96 mm, 840.55 mm], and [1225.40 mm, 1279.60 mm] (Appendix A, Fig-
ure A1b). Ultimately, by incorporating our results, we can conclude that the reaction
of vegetation activity to a single climatic factor A (e.g., temperature) was moderated by
another climatic factor B (e.g., precipitation) and that the moderating effect will be adjusted
as climatic factor A changes [18,38].

Furthermore, a growing body of research has recognized that vegetation can further
regulate local and even global climate change by affecting the carbon cycle’s surface en-
ergy balance and biogeochemical properties, altering the exchange of energy and matter
between the surface and the atmosphere [6,48,49,75,76]. The main processes involved are
evapotranspiration, which controls the climate effect during the day, and albedo feedback,
which affects the climate at night and is non-linear. When the albedo is low, the local
surface temperature is reduced by evapotranspiration or thermal convection; otherwise,
the local surface temperature will increase [5,77–79], affecting local precipitation and its
distribution pattern, soil moisture and runoff [80]. Zeng et al. have pointed out that, from
1982 to 2011, with the growth of global vegetation, the earth’s land surface temperature
increase rate decreased by 0.09 ± 0.02 ◦C, accounting for 12% of the global land surface
warming rate, and the decreasing temperature rate was mainly in the area where the leaf
area index increased [48]. Huang [75] has pointed out that recent land-cover changes in
Europe have increased the vegetation coverage in Western and Central Europe, leading to a
decrease in 0.12± 0.20 ◦C in the average temperature in summer and autumn. On the other
hand, during 2003–2012, forest loss resulted in an average biophysical warming of land
equal to about 18% of the global biogeochemical signal from CO2-induced land-use change
emissions [49]. These results [76,78,79] indicate that the ecological and environmental pro-
tection and restoration measures of “returning grazing land to grassland” and “returning
farmland to the forest” implemented by the Chinese government in southwest China can
reduce the local climate warming and climate risk by increasing the surface coverage and
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vegetation carbon storage, increasing the surface transpiration rate and reducing local
surface temperature. The fifth report from the IPCC [2] has indicated that an increase in
vegetation coverage could reduce the temperature in some areas, and the surface radiative
forcing was estimated to decrease by 0.15 ± 0.10 Wm–2 from the perspective of surface
albedo. A study of the region by Wang [6] has revealed that vegetation cover plays an
essential role in mitigating climate change. The correlation coefficients between annual
average temperature and annual precipitation variability and vegetation cover were −0.76
and −0.64, respectively. Meanwhile, ever more studies have recognized that the influ-
ence of day and night temperature increase on vegetation in the Qinghai–Tibet Plateau is
asymmetrical, which plays an essential role in controlling plant phenology and vegetation
dynamics [44–47]. In addition, the increases in temperature and precipitation have some-
what boosted vegetation growth. As precipitation continues to increase, the soil becomes
more susceptible to erosion which, according to the RUSLE loss equation, exceeds the
ability of vegetation to maintain water and soil. Increased soil loss would inhibit vegetation
growth [81] and affect the biogeochemical characteristics of surface energy balance and the
carbon cycle, thus further affecting local climate change.

4.3. Study Limitations

Although CRU TS v. 4.02 data and GIMMS NDVI data were processed by interpolation
and filtering to eliminate external interference, due to the complex terrain and other
environmental factors in southwest China, there were few meteorological stations available
in the study area, especially in Qinghai (only seven stations) and Tibet (only 28 stations),
which were mainly concentrated in the eastern peripheral regions of the study area [82].
There are almost no meteorological stations in the western part of the study area. The
spatial distribution does not conform to the regular discrete distribution, which is far
lower than the minimum allowable station network density recommended by the World
Meteorological Organization (40–100 stations per 104·km2) in temperate and tropical humid
mountains; therefore, it was impossible to present the continuous spatial distribution of
water and heat in the study area comprehensively [83], which could add uncertainty to
the outcome. Meanwhile, the GIMMS NDVI data were obtained by an optical sensor
and thus were limited by the characteristics of the optical sensor [39,60] and may have
been significantly affected by the suspension and scattering of aerosols, external weather
conditions (cloud, fog), and atmospheric composition [84]. Although the data set was pre-
processed using geometric, radiological, and atmospheric corrections to further eliminate
cloud interference by Savitzky–Golay filtering [64], the image confidence was decreased
due to the low availability of images from June to August [60]. In addition, the 1:1000
vegetation type map and the China Vegetation Zoning map are currently the most detailed
maps of vegetation distribution in southwest China. However, they reflect the vegetation
situation in the past, which may increase the uncertainty of the results.

Therefore, in further research, we intend to improve the screening of the core area
according to the latest research results, as well as dividing different vegetation types (or
zonal vegetation) in the core area to explore the spatiotemporal response of vegetation to
climate factors. At the same time, future studies of vegetation response to climate factors
should be supplemented and improved due to the need for more validation sample data
at a large scale. This may make it easier to understand the interaction of climate factors
on vegetation growth in Southwest China in a quantitative manner, allowing for a deeper
exploration of the underlying causes.

5. Conclusions

In this study, we used a multiple linear regression model with interaction terms to
analyze the impacts of main and interaction effects among climate factors on vegetation
growth and quantified the degree of mutual regulatory effects of climate factors on vegeta-
tion growth according to the simple slope and Johnson–Neyman methods. Therefore, we
used CRU and GIMMS NDVI data to investigate the regulating effects of climate factors on
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vegetation growth in different vegetation growth periods (P100–P5 and Mean value) in the
SW and various CAs. Overall, the multiple linear regression model with interaction terms
could effectively establish the relationships between NDVI, temperature, and precipitation
(p < 0.01), indicating the existence of an interaction effect related to climate change on
vegetation growth in the SW and CAs, as well as revealing that the T+ *–P– areas were
predominantly affected by the main effect of precipitation. In contrast, the SW and other
CAs were mainly affected by temperature. The results further revealed that the response of
vegetation activity to the temperature (precipitation) factor was regulated by the precipi-
tation (temperature) factor. The regulating effect of the precipitation (temperature) factor
increased with an increase in the temperature (precipitation) factor, thus demonstrating
that the regulating effect of precipitation (temperature) is significant in different regions
and directions. To a certain extent, our study provides an essential theoretical basis for
effectively revealing the impact of climate change on vegetation growth in the context of
global climate change, thus improving the interpretation rate of modeling between climate
change and vegetation growth.
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