A Simplified Coastline Inflection Method for Correcting Geolocation Errors in FengYun-3D Microwave Radiation Imager Images
Abstract
:1. Introduction
2. Data and Methods
2.1. FY-3D MWRI Images and Land/Sea Mask Data
2.2. The Simplified Coastline Inflection Method (SCIM)
2.2.1. Finding Coastline Inflection Points in a MWRI Image
2.2.2. Estimating Geolocation Errors of a MWRI Image
2.2.3. Correction of Geolocation Errors
2.3. Evaluation Statistics
3. Results
3.1. Evaluation of Geolocation Accuracy before and after Geolocation Correction
3.2. Comparisons of the Brightness Temperature Differences before and after Geolocation Correction
3.3. Comparisons of Accuracy of Sea Ice Concentration Retrieved from MWRI Images before and after Geolocation Correction
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Houtz, D.; Mätzler, C.; Naderpour, R.; Schwank, M.; Steffen, K. Quantifying Surface Melt and Liquid Water on the Greenland Ice Sheet using L-band Radiometry. Remote Sens. Environ. 2021, 256, 112341. [Google Scholar] [CrossRef]
- Sabaghy, S.; Walker, J.P.; Renzullo, L.J.; Jackson, T.J. Spatially enhanced passive microwave derived soil moisture: Capabilities and opportunities. Remote Sens. Environ. 2021, 209, 551–580. [Google Scholar] [CrossRef]
- Song, P.; Zhang, Y. An improved non-linear inter-calibration method on different radiometers for enhancing coverage of daily LST estimates in low latitudes. Remote Sens. Environ. 2021, 264, 112626. [Google Scholar] [CrossRef]
- Zhao, T.; Shi, J.; Entekhabi, D.; Jackson, T.J.; Hu, L.; Peng, Z.; Yao, P.; Li, S.; Kang, C.S. Retrievals of soil moisture and vegetation optical depth using a multi-channel collaborative algorithm. Remote Sens. Environ. 2021, 257, 112321. [Google Scholar] [CrossRef]
- Wiebe, H.; Heygster, G.; Meyer-Lerbs, L. Geolocation of AMSR-E data. IEEE Trans. Geosci. Remote Sens. 2008, 46, 3098–3103. [Google Scholar] [CrossRef]
- Tang, F.; Zou, X.; Yang, H.; Weng, F. Estimation and correction of geolocation errors in FengYun-3C microwave radiation imager data. IEEE Trans. Geosci. Remote Sens. 2015, 54, 407–420. [Google Scholar] [CrossRef]
- Berg, W.; Kroodsma, R.; Kummerow, C.D.; McKague, D.S. Fundamental Climate Data Records of Microwave Brightness Temperatures. Remote Sens. Essent. Clim. Var. Appl. 2015, 10, 1306. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Li, W.; Peng, J.; Shen, L.; Han, H.; Zhang, P.; Yang, L. Geolocation error estimation and correction on long-term MWRI data. IEEE Trans. Geosci. Remote Sens. 2021, 59, 9448–9461. [Google Scholar] [CrossRef]
- Debella-Gilo, M.; Kääb, A. Sub-pixel precision image matching for measuring surface displacements on mass movements using normalized cross-correlation. Remote Sens. Environ. 2011, 115, 130–142. [Google Scholar] [CrossRef] [Green Version]
- Debella-Gilo, M.; Kääb, A. Locally adaptive template sizes for matching repeat images of Earth surface mass movements. ISPRS J. Photogramm. Remote Sens. 2012, 69, 10–28. [Google Scholar] [CrossRef]
- Ling, X.; Zhang, Y.; Xiong, J.; Huang, X.; Chen, Z. An image matching algorithm integrating global SRTM and image segmentation for multi-source satellite imagery. Remote Sens. 2016, 8, 672. [Google Scholar] [CrossRef] [Green Version]
- Pan, H.; Cui, Z.; Hu, X.; Zhu, X. Systematic Geolocation Errors of FengYun-3D MERSI-II. IEEE Trans. Geosci. Remote. Sens. 2022, 60, 5619711. [Google Scholar] [CrossRef]
- Zhang, Y.; Chi, Z.; Hui, F.; Li, T.; Liu, X.; Zhang, B.; Cheng, X.; Chen, Z. Accuracy Evaluation on Geolocation of the Chinese First Polar Microsatellite (Ice Pathfinder) Imagery. Remote Sens. 2021, 13, 4278. [Google Scholar] [CrossRef]
- Moradi, I.; Meng, H.; Ferraro, R.R.; Bilanow, S. Correcting geolocation errors for microwave instruments aboard NOAA satellites. IEEE Trans. Geosci. Remote Sens. 2013, 51, 3625–3637. [Google Scholar] [CrossRef]
- Wolfe, R.E.; Nishihama, M.; Fleig, A.J.; Kuyper, J.A.; Roy, D.P.; Storey, J.C.; Patt, F.S. Achieving sub-pixel geolocation accuracy in support of MODIS land science. Remote Sens. Environ. 2002, 83, 31–49. [Google Scholar] [CrossRef]
- Li, W.; Zhao, X.; Peng, J.; Luo, Z.; Shen, L.; Han, H.; Zhang, P.; Yang, L. A new geolocation error estimation method in MWRI data aboard FY3 series satellites. IEEE Geosci. Remote. Sens. Lett. 2019, 17, 197–201. [Google Scholar] [CrossRef]
- Li, W.; Luo, Z.; Liu, C.; Liu, J.; Shen, L.; Xie, Q.; Han, H.; Yang, L. ℓ0 Sparse Approximation of Coastline Inflection Method on FY-3C MWRI Data. IEEE Geosci. Remote. Sens. Lett. 2018, 16, 85–89. [Google Scholar] [CrossRef]
- Bickel, V.T.; Manconi, A.; Amann, F. Quantitative Assessment of Digital Image Correlation Methods to Detect and Monitor Surface Displacements of Large Slope Instabilities. Remote Sens. 2018, 10, 865. [Google Scholar] [CrossRef] [Green Version]
- Dematteis, N.; Giordan, D. Comparison of Digital Image Correlation Methods and the Impact of Noise in Geoscience Applications. Remote Sens. 2021, 13, 327. [Google Scholar] [CrossRef]
- Dematteis, N.; Giordan, D.; Crippa, B.; Monserrat, O. Fast local adaptive multiscale image matching algorithm for remote sensing image correlation. Comput. Geosci. 2022, 159, 104988. [Google Scholar] [CrossRef]
- Shirkolaei, M.M.; Ghalibafan, J. Magnetically scannable slotted waveguide antenna based on the ferrite with gain enhancement. Waves Random Complex Media 2021, 31, 1–11. [Google Scholar] [CrossRef]
- Masoumi, M.; Dalili Oskouei, H.R.; Mohammadi Shirkolaei, M.; Mirtaheri, A.R.J.M.; Letters, O.T. Substrate integrated waveguide leaky wave antenna with circular polarization and improvement of the scan angle. Microw. Opt. Technol. Lett. 2022, 64, 137–141. [Google Scholar] [CrossRef]
- Yang, Z.; Zhang, P.; Gu, S.; Hu, X.; Tang, S.; Yang, L.; Xu, N.; Zhen, Z.; Wang, L.; Wu, Q.; et al. Capability of Fengyun-3D satellite in earth system observation. J. Meteorol. Res. 2019, 33, 1113–1130. [Google Scholar] [CrossRef]
- Derksen, C.; Toose, P.; Rees, A.; Wang, L.; English, M.; Walker, A.; Sturm, M. Development of a tundra-specific snow water equivalent retrieval algorithm for satellite passive microwave data. Remote Sens. Environ. 2010, 114, 1699–1709. [Google Scholar] [CrossRef]
- Tong, X.; Tian, F.; Brandt, M.; Liu, Y.; Zhang, W.; Fensholt, R. Trends of land surface phenology derived from passive microwave and optical remote sensing systems and associated drivers across the dry tropics 1992–2012. Remote Sens. Environ. 2019, 232, 111307. [Google Scholar] [CrossRef]
- Xiao, X.; Zhang, T.; Zhong, X.; Shao, W.; Li, X. Support vector regression snow-depth retrieval algorithm using passive microwave remote sensing data. Remote Sens. Environ. 2018, 210, 48–64. [Google Scholar] [CrossRef]
- Wessel, P.; Smith, W.H.F. A global, self-consistent, hierarchical, high-resolution shoreline database. J. Geophys. Res. Solid Earth 1996, 101, 8741–8743. [Google Scholar] [CrossRef] [Green Version]
- Andersen, S.; Tonboe, R.; Kern, S.; Schyberg, H. Improved retrieval of sea ice total concentration from spaceborne passive microwave observations using numerical weather prediction model fields: An intercomparison of nine algorithms. Remote Sens. Environ. 2006, 104, 374–392. [Google Scholar] [CrossRef]
- Chi, J.; Kim, H.-C.; Lee, S.; Crawford, M.M. Deep learning based retrieval algorithm for Arctic sea ice concentration from AMSR2 passive microwave and MODIS optical data. Remote Sens. Environ. 2019, 231, 111204. [Google Scholar] [CrossRef]
- Shokr, M.; Kaleschke, L. Impact of surface conditions on thin sea ice concentration estimate from passive microwave observations. Remote Sens. Environ. 2012, 121, 36–50. [Google Scholar] [CrossRef]
- Zhao, X.; Chen, Y.; Kern, S.; Qu, M.; Ji, Q.; Fan, P.; Liu, Y. Sea ice concentration derived from FY-3D MWRI and its accuracy assessment. IEEE Trans. Geosci. Remote. Sens. 2021, 60, 4300418. [Google Scholar] [CrossRef]
- Drüe, C.; Heinemann, G. Accuracy assessment of sea-ice concentrations from MODIS using in-situ measurements. Remote Sens. Environ. 2005, 95, 139–149. [Google Scholar] [CrossRef]
- Moayyed, F.; Oskouei, H.D.; Shirkolaei, M.M. High gain and wideband multi-stack multilayer anisotropic dielectric antenna. Prog. Electromagn. Res. 2021, 99, 103–109. [Google Scholar] [CrossRef]
- Mohammadi Shirkolaei, M.; Dalili Oskouei, H.; Abbasi, M. Design of 1* 4 Microstrip Antenna Array on the Human Thigh with Gain Enhancement. IETE J. Res. 2021, 67, 1–7. [Google Scholar] [CrossRef]
Date | UTC Time | Image | Correlation Coefficient (Along-Track Direction) | p Value (Along-Track Direction) | Correlation Coefficient (Cross-Track Direction) | p Value (Cross-Track Direction) | Alpha (α) | Beta (β) |
---|---|---|---|---|---|---|---|---|
1 January 2018 | 09:50 | ascending | 0.05 | <0.01 | 0.44 | <0.01 | 0.010 | −0.15 |
1 March 2018 | 18:03 | ascending | 0.03 | <0.01 | 0.56 | <0.01 | 0.011 | −0.04 |
1 May 2018 | 12:05 | ascending | 0.01 | <0.01 | 0.58 | <0.01 | 0.011 | −0.08 |
1 July 2018 | 17:57 | ascending | 0.01 | <0.01 | 0.45 | <0.01 | 0.011 | −0.18 |
1 September 2018 | 20:07 | ascending | 0.02 | <0.01 | 0.43 | <0.01 | 0.010 | −0.09 |
1 November 2018 | 04:00 | ascending | 0.00 | <0.01 | 0.45 | <0.01 | 0.011 | −0.25 |
1 January 2018 | 02:13 | descending | 0.02 | <0.01 | 0.43 | <0.01 | 0.010 | −2.48 |
1 March 2018 | 23:58 | descending | 0.05 | <0.01 | 0.59 | <0.01 | 0.012 | −2.63 |
1 May 2018 | 23:05 | descending | 0.00 | <0.01 | 0.47 | <0.01 | 0.011 | −2.47 |
1 July 2018 | 15:25 | descending | 0.03 | <0.01 | 0.48 | <0.01 | 0.010 | −2.51 |
1 September 2018 | 00:40 | descending | 0.00 | <0.01 | <0.01 | <0.01 | 0.012 | −2.73 |
1 November 2018 | 16:41 | descending | 0.02 | <0.01 | 0.34 | <0.01 | 0.010 | −2.43 |
Mean | - | - | 0.02 | 0.49 | - | - |
Along-Track (Unit: Pixel) | Cross-Track (Unit: Pixel) | |||||
---|---|---|---|---|---|---|
Before Correction | After Correction | Error Reduction | Before Correction | After Correction | Error Reduction | |
SCIM | 0.575 | 0.145 | 74.78% | 1.098 | 0.149 | 86.43% |
NCC | 0.575 | 0.151 | 73.74% | 1.098 | 0.498 | 54.64% |
Before Correction | After Correction | Decline | |
---|---|---|---|
Severnaya Zemlya | 19.66 | 13.39 | 31.88% |
Denmark | 23.43 | 11.90 | 49.23% |
Australia | 25.59 | 15.32 | 40.15% |
The Persian Gulf | 26.72 | 16.80 | 37.11% |
Image Acquiring Dates | RMSE | MAE | R | |||
---|---|---|---|---|---|---|
Original | Corrected | Original | Corrected | Original | Corrected | |
17 February 2019 | 20.70 | 15.16 | 15.79 | 11.97 | 0.84 | 0.93 |
22 March 2019 | 18.58 | 14.34 | 14.39 | 11.45 | 0.85 | 0.92 |
29 April 2019 | 10.02 | 6.96 | 5.55 | 4.18 | 0.96 | 0.98 |
30 May 2019 | 10.20 | 7.41 | 5.15 | 4.12 | 0.97 | 0.98 |
6 June 2019 | 8.80 | 6.41 | 3.94 | 2.97 | 0.98 | 0.99 |
11 July 2019 | 17.00 | 12.02 | 11.11 | 7.48 | 0.80 | 0.90 |
3 September 2019 | 10.40 | 9.26 | 6.54 | 5.78 | 0.97 | 0.98 |
Mean | 13.67 | 10.22 | 8.92 | 6.85 | 0.91 | 0.95 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Z.; Xie, J.; Heygster, G.; Chi, Z.; Yang, L.; Wu, S.; Hui, F.; Cheng, X. A Simplified Coastline Inflection Method for Correcting Geolocation Errors in FengYun-3D Microwave Radiation Imager Images. Remote Sens. 2023, 15, 813. https://doi.org/10.3390/rs15030813
Chen Z, Xie J, Heygster G, Chi Z, Yang L, Wu S, Hui F, Cheng X. A Simplified Coastline Inflection Method for Correcting Geolocation Errors in FengYun-3D Microwave Radiation Imager Images. Remote Sensing. 2023; 15(3):813. https://doi.org/10.3390/rs15030813
Chicago/Turabian StyleChen, Zhuoqi, Jin Xie, Georg Heygster, Zhaohui Chi, Lei Yang, Shengli Wu, Fengming Hui, and Xiao Cheng. 2023. "A Simplified Coastline Inflection Method for Correcting Geolocation Errors in FengYun-3D Microwave Radiation Imager Images" Remote Sensing 15, no. 3: 813. https://doi.org/10.3390/rs15030813
APA StyleChen, Z., Xie, J., Heygster, G., Chi, Z., Yang, L., Wu, S., Hui, F., & Cheng, X. (2023). A Simplified Coastline Inflection Method for Correcting Geolocation Errors in FengYun-3D Microwave Radiation Imager Images. Remote Sensing, 15(3), 813. https://doi.org/10.3390/rs15030813