Forage Mass Estimation in Silvopastoral and Full Sun Systems: Evaluation through Proximal Remote Sensing Applied to the SAFER Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site and Experiment Design
2.2. Proximal Reflectance and Meteorological Data Acquisition
2.3. Simple Algorithm for Evapotranspiration Retrieving (SAFER)
2.4. Statistical Analysis
3. Results
3.1. Weather Parameters
3.2. Spectral Parameter
3.3. SAFER Estimated Forage Mass and In Situ Biophysical Pasture Variables
3.4. Evaluation of Linear Regression Models
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Torres, F.N.; Richter, R.; Vohland, M. A multisensoral approach for high-resolution land cover and pasture degradation mapping in the humid tropics: A case study of the fragmented landscape of Rio de Janeiro. Int. J. Appl. Earth Obs. Geoinf. 2019, 78, 189–201. [Google Scholar]
- Nesper, M.; Bünemann, E.K.; Fonte, S.J.; Rao, I.M.; Velásquez, J.E.; Ramirez, B.; Hegglin, D.; Frosard, E.; Oberson, A. Pasture degradation decreases organic P content of tropical soils due to soil structural decline. Geoderma 2015, 257–258, 123–133. [Google Scholar] [CrossRef]
- Almeida, C.A.; de Coutinho, A.C.; Esquerdo, J.C.D.M.; Adami, M.; Venturieri, A.; Diniz, C.G.; Dessay, N.; Duriex, L.; Gomes, A.R. High spatial resolution land use and land cover mapping of the Brazilian Legal Amazon in 2008 using Landsat-5/TM and MODIS data. Acta Amaz. 2016, 46, 291–302. [Google Scholar] [CrossRef]
- Wilm, H.G.; Costello, D.F.; Klipple, G.E. Estimating forage yield by the doublesampling method. J. Am. Soc. Agron. 1944, 36, 194–203. [Google Scholar] [CrossRef] [Green Version]
- Schmer, M.R.; Mitchell, R.B.; Vogel, K.P.; Schacht, W.H.; Marx, D.B. Efficient Methods of Estimating Switchgrass Biomass Supplies. BioEnergy Res. 2010, 3, 243–250. [Google Scholar] [CrossRef] [Green Version]
- Sanderson, M.A.; Rotz, C.A.; Fultz, S.W.; Rayburn, E.B. Estimating forage ass with a commercial capacitance meter, rising plate meter, and pasture ruler. Agron. J. 2001, 93, 1281–1286. [Google Scholar] [CrossRef] [Green Version]
- Dufloth, J.H.; Back, A.J.; Passos, R. Estimativa da produção de pasto através de dois métodos indiretos: Régua (altura) e Disco Medidor (densidade). Agropecuária Catarin. 2015, 28, 83–86. [Google Scholar]
- Reinermann, S.; Asam, S.; Kuenzer, C. Remote Sensing of Grassland Production and Management—A Review. Remote Sens. 2020, 12, 1949. [Google Scholar] [CrossRef]
- Dias Filho, M.B. Degradação de Pastagens: Processos, Causas e Estratégias de Recuperação. MBDF 2011, 4, 204. [Google Scholar]
- Alves, B.J.R.; Madari, B.E.; Boddey, R.M. Integrated crop–Livestock–Forestry systems: Prospects for a sustainable agricultural intensification. Nutr. Cycl. Agroecosystems 2017, 108, 1–4. [Google Scholar] [CrossRef]
- Martha, G.B.; Alves, E.; Contini, E. Land-saving approaches and beef production growth in Brazil. Agric. Syst. 2012, 110, 173–177. [Google Scholar] [CrossRef] [Green Version]
- Teixeira, A.H.C.; Scherer-Warren, M.; Hernandez, F.B.T.; Andrade, R.G.; Leivas, J.F. Large-Scale Water Productivity Assessments with MODIS Images in a Changing Semi-Arid Environment: A Brazilian Case Study. Remote Sens. 2013, 5, 5783–5804. [Google Scholar] [CrossRef] [Green Version]
- Andrade, R.G.; Teixeira, A.H.D.C.; Leivas, J.F.; Nogueira, S.F. Analysis of evapotranspiration and biomass in pastures with degradation indicatives in the Upper Tocantins River Basin, in Brazilian Savanna. Rev. Ceres 2016, 63, 754–760. [Google Scholar] [CrossRef]
- Andrade, R.G.; Teixeira, A.D.C.; Leivas, J.F.; Nogueira, S.F.; Da Silva, G.B.S.; Victoria, D.D.C.; Facco, A.G. Estimativa da evapotranspiração e da biomassa de pastagens utilizando o algoritmo SAFER e imagens MODIS. In Proceedings of the Anais XVII Simpósio Brasileiro de Sensoriamento Remoto—SBSR, João Pessoa-PB, Brasil, 25–29 April 2015. [Google Scholar]
- Santos, R.A.; Venancio, L.P.; Filgueiras, R.; Cunha, F.F. Remote sensing as a tool to determine biophysical parameters of irrigated seed corn crop. Semin. Ciências Agrárias 2020, 41, 435–446. [Google Scholar] [CrossRef]
- Bayma-Silva, G.; Teixeira, A.H.C.; Victoria, D.C.; Nogueira, S.F.; Leivas, J.F.; Coaguila, D.N.; Herling, V.R. Energy balance model applied to pasture experimental areas in São Paulo State, Brazil. In Remote Sensing for Agriculture, Ecosystems, and Hydrology, 18; Proceedings of the SPIE, 2016, Edinburg, UK, 26–29 September 2016; Proceedings of the SPIE: Edinburgh, UK; Volume 9998, pp. 99981C-1–99981C-10.
- Numata, I.; Roberts, D.A.; Chadwick, O.A.; Schimel, J.; Sampaio, F.R.; Leonidas, F.C.; Soares, J.V. Characterization of pasture biophysical properties and the impact of grazing intensity using remotely sensed data. Remote Sens. Environ. 2007, 109, 314–327. [Google Scholar] [CrossRef]
- Teixeira, A.H.C.; Hernandez, F.B.T.; Scherer-Warren, M.; Andrade, R.G.; Leivas, J.F.; Victoria, D.C.; Bolfe, E.L.; Thenkabail, P.S.; Franco, R.A.M. Water productivity studies from earth observation data: Characterization, modeling, and mapping water use and water productivity. In Remote sensing of water Resources, disasters, and urban Studies; Thenkabail, P.S., Ed.; Taylor & Francis Group 1: Abingdon, UK, 2015; pp. 107–137. [Google Scholar]
- Alvares, C.A.; Stape, J.L.; Sentelhas, P.C.; Gonçalves, J.L.M.; Sparovek, G. Köppen’s climate classification map for Brazil. Meteorol. Z. 2013, 22, 711–728. [Google Scholar] [CrossRef] [PubMed]
- Calderano Filho, B.; Santos, H.D.S.; da Fonseca, O.O.M.; Primavesi, O.; Primavesi, A.C. Os solos da Fazenda Canchim, Centro de pesquisa de Pecuária do Sudeste, São Carlos, SP: Levantamento Semidetalhado, Propriedade e Potenciais; Embrapa—CNPS. Boletim de Pesquisa, 7 e Embrapa—CPPSE. Boletim de Pesquisa, 2; Embrapa: Rio de Janeiro/São Carlos, Brazil, 1998. [Google Scholar]
- Silva, Y.D.F.D. Uso do Algoritmo SAFER para Evapotranspiração real na Cultura da Soja. Master’s Thesis, Universidade Estadual Paulista “Júlio de Mesquita Filho”, Jaboticabal, Brazil, 2018; 57p. [Google Scholar]
- Teixeira, A.H.C. Modelling Evapotranspiration by Remote Sensing Parameters and Agrometeorological Stations. In Remote Sensing and Hydrology; Neale, C.M.U., Cosh, M.H., Eds.; IAHS Publ. 352; IAHS: Wallingford, UK, 2012; pp. 154–157. [Google Scholar]
- Teixeira, A.H.C.; Leivas, J.F.; Hernandez, F.B.T.; Franco, R.A.M. Large-scale radiation and energy balances with Landsat 8 images and agrometeorological data in the Brazilian semiarid region. J. Appl. Remote Sens. 2017, 11, 016030. [Google Scholar] [CrossRef]
- Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring vegetation systems in the great plains with ERTS. In Proceedings of the Earth Resources Technology Satellite-1 Symposium, 3, Washington, DC, USA, 10–14 December 1973; NASA, Goddard Space Flight Center: Greenbelt, MD, USA, 1973; Volume 1, pp. 309–317. [Google Scholar]
- Teixeira, A.D.C.; Bastiaanssen, W.G.; Moura, M.S.B.; Soares, J.M.; Ahmad, M.U.D.; Bos, M.G. Energy and water balance measurements for water productivity analysis in irrigated mango trees, Northeast Brazil. Agric. For. Meteorol. 2008, 148, 1524–1537. [Google Scholar] [CrossRef] [Green Version]
- Monteith, J.L. Solar radiation and productivity in tropical ecosystems. J. Appl. Ecol. 1972, 9, 747–766. [Google Scholar] [CrossRef] [Green Version]
- Teixeira, A.H.C.; Simão, F.R.; Leivas, J.F.; Gomide, R.L.; Reis, J.B.D.S.; Kobayashi, M.K.; Oliveira, F.G. Water Productivity Modeling by Remote Sensing in the Semiarid Region of Minas Gerais State, Brazil. In Arid Environments and Sustainability; Arman, H., Yuksel, I., Eds.; IntechOpen: London, UK, 2018; pp. 94–108. [Google Scholar]
- Bosi, C.; Sentelhas, P.C.; Huth, N.I.; Pezzopane, J.R.M.; Andreucci, M.P.; Santos, P.M. APSIM-tropical pasture: A model for simulating perennial tropical grass growth and its parameterisation for palisade grass (Brachiaria brizantha). Agric. Syst. 2020, 184, 102917. [Google Scholar] [CrossRef]
- Legg, M.; Bradley, S. Ultrasonic Proximal Sensing of Pasture Biomass. Remote Sens. 2019, 11, 2459. [Google Scholar] [CrossRef] [Green Version]
- Carneiro, F.M.; Furlani, C.E.A.; Zerbato, C.; de Menezes, P.C.; da Silva Gírio, L.A.; Oliveira, M.F. Comparison between vegetation indices for detecting spatial and temporal variabilities in soybean crop using canopy sensors. Precis. Agric. 2019, 21, 979–1007. [Google Scholar] [CrossRef]
- Pezzopane, J.R.M.; Bernardi, A.C.C.; Bosi Crippa, P.H.; Santos, P.M.; Nardachione, E.C. Assessment of Piatã palisadegrass forage mass in integrated livestock production systems using a proximal canopy reflectance sensor. Eur. J. Agron. 2019, 103, 130–139. [Google Scholar] [CrossRef]
- Mutanga, O.; Skidmore, A.K. Narrow band vegetation indices overcome the saturation problem in biomass estimation. Int. J. Remote Sens. 2004, 25, 3999–4014. [Google Scholar] [CrossRef]
- Paciullo, D.S.C.; Gomide, C.A.M.; Castro, C.R.T.D.; Fernandes, P.B.; Müller, M.D.; Pires, M.F.Á.; Fernandes, E.M.; Xavier, D.F. Características produtivas e nutricionais do pasto em sistema agrossilvipastoril, conforme a distância das árvores. Pesqui. Agropecuária Bras. 2011, 46, 1176–1183. [Google Scholar] [CrossRef] [Green Version]
- Pezzopane, J.R.M.; Bernardi, A.C.C.; Bosi, C.; Oliveira, P.P.A.; Marconato, M.H.; Pedroso, A.F.; Esteves, S.N. Forage productivity and nutritive value during pasture renovation in silvopastoral systems. Agroforest. Syst. 2017, 93, 39–49. [Google Scholar] [CrossRef]
- Barnes, P.; Wilson, B.R.; Reid, N.; Bayerlein, L.; Koen, T.B.; Olupot, G. Examining the impact of shade on above-ground biomass and normalized difference vegetation index of C3 and C4 grass species in North-Western NSW, Australia. Grass Forage Sci. 2014, 70, 324–334. [Google Scholar] [CrossRef]
- Di Bella, C.M.; Paruelo, J.M.; Becerra, J.E.; Bacour, C.; Baret, F. Effect of senescent leaves on NDVI-based estimates of fAPAR: Experimental and modelling evidences. Int. J. Remote Sens. 2004, 25, 5415–5427. [Google Scholar] [CrossRef]
- Van Leeuwen, W.J.D.; Huete, A.R. Effects of standing litter on the biophysical interpretation of plant canopies with spectral indices. Remote Sens. Environ. 1996, 55, 123–138. [Google Scholar] [CrossRef]
- Pullanagari, R.R.; Kereszturi, G.; Yule, I.J. Quantification of dead vegetation fraction in mixed pastures using aisafenix imaging spectroscopy data. Int. J. Appl. Earth Obs. Geoinf. 2017, 58, 26–35. [Google Scholar] [CrossRef]
- Venancio, L.P.; Mantovani, E.C.; Amaral, C.H.D.; Neale, C.M.U.; Filgueiras, R.; Gonçalves, I.Z.; Cunha, F.F.D. Evapotranspiration mapping of commercial corn fields in Brazil using SAFER algorithm. Sci. Agric. 2020, 78, e20190261. [Google Scholar] [CrossRef]
- Dehziari, S.A.; Sanaienejad, S.H. Energy balance quantification using Landsat 8 images and SAFER algorithm in Mashhad, Razavi Khorasan, Iran. J. Appl. Remote Sens. 2019, 13, 014528. [Google Scholar] [CrossRef]
- Teixeira, A.; Leivas, J.; Struiving, T.; Reis, J.; Simão, F. Energy balance and irrigation performance assessments in lemon orchards by applying the SAFER algorithm to Landsat 8 images. Agric. Water Manag. 2021, 247, 106725. [Google Scholar] [CrossRef]
- Teixeira, A.; Pacheco, E.; Silva, C.; Dompieri, M.; Leivas, J. SAFER applications for water productivity assessments with aerial camera onboard a remotely piloted aircraft (RPA). A rainfed corn study in Northeast Brazil. Remote Sens. Appl. Soc. Environ. 2021, 22, 100514. [Google Scholar] [CrossRef]
- Jorge, D.; Barbosa, C.; De Carvalho, L.; Affonso, A.; Lobo, F.; Novo, E. SNR (signal-to-noise ratio) impact on water constituent retrieval from simulated images of optically complex Amazon lakes. Remote Sens. 2017, 9, 644. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Guerschman, J.; Shendryk, Y.; Henry, D.; Harrison, M.T. Estimating Pasture Biomass Using Sentinel-2 Imagery and Machine Learning. Remote Sens. 2021, 13, 603. [Google Scholar] [CrossRef]
- Bispo, P.d.C.; Rodríguez-Veiga, P.; Zimbres, B.; do Couto de Miranda, S.; Henrique Giusti Cezare, C.; Fleming, S.; Baldacchino, F.; Louis, V.; Rains, D.; Garcia, M.; et al. Woody Aboveground Biomass Mapping of the Brazilian Savanna with a Multi-Sensor and Machine Learning Approach. Remote Sens. 2020, 12, 2685. [Google Scholar] [CrossRef]
- Schaefer, M.T.; Lamb, D.W. A Combination of Plant NDVI and LiDAR Measurements Improve the Estimation of Pasture Biomass in Tall Fescue (Festuca arundinacea var. Fletcher). Remote Sens. 2016, 8, 109. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luns Hatum de Almeida, S.; Brunno Costa Souza, J.; Furlan Nogueira, S.; Ricardo Macedo Pezzopane, J.; Heriberto de Castro Teixeira, A.; Bosi, C.; Adami, M.; Zerbato, C.; Carlos de Campos Bernardi, A.; Bayma, G.; et al. Forage Mass Estimation in Silvopastoral and Full Sun Systems: Evaluation through Proximal Remote Sensing Applied to the SAFER Model. Remote Sens. 2023, 15, 815. https://doi.org/10.3390/rs15030815
Luns Hatum de Almeida S, Brunno Costa Souza J, Furlan Nogueira S, Ricardo Macedo Pezzopane J, Heriberto de Castro Teixeira A, Bosi C, Adami M, Zerbato C, Carlos de Campos Bernardi A, Bayma G, et al. Forage Mass Estimation in Silvopastoral and Full Sun Systems: Evaluation through Proximal Remote Sensing Applied to the SAFER Model. Remote Sensing. 2023; 15(3):815. https://doi.org/10.3390/rs15030815
Chicago/Turabian StyleLuns Hatum de Almeida, Samira, Jarlyson Brunno Costa Souza, Sandra Furlan Nogueira, José Ricardo Macedo Pezzopane, Antônio Heriberto de Castro Teixeira, Cristiam Bosi, Marcos Adami, Cristiano Zerbato, Alberto Carlos de Campos Bernardi, Gustavo Bayma, and et al. 2023. "Forage Mass Estimation in Silvopastoral and Full Sun Systems: Evaluation through Proximal Remote Sensing Applied to the SAFER Model" Remote Sensing 15, no. 3: 815. https://doi.org/10.3390/rs15030815
APA StyleLuns Hatum de Almeida, S., Brunno Costa Souza, J., Furlan Nogueira, S., Ricardo Macedo Pezzopane, J., Heriberto de Castro Teixeira, A., Bosi, C., Adami, M., Zerbato, C., Carlos de Campos Bernardi, A., Bayma, G., & Pereira da Silva, R. (2023). Forage Mass Estimation in Silvopastoral and Full Sun Systems: Evaluation through Proximal Remote Sensing Applied to the SAFER Model. Remote Sensing, 15(3), 815. https://doi.org/10.3390/rs15030815