Stability Analysis of Rocky Slopes on the Cuenca–Girón–Pasaje Road, Combining Limit Equilibrium Methods, Kinematics, Empirical Methods, and Photogrammetry
Abstract
:1. Introduction
2. Materials and Methods
2.1. Information Gathered in the Field
2.2. 3D Point Cloud
2.3. Identification of Discontinuities
2.4. Analysis with Empirical Methods
2.5. Kinematic Analysis
2.6. Limit Equilibrium Analysis
3. Results
3.1. Analysis of Families of Discontinuities
3.2. Rock Mass Classification Systems
3.2.1. Slope Mass Rating
3.2.2. Qslope Index
3.2.3. Modified Rockfall Rating System (RHRSmod)
3.3. Kinematic Analysis
3.4. Limit Equilibrium Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
SMR | Slope Mass Classification |
RHRS | Rockfall Hazard Classification System |
Qslope | Barton’s Q slope index |
SfM | Structure from Motion |
DSE | Discontinuity Set Extractor |
RMR | Rock Mass Classification |
Qsystem | Barton’s Q index |
3DPC | 3D Point Cloud |
JRC | Joint roughness coefficient |
JCS | Joint wall compressive strength |
UCS | Intact rock strength |
RQD | Rock quality designation |
SRF | Stress reduction factor |
GSI | Geological resistance index |
Jr | Joint Roughness number |
Jn | Joint set number |
Ja | Joint alteration number |
Jwice | Environmental and geological condition number |
O | Orientation factor of discontinuities |
F1-F2-F3 | Adjustment to RMR based on orientations |
F4 | Adjustment to RMR based on excavation method |
β | Maximum slope angle Qslope |
ϕb | Basic friction angle |
ϕr | Residual friction angle |
ϕi | Instantaneous friction angle |
σn | Normal effort |
τ | Hoop stress |
γ | Specific weight |
FS | Security factor |
Fest | Stabilizing forces |
Fdes | Destabilizing forces |
References
- Jorda, L.; Tomás, R.; Rodriguez, M.; Abellan, A. Manual de Estaciones Geomecánicas. Descripción de Macizos Rocosos En Afloramientos; ETSI Minas: Madrid, Spain, 2016; ISBN 978-84-96140-55-4. [Google Scholar]
- Mohtarami, E.; Jafari, A.; Amini, M. Stability Analysis of Slopes against Combined Circular–Toppling Failure. Int. J. Rock Mech. Min. Sci. 2014, 67, 43–56. [Google Scholar] [CrossRef]
- Johari, A.; Lari, A.M. System Probabilistic Model of Rock Slope Stability Considering Correlated Failure Modes. Comput. Geotech. 2017, 81, 26–38. [Google Scholar] [CrossRef]
- Deng, D. Limit Equilibrium Analysis on the Stability of Rock Wedges with Linear and Nonlinear Strength Criteria. Int. J. Rock Mech. Min. Sci. 2021, 148, 104967. [Google Scholar] [CrossRef]
- Zhou, X.; Chen, J.; Chen, Y.; Song, S.; Shi, M.; Zhan, J. Bayesian-Based Probabilistic Kinematic Analysis of Discontinuity-Controlled Rock Slope Instabilities. Bull. Eng. Geol. Environ. 2017, 76, 1249–1262. [Google Scholar] [CrossRef]
- Jordá-Bordehore, L.; Jordá-Bordehore, R.; Romero-Crespo, P.L. Kinematic Assessment of Multi-Face Round Slopes Using Hemispherical Projection Methods (HPM). Soils Rocks 2016, 39, 167–176. [Google Scholar] [CrossRef]
- Bar, N.; Barton, N.R. Empirical Slope Design for Hard and Soft Rocks Using Q-Slope. In Proceedings of the 50th US Rock Mechanics/Geomechanics Symposium, Houston, TX, USA, 26–29 June 2016. [Google Scholar]
- Romana, M.R. 23—A Geomechanical Classification for Slopes: Slope Mass Rating; Hudson, J.A., Ed.; Pergamon: Oxford, UK, 1993; pp. 575–600. ISBN 978-0-08-042066-0. [Google Scholar]
- Bastidas, G.; Soria, O.; Mulas, M.; Loaiza, S.; Jordà-Bordehore, L. Stability Analysis of Lava Tunnels in Santa Cruz Island (Galapagos Islands, Ecuador) Using Rock Mass Classifications: Empirical Approach and Numerical Modeling. Geosciences 2022, 12, 380. [Google Scholar] [CrossRef]
- Stead, D.; Coggan, J. 13 Numerical Modeling of Rock-Slope Instability. Landslides Types Mech. Model. 2012, 13, 144–159. [Google Scholar]
- Azarafza, M.; Asghari-Kaljahi, E.; Akgün, H. Numerical Modeling of Discontinuous Rock Slopes Utilizing the 3DDGM (Three-Dimensional Discontinuity Geometrical Modeling) Method. Bull. Eng. Geol. Environ. 2017, 76, 989–1007. [Google Scholar] [CrossRef]
- Riquelme, A.; Cano, M.; Tomás, R.; Abellán, A. Identification of Rock Slope Discontinuity Sets from Laser Scanner and Photogrammetric Point Clouds: A Comparative Analysis. Procedia Eng. 2017, 191, 838–845. [Google Scholar] [CrossRef]
- Zhang, L. Engineering Properties of Rocks; Butterworth-Heinemann: Oxford, UK, 2016; ISBN 0128028769. [Google Scholar]
- Westoby, M.J.; Brasington, J.; Glasser, N.F.; Hambrey, M.J.; Reynolds, J.M. ‘Structure-from-Motion’ Photogrammetry: A Low-Cost, Effective Tool for Geoscience Applications. Geomorphology 2012, 179, 300–314. [Google Scholar] [CrossRef]
- Guo, J.; Wu, L.; Zhang, M.; Liu, S.; Sun, X. Towards Automatic Discontinuity Trace Extraction from Rock Mass Point Cloud without Triangulation. Int. J. Rock Mech. Min. Sci. 2018, 112, 226–237. [Google Scholar] [CrossRef]
- Li, X.; Chen, Z.; Chen, J.; Zhu, H. Automatic Characterization of Rock Mass Discontinuities Using 3D Point Clouds. Eng. Geol. 2019, 259, 105131. [Google Scholar] [CrossRef]
- Riquelme, A.J.; Abellán, A.; Tomás, R.; Jaboyedoff, M. A New Approach for Semi-Automatic Rock Mass Joints Recognition from 3D Point Clouds. Comput. Geosci. 2014, 68, 38–52. [Google Scholar] [CrossRef]
- Riquelme, A.J.; Tomás, R.; Abellán, A. Characterization of Rock Slopes through Slope Mass Rating Using 3D Point Clouds. Int. J. Rock Mech. Min. Sci. 2016, 84, 165–176. [Google Scholar] [CrossRef]
- Lato, M.J.; Vöge, M. Automated Mapping of Rock Discontinuities in 3D Lidar and Photogrammetry Models. Int. J. Rock Mech. Min. Sci. 2012, 54, 150–158. [Google Scholar] [CrossRef]
- Riquelme, A.J.; Abellán, A.; Tomás, R. Discontinuity Spacing Analysis in Rock Masses Using 3D Point Clouds. Eng. Geol. 2015, 195, 185–195. [Google Scholar] [CrossRef]
- Riquelme, A.; Tomás, R.; Cano, M.; Pastor, J.L.; Abellán, A. Automatic Mapping of Discontinuity Persistence on Rock Masses Using 3D Point Clouds. Rock Mech. Rock Eng. 2018, 51, 3005–3028. [Google Scholar] [CrossRef]
- Bordehore, L.J.; Riquelme, A.; Cano, M.; Tomás, R. Comparing Manual and Remote Sensing Field Discontinuity Collection Used in Kinematic Stability Assessment of Failed Rock Slopes. Int. J. Rock Mech. Min. Sci. 2017, 97, 24–32. [Google Scholar] [CrossRef]
- Bar, N.; Barton, N. The Q-Slope Method for Rock Slope Engineering. Rock Mech. Rock Eng. 2017, 50, 3307–3322. [Google Scholar] [CrossRef]
- Saroglou, H.; Marinos, V.; Marinos, P.; Tsiambaos, G. Rockfall Hazard and Risk Assessment: An Example from a High Promontory at the Historical Site of Monemvasia, Greece. Nat. Hazards Earth Syst. Sci. 2012, 12, 1823–1836. [Google Scholar] [CrossRef]
- Barton, N.; Bandis, S. Review of Predictive Capabilities of JRC-JCS Model in Engineering Practice; Elsevier: Amsterdam, The Netherlands, 1990; Volume 182. [Google Scholar] [CrossRef]
- Avilés-Moran, H.; Escobar Segovia, K.; Flor-Jiménez, M.; Mulas, M.; Murillo-Lozano, I.; Villalta-Echevarría, M. Geotechnical and Structural Characterization of the Ignimbritas of the Saraguro Group in the Sector of Santa Isabel-Pucará, Ecuador. In Proceedings of the 17th LACCEI International Multi-Conference for Engineering, Education, and Technology, Montego Bay, Jamaica, 24–26 July 2019. [Google Scholar]
- Witt, C. Constraints on the Tectonic Evolution of the North Andean Block Trailing Tail: Evolution of the Gulf of Guayaquil-Tumbes Basin and the Intermontane Basins of the Central Ecuadorian Andes. Ph.D. Thesis, University of Paris 6, Paris, France, 2007. [Google Scholar]
- Hungerbühler, D.; Steinmann, M.; Winkler, W.; Seward, D.; Egüez, A.; Peterson, D.E.; Helg, U.; Hammer, C. Neogene Stratigraphy and Andean Geodynamics of Southern Ecuador. Earth-Science Rev. 2002, 57, 75–124. [Google Scholar] [CrossRef]
- Siravo, G.; Speranza, F.; Mulas, M.; Costanzo-Alvarez, V. Significance of northern Andes terrane extrusion and genesis of the interandean valley: Paleomagnetic evidence from the “Ecuadorian orocline”. Tectonics 2021, 40, e2020TC0066841997. [Google Scholar] [CrossRef]
- Pratt, W.T.; Figueroa, J.F.; Flores, B.G. Geology and Mineralization of the Area between 3° and 4° S, Western Cordillera, Ecuador; British Geological Survey: London, UK, 1997. [Google Scholar]
- Villalta Echeverria, M.D.P.; Viña Ortega, A.G.; Larreta, E.; Romero Crespo, P.; Mulas, M. Lineament Extraction from Digital Terrain Derivate Model: A Case Study in the Girón–Santa Isabel Basin, South Ecuador. Remote Sens. 2022, 14, 5400. [Google Scholar] [CrossRef]
- Kong, D.; Saroglou, C.; Wu, F.; Sha, P.; Li, B. Development and Application of UAV-SfM Photogrammetry for Quantitative Characterization of Rock Mass Discontinuities. Int. J. Rock Mech. Min. Sci. 2021, 141, 104729. [Google Scholar] [CrossRef]
- Assali, P.; Grussenmeyer, P.; Villemin, T.; Pollet, N.; Viguier, F. Surveying and Modeling of Rock Discontinuities by Terrestrial Laser Scanning and Photogrammetry: Semi-Automatic Approaches for Linear Outcrop Inspection. J. Struct. Geol. 2014, 66, 102–114. [Google Scholar] [CrossRef]
- Agisoft, L.L.C. Agisoft PhotoScan User Manual: Professional Edition; Agisoft LLC: St Petersburg, Russia, 2014. [Google Scholar]
- Girardeau-Montaut, D. CloudCompare; Fr. EDF R&D Telecom ParisTech: Paris, France, 2016; p. 11. [Google Scholar]
- Azarafza, M.; Nikoobakht, S.; Rahnamarad, J.; Asasi, F.; Derakhshani, R. An Empirical Method for Slope Mass Rating-Qslope Correlation for Isfahan Province, Iran. MethodsX 2020, 7, 101069. [Google Scholar] [CrossRef]
- Siddique, T.; Alam, M.M.; Mondal, M.E.A.; Vishal, V. Slope Mass Rating and Kinematic Analysis of Slopes along the National Highway-58 near Jonk, Rishikesh, India. J. Rock Mech. Geotech. Eng. 2015, 7, 600–606. [Google Scholar] [CrossRef]
- Pantelidis, L. Rock Slope Stability Assessment through Rock Mass Classification Systems. Int. J. Rock Mech. Min. Sci. 2009, 46, 315–325. [Google Scholar] [CrossRef]
- Selby, M.J. A Rock Mass Strength Classification for Geomorphic Purposes: With Tests from Antarctica and New Zealand. Z. Für Geomorphol. 1980, 31–51. [Google Scholar] [CrossRef]
- Robertson, A.M. Estimating Weak Rock Strength. In Proceedings of the SME Annual Meeting, Phoenix, AZ, USA, 25–28 January 1988; pp. 1–5. [Google Scholar]
- Hack, R. An Evaluation of Slope Stability Classification. In Proceedings of the ISRM International Symposium-EUROCK 2002, Madeira, Portugal, 25–27 November 2002. [Google Scholar]
- Tomás, R.; Delgado, J.; Serón, J.B. Modification of Slope Mass Rating (SMR) by Continuous Functions. Int. J. Rock Mech. Min. Sci. 2007, 44, 1062–1069. [Google Scholar] [CrossRef]
- Mazzoccola, D.F.; Hudson, J.A. A Comprehensive Method of Rock Mass Characterization for Indicating Natural Slope Instability. Q. J. Eng. Geol. Hydrogeol. 1996, 29, 37–56. [Google Scholar] [CrossRef]
- Budetta, P. Assessment of Rockfall Risk along Roads. Nat. Hazards Earth Syst. Sci. 2004, 4, 71–81. [Google Scholar] [CrossRef]
- Pierson, L.A.; Davis, S.A.; Van Vickle, R. Rockfall Hazard Rating System: Implementation Manual; Report/Paper Numbers: FHWA-OR-EG-90-01; TRB Publications: Washington, DC, USA, 1990. [Google Scholar]
- Peševski, I.; Jovanovski, M.; Guy, M.; O’Hare, N. Rockfall Hazard Assessment for Access Road to Dam “Sveta Petka” Using Rockfall Hazard Rating System (RHRS). Geol. Maced. 2011, 25, 11–20. [Google Scholar]
- Barton, N.; Choubey, V. The Shear Strength of Rock Joints in Theory and Practice. Rock Mech. 1977, 10, 1–54. [Google Scholar] [CrossRef]
Slope N° | Location | Coordinates | Height (m) | DIP Slope (°) | DIP DIR Slope (°) | Type of Slope | No. of Photographs | |
---|---|---|---|---|---|---|---|---|
East | North | |||||||
1 | km 78 + 740 | 680,392 | 9,631,487 | 46.80 | 76 | 315 | Excavated | 250 |
2 | km 80 + 900 | 680,041 | 9,631,075 | 13.50 | 85 | 55 | Excavated | 135 |
3 | km 84 + 475 | 677,153 | 9,630,275 | 32.50 | 82 | 215 | Excavated | 82 |
4 | km 84 + 635 | 676,963 | 9,630,415 | 23.60 | 80 | 185 | Excavated | 88 |
5 | km 87 + 700 | 674,342 | 9,630,924 | 40.00 | 90 | 45 | Natural | 109 |
6 | km 91 + 080 | 671,281 | 9,631,878 | 33.70 | 83 | 180 | Excavated | 171 |
Basis | Parameter | Value |
---|---|---|
Calculation of the normal vector | The number of closest neighbors (knn). | 30 |
Tolerance/Coplanarity test (h). | 0% | |
Calculation of the main poles | The number of bins for density analysis. | 256 |
The minimum angle between the main poles. | 30 | |
Assignment of points to main poles | The maximum angle between a pole and its corresponding main pole. | 30 |
Cluster Analysis | The minimum number of points per Cluster. | 100 |
Cluster plane grouping (k). | 2 |
Slope N° | Virtual Analysis | Automatic Analysis | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Joint Sets Identified (Orientation DipDir/Dip) | Joint Sets Identified (Orientation DipDir/Dip) | |||||||||
J1 | J2 | J3 | J4 | Number of Measurements | J1 | J2 | J3 | J4 | DSE Measurements (Pts */Cluster) | |
1 | 315/75 | 274/81 | 051/86 | N.I. | 190 | 319/76 | 276/80 | 055/88 | 156/34 | 3,586,666 */684 |
2 | 067/83 | 012/81 | 050/51 | N.E. | 250 | 070/86 | 015/80 | 073/39 | N.E. | 754,110 */442 |
3 | 222/88 | 166/30 | 184/89 | 025/46 | 300 | 216/83 | 189/39 | 000/85 | 057/72 | 1,941,850 */1136 |
4 | 011/76 | 206/36 | 185/82 | 055/82 | 151 | 355/75 | 204/45 | 193/75 | 036/76 | 447,726 */784 |
5 | 269/89 | 233/86 | 160/89 | 347/03 | 186 | 261/87 | 230/87 | 170/89 | N.I. | 481,677 */342 |
6 | 174/68 | 340/37 | N.I. | 327/84 | 230 | 183/68 | 337/39 | 216/86 | 326/85 | 1,542,583 */1374 |
Slope N° | GSI | RQD | UCS (MPa) | RMR | Break (Family) | Correction Factors | SMR | Stability | |||
---|---|---|---|---|---|---|---|---|---|---|---|
F1 | F2 | F3 | F4 | ||||||||
1 | 75–80 | 100 | 40 | 70 | P (J1) | 1.00 | 1.00 | −25 | 0 | 45 | PS |
W (J2–J3) | 0.70 | 1.00 | −50 | 35 | U | ||||||
T (J3) | 0.40 | 1.00 | −6 | 67 | S | ||||||
2 | 60–65 | 95–100 | 38 | 60 | P (J3) | 0.70 | 0.85 | −60 | 0 | 24 | U |
W (J1–J2) | 0.15 | 1.00 | −50 | 52 | PS | ||||||
T | 0.15 | 1.00 | 0 | 60 | S | ||||||
3 | 55–60 | 85–95 | 40 | 59 | P (J2) | 0.40 | 0.85 | −60 | 0 | 38 | U |
W (J2–J4) | 0.15 | 0.40 | −60 | 55 | PS | ||||||
T (J4) | 0.40 | 1.00 | −25 | 49 | PS | ||||||
4 | 55–60 | 77–87 | 51 | 63 | P (J2) | 0.70 | 0.85 | −60 | 0 | 27 | U |
W (J3–J4) | 0.15 | 0.85 | −60 | 55 | PS | ||||||
T (J1) | 0.70 | 1.00 | −25 | 45 | PS | ||||||
5 | 50–55 | 75–85 | 58 | 53 | P | 0.15 | 0.15 | 0 | 15 | 68 | S |
W | 0.15 | 0.15 | 0 | 68 | S | ||||||
T (J2) | 0.85 | 1.00 | −25 | 46 | PS | ||||||
6 | 50–55 | 50–60 | 46 | 46 | P (J1) | 1.00 | 1.00 | −60 | 0 | 10 | U |
W (J1–J4) | 0.15 | 1.00 | −60 | 37 | U | ||||||
T (J4) | 0.15 | 1.00 | −25 | 42 | PS |
Slope N° | Calculation Factors | Qslope | β (°) | Stability | ||||||
---|---|---|---|---|---|---|---|---|---|---|
RQD | Jn | Jr | Ja | Ofactor | Jwice | SRF | ||||
1 | 100 | 9 | 3 | 4 | 1.00 | 1 | 2.5 | 3.33 | 75 | S |
2 | 100 | 9 | 2 | 6 | 0.75 | 0.8 | 5 | 0.44 | 58 | U |
3 | 90 | 15 | 3 | 2 | 0.75 | 0.8 | 5 | 1.08 | 66 | U |
4 | 80 | 15 | 3 | 2 | 0.75 | 0.8 | 5 | 0.96 | 65 | U |
5 | 80 | 9 | 1 | 6 | 0.50 | 0.8 | 4 | 0.15 | 48 | U |
6 | 55 | 9 | 3 | 4 | 0.50 | 0.8 | 5 | 0.37 | 56 | U |
Category | Slope 1 | Slope 2 | Slope 3 | Slope 4 | Slope 6 | |||||
---|---|---|---|---|---|---|---|---|---|---|
Value | Point | Value | Point | Value | Point | Value | Point | Value | Point | |
Slope height (H) meters | 46.8 | 81 | 13.5 | 7 | 32.5 | 81 | 23.6 | 32 | 33.7 | 81 |
Trench Effectiveness | N.c. | 81 | N.c. | 81 | N.c. | 81 | N.c. | 81 | N.c. | 81 |
Average Vehicle Risk (AVR) | 60 | 14 | 60 | 14 | 60 | 14 | 60 | 14 | 60 | 14 |
Decision sight distance (%Da) | 50 | 47 | 50 | 47 | 50 | 47 | 50 | 47 | 50 | 47 |
Road width (Lc) meters | 10 | 25 | 10 | 25 | 10 | 25 | 10 | 25 | 10 | 25 |
Slope Mass Rating (SMR) | 27 | 26 | 24 | 39 | 38 | 10 | 27 | 26 | 10 | 81 |
Block size (Db) | 2.86 | 81 | 0.72 | 14 | 0.63 | 10 | 0.22 | 2 | 0.27 | 3 |
Annual rainfall (h) mm/year | 400 | 4 | 400 | 4 | 400 | 4 | 400 | 4 | 400 | 4 |
Rockfall frequency (f) | 3 | 9 | 3 | 9 | 3 | 9 | 3 | 9 | 3 | 9 |
Slope N° | ϕi (°) | Type of Break | Stability | Discontinuity to Consider |
---|---|---|---|---|
1 | 34 | P | S | / |
W | U | J2–J3 | ||
T | S | / | ||
2 | 38 | P | U | J3 |
W | U | J1–J2 | ||
T | S | / | ||
3 | 29 | P | PS | J2 |
W | PS | J2–J4 | ||
T | PS | J4 | ||
4 | 37 | P | U | J2 y J3 |
W | U | J3–J4 | ||
T | U | J1 | ||
5 | 32 | P | S | / |
W | S | / | ||
T | U | J2 | ||
6 | 36 | P | U | J1 |
W | U | J1–J4 | ||
T | PS | J2 |
Slope N° | Type of Failure | Security Factor (FS) | Discontinuity to Consider |
---|---|---|---|
1 | W | 0.56 | J2–J3 |
2 | P | 1.31 | J3 |
W | 0.14 | J1–J2 | |
3 | P | 0.96 | J2 |
W | 0.68 | J2–J4 | |
4 | P | 0.39 | J3 |
W | 0.10 | J3–J4 | |
6 | P | 0.47 | J1 |
W | 0.29 | J1–J4 |
Slope N° | SMR | Qslope | RHRSmod | Kinematic | Analytic | Visual | Description |
---|---|---|---|---|---|---|---|
1 | U | S | H | U | U | U | Wedge cracks |
2 | U | U | M | U | U | S | No breakage observed |
3 | U | U | M | S | U | U | Planar and wedge cracks |
4 | U | U | M | U | U | S | No breakage observed |
5 | S | N.A. | N.A. | U | N.A. | U | Very loose blocks/overturning observed |
6 | U | U | H | U | U | U | Planar and wedge cracks |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Delgado-Reivan, X.; Paredes-Miranda, C.; Loaiza, S.; Echeverria, M.D.P.V.; Mulas, M.; Jordá-Bordehore, L. Stability Analysis of Rocky Slopes on the Cuenca–Girón–Pasaje Road, Combining Limit Equilibrium Methods, Kinematics, Empirical Methods, and Photogrammetry. Remote Sens. 2023, 15, 862. https://doi.org/10.3390/rs15030862
Delgado-Reivan X, Paredes-Miranda C, Loaiza S, Echeverria MDPV, Mulas M, Jordá-Bordehore L. Stability Analysis of Rocky Slopes on the Cuenca–Girón–Pasaje Road, Combining Limit Equilibrium Methods, Kinematics, Empirical Methods, and Photogrammetry. Remote Sensing. 2023; 15(3):862. https://doi.org/10.3390/rs15030862
Chicago/Turabian StyleDelgado-Reivan, Xavier, Cristhian Paredes-Miranda, Silvia Loaiza, Michelle Del Pilar Villalta Echeverria, Maurizio Mulas, and Luis Jordá-Bordehore. 2023. "Stability Analysis of Rocky Slopes on the Cuenca–Girón–Pasaje Road, Combining Limit Equilibrium Methods, Kinematics, Empirical Methods, and Photogrammetry" Remote Sensing 15, no. 3: 862. https://doi.org/10.3390/rs15030862
APA StyleDelgado-Reivan, X., Paredes-Miranda, C., Loaiza, S., Echeverria, M. D. P. V., Mulas, M., & Jordá-Bordehore, L. (2023). Stability Analysis of Rocky Slopes on the Cuenca–Girón–Pasaje Road, Combining Limit Equilibrium Methods, Kinematics, Empirical Methods, and Photogrammetry. Remote Sensing, 15(3), 862. https://doi.org/10.3390/rs15030862