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Abstract: Harvested timber and constructed infrastructure over the logging area leave massive dam-
age that contributes to the emission of anthropogenic gases into the atmosphere. Carbon emissions
from tropical deforestation and forest degradation are the second largest source of anthropogenic
emissions of greenhouse gases. Even though the emissions vary from region to region, a significant
amount of carbon emissions comes mostly from timber harvesting, which is tightly linked to the
selective logging intensity. This study intended to utilize a remote sensing approach to quantify
carbon emissions from selective logging activities in Ulu Jelai Forest Reserve, Pahang, Malaysia. To
quantify the emissions, the relevant variables from the logging’s impact were identified as a predictor
in the model development and were listed as stump height, stump diameter, cross-sectional area,
timber volume, logging gaps, road, skid trails, and incidental damage resulting from the logging
process. The predictive performance of linear regression and machine learning models, namely
support vector machine (SVM), random forest, and K-nearest neighbor, were examined to assess the
carbon emission from this degraded forest. To test the different methods, a combination of ground
inventory plots, unmanned aerial vehicles (UAV), and satellite imagery were analyzed, and the
performance in terms of root mean square error (RMSE), bias, and coefficient of correlation (R2)
were calculated. Among the four models tested, the machine learning model SVM provided the best
accuracy with an RMSE of 21.10% and a bias of 0.23% with an adjusted R2 of 0.80. Meanwhile, the
linear model performed second with an RMSE of 22.14%, a bias of 0.72%, and an adjusted R2 of 0.75.
This study demonstrates the efficacy of remotely sensed data to facilitate the conventional methods
of quantifying carbon emissions from selective logging and promoting advanced assessments that
are more effective, especially in massive logging areas and various forest conditions. Findings from
this research will be useful in assisting the relevant authorities in optimizing logging practices to
sustain forest carbon sequestration for climate change mitigation.

Keywords: selective logging impacts; UAV; remote sensing; machine learning model; carbon emission

1. Introduction

Selective logging operations degrade the forest volume and cause disturbance to the
intact forest in most tropical regions. Massive and unmanaged logging activities result
in the loss of forest above-ground biomass (AGB) due to damage to the trees and their
surroundings. This increases the number of carbon emissions (CO2) and greenhouse gas
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(GHG) emissions into the atmosphere affecting the future global climate [1]. Although
selective logging may cause less impact on carbon emissions from forest damage com-
pared to other deforestation activities [2], it can still have a significant impact due to the
frequency of logging [3,4]. Monitoring forest degradation from harvesting operations is
essential in tropical forests to address the issues of forest carbon emissions and climate
change [5]. Tropical forests constitute the largest portion of the world’s forests, and the
forest ecosystem stores more than 80% of terrestrial above-ground carbon, and timber har-
vesting operations contribute to 53% of the total carbon (CO2) emissions that are released
into the atmosphere [2].

The global framework of reducing emissions from deforestation and forest degra-
dation (REDD+) was established to conserve and enhance carbon stock in developing
countries. Malaysia’s implementation of REDD+ is aimed at ensuring that the forest re-
sources and their ecosystems are protected and that the benefits are shared equally among
all the beneficiaries [6]. Malaysia is a timber-producing country that harvests timber trees
selectively for their commercial value, utilizing sustainable management system (SFM) and
selective management system (SMS) practices [7,8]. The data from [9] show that Malaysia
has around 67.09% forested area, out of which 22.71% are diverse primary forests with
dense carbon storage.

Selective logging is the process of harvesting a timber tree in a forest area that may
change the forest landscape and structure. When the individual tree area is harvested,
the forest suffers further damage resulting in various carbon pools [10]. Monitoring and
assessing the carbon emissions caused by selective logging is part of the forest logging
sustainability effort that aims to manage the operation, thus helping in the carbon emission
reduction strategy. However, selective logging has both good and negative consequences
on the release of carbon. The decrease in forest cover may result in a short-term increase
in carbon emissions and a decrease in the capacity of carbon sinks. However, judicious
logging may also boost the forest’s carbon supply in the long term to encourage natural
regeneration. Quantifying AGB and carbon stock from ground inventories at some stages
can be challenging due to multiple factors such as operational cost, terrain conditions
(especially in dense forest areas), seasonal variations, manpower, and site accessibility [11].
Nevertheless, the integration of ground investigation and remote sensing techniques has
been utilized widely to provide accurate forest parameters for quantifying carbon stock
and emissions [3]. To ensure that the assessment is robust, reliable, and practical, the
ground sampling technique is combined with the remote sensing approach to overcome
the limitations of using ground-based assessments alone [7,12].

Over the years, high-resolution and high-accuracy data have often been used in forest
carbon-related studies due to their advance in sensors and capturing technologies. Digital
aerial photos from unmanned aerial vehicles (UAV), light detection and ranging (LiDAR),
and airborne multispectral and hyperspectral images are highly utilized in many sectors
of forestry fields [13]. However, LiDAR data, although accurate and effective, is often
challenging to obtain due to its high cost. Alternatively, UAVs have been found to provide a
more cost-effective option and promising results at an affordable cost [14,15] and are widely
utilized in forest research [12,16]. Research on post-harvesting logging impact on a variety
of forest landscapes using a machine learning and automation approach to UAV data was
conducted in several areas around the world [17–19]. In Malaysia, researchers utilized
remote sensing—UAV based to estimate forest parameters and logging indicators for
selective logging impacts, such as identifying left stump, logging gaps, and transportation
infrastructures such as roads and skid trails [16,20,21].

Whereas many studies have investigated the carbon emission impact of selective
logging in tropical forests, only a few studies have focused on using remote sensing to
assess this impact. This study aims to utilize remote sensing approaches to assess carbon
emissions from selectively logged forests in the production forests of Malaysia. For this,
we incorporate automation and machine learning techniques and utilize UAVs and high
spatial-resolution imagery. To investigate selective logging’s impact on AGB and carbon
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stock, it is essential to measure the forest parameters and logging indicators associated with
this process. Many researchers have measured the forest parameters and logging indicators
via ground inventories in the past [8,22,23]. However, in dense production forests, such
as the ones in Malaysia, the integration of both ground and remote sensing approaches is
required to enhance the measurement process in terms of time and cost [7]. To the best of
our knowledge, this is one of the first studies that extracts and considers all logging impact
indicators such as stump height, stump diameter, cross-sectional area, timber volume,
logging gaps, road, skid trails, and incidental damage resulting from the logging process
in model development, whereas the previous studies in the literature only consider a
few of these parameters when developing the model. Moreover, this study attempted to
model emissions based on their overall impact instead of focusing on estimating emissions
individually.

2. Materials and Methods
2.1. Study Area

The study area was conducted at Ulu Jelai Forest Reserve (UJFR), a production forest
located in Lipis District, Pahang, Malaysia (Figure 1). The logging operation in UJFR is
subjected to the SFM logging policy. The logging activities in this area are supervised by a
specific section of the Pahang Forestry Department and the Malaysia Timber Certification
Council (MTCC). The whole of the investigated area was in the production forest, and
active logging included compartments 124, 159, and 160, which experienced a second
cycle of logging operations with approximately 25–30 years cycle intervals. The total area
of the compartment was 83 ha, and the flying area of the ground sampling was 48 ha.
UJFR experiences a humid climate, the average annual precipitation ranges from 1500 to
2000 mm, and the average surface temperature ranges from 24 to 34 ◦C [24]. The terrain
conditions were hilly, and the terrain landscape of this study area varied from 60 m to
800 m above the mean sea level. The general species of forest trees in the study area were
lowland Dipterocarp Forests, with Meranti (Shorea spp.) and Keruing (Dipterocarpus spp.)
as the dominant species. The average height of tall evergreen trees was between 30 m and
50 m height.
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2.2. Data Acquisition

This study involved two sources of data collection: (i) Ground data and (ii) Remote
sensing data.

2.2.1. Ground Data Acquisition

Selective logging data were measured on the ground at the study site, UJFR, in the
first phase of data collection from 19 August 2019 to 23 August 2019. The purpose of this
process was to obtain and make an inventory of selective logging impact parameters that
were available on the site. During the data collection process, the diameter tape was used
to measure selective logging parameters such as the diameter of the stump, length of the
log, height of the stump and buttress, logging infrastructures, and logging damage from
fallen trees. Global navigation satellite system (GNSS) (Trimble Geo 7X) equipment was
used to record the specific location of the stump (X, Y, Z coordinates). Northing and easting
requirements at the time of establishing a fix and the GNSS estimation of the location of
the middle of the tree-stump dimensions were accurate to one centimeter. The diameter
of the tree stump was calculated by averaging the two cross-sectional diameters, which
were measured using a measuring tape. The field data were recorded using a field data
sheet based on the field data standard operation procedure (SOP) adopted by [10], Forest
Research Institute Malaysia (FRIM), and the Lipis Forestry Department. Additionally, some
of the details of logging attributes (branches and length of log section) were obtained
through computation after data collection based on inventory data from the site. Data
collection and measurements focused on left stumps on the site and the environmental
damage induced by the logging process to estimate carbon loss following selective logging.
There were 21 sampling plots set up, with 21 stumps left on the site after the timber was
removed. In this investigation, the stumps were chosen at random from the middle of the
three compartments, including compartments 124, 159, and 160.

The total number of stumps selected in this study adequately covered the major
tree species of the forest sites (at least 10 dipterocarps species) [7]. These stumps were
tagged by a logging contractor during the timber harvesting process before sampling and
measuring. The location of the stumps was determined using GNSS equipment with a
precision of ±1 m. The sample stumps were chosen based on the visibility of the stump,
the condition of the stump and timber tree, the topography of the forest landscape, and
the area’s accessibility. Because most of the logs had been removed before data collection
was conducted, the stump and crown of each falling tree were discovered and validated by
calculating the angle of the tree fall, species, and the acceptable distance from the stump.
This assessment was conducted on-site based on the left log section and branches that were
visible to avoid bias and incorrect stump and felled tree selection. The selected incidental
trees or felling damage were measured for a tree with a DBH ≥ 10 cm, as recommended
by [4].

2.2.2. Remote Sensing Data Acquisition

Two main sources of remote sensing data were acquired in this study using aerial and
space sensors, namely UAV data and satellite data. Together, these data sets provide a
high-resolution aerial and space view of the research site.

Most of the selective logging parameters that were required in this study were derived
from UAV processing. A digital aerial photograph (DAP) extracted from a UAV was flown
above the study site and involved the middle part of compartments 124, 159, and 160
on 19 August 2019. The UAV sensor and its system were successfully launched from the
nearby open space in the forest area and flown over the study area using a DJI Phantom 3
Professional multirotor and was controlled in a semi-automatic mode using Drone Deploy
software operated from an Apple iPad Mini from the ground. The flying altitude of the
Drone was adjusted from 90 m to 172 m during the flying operation. The study scene was
captured with an output of 0.60 m, high spatial resolution with 75% front lap and 85% side
lap recorded in 252 raw images. Two satellite images from Sentinel-2 and Planetscope were
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used in this study as supplemental data to complement the data needed to construct the
variable of selective logging to model carbon emissions in the UJFR and give thorough
coverage over the research area. The Sentinel-2 image from the year 2018, with a date of
3 June 2018, was used to represent the area before logging, whereas Planetscope imagery
from the year 2019, with a date of 18 May 2019, was used to represent the area after the
selective logging activities. Planetscope imagery had a 4 m spatial resolution and four
spectral bands, including blue, green, red, and near-infrared (NIR) [25]. Sentinel-2 offered
13 spectral bands at 10 m to 60 m spatial resolution [26]. Only four spectral bands (blue,
green, red, and NIR) were employed from the Sentinel-2 image. Data from PlanetScope
are an excellent resource for monitoring vegetation. In this study, the Planetscope imagery
was resampled to a 10 m resolution following a Sentinel-2 resolution of 10 m to extract the
possible variables. Both of these satellite data were also atmospherically and radiometrically
corrected in the pre-processing stage.

2.3. General Methodology

The workflow of the methodology for this study is divided into four stages: data
collection, pre-processing, data processing, and analysis and modeling (see Figure 2). The
data were acquired from two sources: ground and remote sensing data. At the data
processing stage, the variables of carbon modeling were generated via a remote sensing
approach and proceeded with the analysis stage. The analysis stage involved the modeling
process and validation to quantify the total carbon emissions. Figure 2 below illustrates the
overall methodology adopted in this study.
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2.4. Quantifying Carbon Emissions from Ground Data

The total carbon emissions from the impact of the selective logging operation were
quantified based on the logging parameter that appeared during and after the logging
process. A common selective logging impact was identified through the logging indicators
appearance, such as the left stumps from timber harvesting, logging infrastructures (haul
roads, skid trails, and log yards), and the incidental damage of nearby trees associated
with felling timber trees. To quantify carbon emissions from the overall impact of selective
logging, the value of emissions from the logging parameter emission sources should be
assessed in the first place, followed by summing all the emissions from all sources [27]. The
total emissions from the overall impact of selective logging can be formulated through the
following Equation (1).

Emission from selective logging = LE + LD + LI (1)

LE = logging emission from extracted timber
LD = logging damage from logging process (logging gaps, yard, tree felled)
LI = logging emission from infrastructure (road, skid trail)

The general process of quantifying carbon emissions from ground observation data
were solely performed using the Winrock carbon calculator developed by Winrock In-
ternational, and the calculation was based on above-ground biomass (AGB)’s allometric
equation developed by [28] and an improved equation from [29]. The carbon emission
was calculated by multiplying the AGB value with the conversion factor based on the
Intergovernmental Panel on Climate Change (IPCC) standard.

AGB = 0.0673× (ρD2H)
0.976

(2)

ρ = wood density (gm/cm2).
This approach focuses on carbon loss from three main sources of the logging impact

(impact from extracted timber, logging gaps, and infrastructure effect). The detailed process
can be assessed through findings from previous research [7].

2.5. Remote Sensing Data Processing
2.5.1. UAV-RGB Digital Aerial Photograph (DAP) Processing

The UAV data were processed with Agisoft Metashape Professional 1.5 software to
create a DAP or orthophoto with a ground sample distance of 0.60 m. In Agisoft Metashape
Professional software, an orthophoto that represented the coverage of the study area was
produced based on the workflow available in the software guidelines [30]. The basics
related to the generation of the orthomosaic involved the procedure of “align photos”,
“build a dense point cloud”, and “build orthomosaics”. A total of 430 million-point clouds
were processed to generate the elevation data, which were used to generate a digital terrain
model (DTM) and digital surface model (DSM). The canopy height model (CHM) was
generated by subtracting the values of DSM and DTM (DSM—DTM). The CHM value is
required to calculate the height of the logging impact indicator. Ground data filtering was
implemented to remove unwanted terrain heights or non-ground data while processing
DTM and DSM. The final output was prepared for the next processing phase to extract the
possible variables required in carbon emission modeling.

2.5.2. Satellite Data Processing

Other potential variables that were required in this study were extracted from satellite
data. Sentinel-2 and Planetscope were used to extract the normalized difference vegetation
index (NDVI) values before and after selective logging took place. NDVI quantifies vegeta-
tion using reflected light in the near-infrared and visible bands and determines the density
and health of vegetation through each pixel in a satellite image. NDVI is commonly used
in vegetation analysis, such as mangroves [31] and forests, and is widely used to predict
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carbon stock and carbon emissions [32,33]. NDVI can derive forest attributes in terms of
their density and can be used as carbon emission variables for predicting carbon emissions
from selective logging activities based on the value of the indices employed from multi-
spectral bands in satellite imagery [34]. NDVI was calculated using red and near-infrared
channels as in Equation (2), with NDVI values varying from −1 to 1. The selected spectral
for the red band is band-3 from Planetscope and band-4 from Sentinel-2 imagery, while the
spectral from the near-infrared band is band-4 from Planetscope and band-8 from Sentinel-2
imagery. Therefore, the NDVI output results were generated from ENVI software. Hence,
the maps produced were exported and created using ArcGIS software.

NDVI = (NIR− Red)/(NIR + Red) (3)

The NDVI values indicate the amount of green vegetation present in the pixel. Higher
NDVI values indicated a higher density of green vegetation. Using the spectral indices tool
in ENVI 5.2 software, NDVI from Sentinel 2018 and Planetscope 2019 were generated. The
NDVI mean values of 21-point locations were extracted and compared from both results.
Maps of the carbon stock’s spatial distribution and index value were also created. The
sample areas were chosen based on the value of the dispersion of the vegetation index. The
vegetation index value corresponding to the 21 GNSS points were tabulated, including
NDVI 2018, and 2019, the mean value, and the difference in NDVI values between the
two years.

2.6. Extraction of Varibales/Metrics

Timber trespass and residuals, forest gaps, and damage from construction logging
infrastructures were important indicators for defining logging and selective logging op-
erations in production forests. Consequently, we attempted to identify these significant
parameters using a remote sensing approach to the UAV data. A different approach was
used to determine other logging parameters, which later were used as possible metrics or
variables for modeling carbon emissions.

2.6.1. Tree Stump Detection and Associated Attributes

The structure of the stumps that were left at the logging sites was uniform in shape [17]
and had an almost circular appearance with a variety of diameters and heights depending
on the age and size of the tree. Theoretically, any round-shaped object visible in the images
could be a potential left stump after harvesting. In most of the post-logging inventories, the
stumps were identified manually, and the area of the stumps was typically computed using
conventional ground measurements, either measuring the longest or shortest distance of
the stump and calculating the area of the corresponding circle [18]. Geographic object-based
image analysis (GEOBIA) based on feature extraction from the segmentation technique was
used for this process to detect stumps since segmentation allowed the detection of the object
based on its segmented shape and structure. In this context, the object-based approach
enables a good delineation between forest attributes from selective logging (stump) and the
extended damage associated with it. Segmentation is the process of partitioning an image
into objects by grouping neighboring pixels with common values. The objects in the image
ideally correspond to real-world features. Effective segmentation ensures that classification
results are more accurate. This study adopted image segmentation based on the Edge
segmentation algorithm with the full Lambda schedule algorithm created by [35]. Edge
segmentation is a feature extraction process and is effective for segmenting edges and clear
object shapes. The merging algorithm (full Lambda schedule) merges adjacent segments
iteratively using a combination of spectral and spatial information, and during the process,
the merging algorithm finds the pairs region and (e.g., i and j), with the merging cost, t is
less than a defined threshold, T. refers to Equations (4) and (5) [36].
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ti,j =

|oi |×|oj |
|oi |+|oj |

× ‖ ui − uj ‖ 2

length
(
∂
(
oi, oj

)) (4)

where oi and oj are the regions i and j of the image, |oi| and |oj| are the areas of regions
i and j, ui, and uj are the average spectral values in the region i and j, ‖ui − uj‖ is the
Euclidean distance between the spectral values of region i and j, while the length, ∂ (oi, oj)
is the length of the common boundary of i and j.

Lambda =

[
Ni × Nj

Ni + Nj

]
× E

L
(5)

where Ni and Nj are the numbers of pixels in the region i and j, respectively, E is the
Euclidean color distance, and L is the length of the common boundary.

This approach was performed using ENVI Software version 5.2 and completed the
refinement with ArcGIS 10.4 (Figure 3), set to appropriate parameters and algorithms
(Table 1).
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Figure 3. The segmented tree stumps, after segmentation (a), the refinement process (b), identified
stumps (c), and part of the identified stumps’ distribution (d).

Table 1. Parameters and algorithms for the segmentation process.

Setting Parameter Algorithm Level Remark

Segment Edge 44 Scale level
Merge Full Lambda Schedule 21 Merge level

Kernel size 3

For the segmentation process, the Edge parameter is useful to identify the edge of
features and sharp borders and was set up to a 44-scale level where it met the criteria
to effectively delineate objects such as stumps and left logs. During this stage, it was
not set for any merging since we wanted to prevent merging with other similar spectral
information, such as elevation and other related attributes, which were not necessary for
this section. The algorithm used for merging settings after segmentation was the full
Lambda schedule with a merging level of approximately 21 after adjusting the output.
The image from the generated CHM was fused with the UAV-RGB imagery red band to
enhance the stump visibility in the image to achieve a more accurate segmentation result.
The merging process combines adjacent segments with similar spectral attributes, and we
used the default merging algorithm, which allows a larger object to merge with textured
areas. The higher value of the merging scale effectively delineates highly textured features.
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Merging combines adjacent segments with similar spectral attributes, and we used the
default merging algorithm, which allows for the merging of a larger object and textured
areas and distinguishes unnecessary segments that might be a great challenge during
the refinement process. The higher value of the merging scale will effectively delineate
highly textured features. The default setting for texture kernel size was set to three as it is
sufficient for small areas with a variance of object texture. Segmented output was saved as
vector-based data and processed in a shape file format with its texture attributes, including
its spatial information. These steps allowed the cleaning and refinement process to be
performed as a vector-based output.

2.6.2. Stump Structures Derivation for Variable Selection

The structure of the visible stumps left on site after selective logging was measured
and can be extracted from the stump’s detection process using a UAV. These variables were
also collected on the ground when ground inventory was taking place, which had been
used to calculate carbon emissions using the Winrock calculator. Each visible stump can
be defined by its structures, such as the height of the stump, diameter, area, and volume
of the stump. CHM data generated from the UAV could be used to derive the height of
stumps that are visible on the image after the stump-detecting process [19]. In this study,
the stump height was extracted from CHM fused with a red band, and the stump height
was computed by taking the mean elevation of all pixels that represented the stumps visible
on the image, and the height value was multiplied by a cross-sectional area of the stump
to estimate the volume. To facilitate the visual part of calculating stump structures, the
stumps were co-rectified with the positions of the stump on the ground and manually
fitted with the detected stump on imagery to best fit its shape and height from CHM. The
area and diameter of the stumps were calculated using calculating geometry in ArcGIS
Software. The results of these stump structures were verified with measurements on the
ground using a simple linear regression model.

2.6.3. Other Logging Indicators—Logging Gaps and Logging Infrastructure

The other logging indicators, in addition to timber tree stumps, were identified to
quantify the effect of selective logging on carbon emissions. For this purpose, a machine
learning classification was used, and variables or metrics of logging indicators were derived
from the output. The convolutional neural networks (CNN) classifier was selected as a
machine learning algorithm to extract logging indicators in UAV images that contributed
to the impact of selective logging on carbon emissions. There were some studies that had
used this technique in the past for object detection analysis but used a computer vision
approach. This procedure required training data sets known as the region of interest (ROI),
which described all features that appeared to be a logging indicator in the image. ROI was
set for tree stumps, logging roads, skid trails, felled logs, bushes, and gaps. By applying
this algorithm to the desired training data sets or ROI, the impact of logging indicators was
automatically classified.

Different parameter iterations of 500, 700, and 1000 were applied for the same study
area (Table 2). This is because the iterative modeling using CNN needs to be tested for its
UAV image as well as the mapping of affected areas such as main roads, skid trails, tree
stumps, and fallen logs. CNN classification was performed using ENVI 5.2 software. In this
study, CNN, with seven layers of hidden nodes and a training rate of 0.2, was considered
sufficient to produce an indicator classification output for the impact generated in the
selected logging area.

Table 2. Training rate and iterations for CNN classification.

1st 2nd 3rd

Training Rate 0.2 0.2 0.2
No of Iterations 500 700 1000
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Using ArcGIS Desktop 10.4, the result classes in vector format from the machine
learning classification were then exported from ENVI 5.2. Hence, all the impact indicator
areas in hectares were calculated from the attribute table in ArcGIS 10.4. At this stage, the
cleaning and refinement process was performed to refine the classified features and delete
the unnecessary classified features with the aid of visual interpretation. The classification
output, which are roads, skid trails, and logging gaps, were identified and used as input
variables in carbon emissions modeling. This automation feature extraction approach
was reliable, and the validation was conducted based on the manual delineation method
through image vectorization. The refinement and cleaning process was then conducted to
carefully distinguish the variables. At the same time, a manual process (image vectorization)
was also adopted to derive the logging attributes, such as roads, skid trail, and logging gap,
to verify the accuracy since this process was considered to replace ground observation for
this data extraction [11].

Logging gaps and logging damage areas are often a major impact of selective logging;
thus, it becomes an essential indicator when assessing carbon loss from selective tree
harvesting. This research implemented manual and automation approaches to map the
damaged parts. Since the forest gaps always vary with terrain conditions in a particular
forest area, gap definition based on the opening forest at a certain elevated ground area
could be considered [37,38]. Automation gaps detection apply to CHM data derived from
dense point cloud produced in UAV imagery by referring to the definition of gaps in the
forest canopy that are similar to [11,20], which define the gaps as damaged area coverage
that extends to an average height ≤ 2 m above the ground [39] and mostly is below a 3 m
height. To obtain this result, a threshold of 3 m was reclassified on CHM data to portray
the defined gaps, and this allows the inclusion of the felled tree crown as a logging gap that
met the gap’s criteria for selective logging impact for this study. The manual delineation of
selective logging gaps was also performed by performing image vectorization on vector
inputs in ArcGIS software then the output could be used as validation.

2.7. Carbon Emission Model Development

Statistical analysis and modeling were performed in R version 4.1.3 using several
statistical packages. Stepwise regression analysis was adopted in this study to evaluate
the best subset of potential independent variable combinations in the dataset. Hence, the
strength of relationships between carbon emission and variables derived from UAV and
satellite data needs to be evaluated since the relationship between forest AGB or carbon
emissions with the predictors generally varies with different forest types and conditions [40].
Stepwise regression is a common method for assessing numerical variables in statistics,
especially when it involves non-parametric data, and is often used for the identification of
variables for carbon modeling [41]. To establish a good model, the nature and suitability
of the potential variable should be considered through the test from stepwise regression.
The stepwise forward selection was performed, and the variables selection was based
on the lowest Akaike information criterion (AIC) and variance inflation factor (VIF). The
forward selection starts with a null model with no predictor and proceeds with adding
one variable at once, allowing the model to be tested by each variable. The Shapiro–Wilks
normality test, also known as the non-parametric normality test, was applied to all potential
variables in this study to observe the normality curve of the variable data distribution with
the hypothesis that the data were non-normal distributed. Thirteen variables were tested
(Table 3), namely, diameter, height, volume, wood density, logging gaps, road, skid, NDVI
for the year 2018, NDVI for the year 2019, mean NDVI, and NDVI difference between
the year 2018 and 2019 with 21 data entries according to ground data as a validation
data. The dependent variable (Y) included carbon emissions derived from the ground,
and the independent variables were potential variables mentioned before as (X) factors.
These parameters or variables are similar to the data details collected during the ground
investigation to make sure the parameter is related and provides acceptable results.
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Table 3. Metrics derived from the UAV and satellite as independent variables.

Metrics Metrics Descriptions

Height Height of stumps
Diameter Diameter of stumps

Area Area of stump based on cross-sectional area coverage
Volume Volume of stump

Gaps Area of logging gaps
A road Area of roads for logging

A skid trail Area of skid trails to transport logs
L road Length of roads for every section

L skid trails Length of skid trail for every section
NDVI 18 The value of INDVI represent by each sample point for the year 2018
NDVI 19 The value of INDVI represent by each sample point for the year 2019

Mean NDVI Mean NDVI value between years 2018 and 2019
Diff NDVI The difference in NDVI values for the years 2018 and 2019

Using this regression model, the output was selected based on theAIC, which considers
the lowest value as a good subset of variables, and its multicollinearity between dependent
and independent variables was also tested based on a VIF greater than five. AIC is the
goodness of fit that analyses the favors’ small residuals error in the model developed but
penalizes the inclusion of predictors, thus, helping in avoiding overfitting, while the VIF
was used to address the issue of multicollinearity between the variables by computing and
monitoring the size of the condition numbers [42].

For modeling carbon emissions, three machine learning algorithms and a linear model
were used to evaluate carbon predictors (independent variables) derived from remote
sensing by referring to the reference carbon emission derived from the ground (dependent
variable—logged carbon emission). Modeling parts involved (1) model development and
(2) model assessment. A total of 21 samples of the data were applied to match the number
of sample data collected on the ground over 48 ha of the flying region from UAV.

The algorithm adopted in this study was the support vector machine (SVM), random
forest (RF), K-nearest neighbors (KNN), and linear regression model (LM), which were
validated using referenced carbon emissions derived from ground data. Leave out one
cross-validation (LOOCV) model performance that was used to evaluate the performance
of the developed model. This validation technique fits with the number of data used since
it is applicable for the small dataset by using all sample data as test data and only one
data left out as validation data. Comparisons between the models to find the best model
that matched the objective of this study were based on their predictive capabilities, most
common indicator root mean square error (RMSE), bias, coefficient of correlation (R2), and
adjusted R2 (Adj-R2) [11,41]. A lower RMSE and bias indicated a better regression model,
and higher R2 values represented a good model as well with a strong correlation. RMSE
and R2 were used as methods to evaluate the measured value and estimate the value [42]
and are expressed as follows:

RMSE =

√
∑n

i = 1 (yi− ŷi)2

n
(6)

R2 = 1− ∑n
i = 1(yi− ŷi)2

∑n
i = 1(y− y) 2 (7)

where yi is the observed value and ŷi is the predicted value for the ith compound, respec-
tively; n is the number of observations in the training sets and y is the observed mean
value [12].
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3. Results
3.1. Stumps Detection and Its Attributes

The segmentation result for feature extraction based on the edge algorithm with a full
Lambda schedule algorithm expresses a raw output (Figure 3a), as the algorithm detects
and segments the possible edge of the boundary for all objects detected on the CHM-fused
red band image. Thus, a cleaning and refinement process was needed to reclassify the
possible stumps (Figure 3b,c), and the format of data representation was converted to point-
vector-based to display the distribution of the overall stumps that had been detected by the
algorithm (Figure 3d). The total stumps detected were 473, with 21 of them co-registered
with 21 stumps from ground sampling.

3.2. Other Selective Logging Impact Indicators (Roads, Skid Trails, and Logging Gaps)

To assess the accuracy, the number of stumps detected was evaluated based on the
omission and commission errors which identified the number of stumps that matched
with the stumps measured on the ground across all three logging compartments (Table 4).
Overall, 479 stumps were detected across the 48 ha surveyed area with an accuracy of
69.74%. The omission and commission errors reported at compartment 124 were 22.22%
and 42.86%, 40.00%, and 66.67% reported for compartment 159, and 28.57% and 40.00%
reported for compartment 160. When validating with the field data, it was found that
15 out of 21 ground sampling were detected by this algorithm. This result is considered
acceptable since the data captured at a moderate flying altitude with the condition of the
stumps on the ground was not well presented in the image due to the stump’s conditions
and canopy coverage.

A ground–automated validation was conducted using simple linear regression to
assess the accuracy of the remote sensing technique in extracting forest logging attributes.
The findings of the result are satisfied with an overall value of the coefficient of correlation
(R2) as an acceptance indicator shown above 0.5 (Figure 4). This shows that the accuracy of
the process is from moderate to good, where it is considered acceptable based on the score
of the R2. The height of the stump was able to be detected with moderate accuracy, and it is
considered acceptable for this study considering that this research was intended to utilize
low-cost data, and most of the stumps were formed by their buttress with a height of more
than 1 m.
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3.3. Other Selective Logging Impact Indicators (Roads, Skid Trails, and Logging Gaps)

For the CNN classification, nine regions of interest were selected over the UAV imagery.
The total polygons and pixels used were a total of 152 polygons and 38,544 pixels for the
training data, as shown in Table 4. Nine regions of interest comprised stumps, roads, skid
trails, fell logs, felling trunks, forests, cars, dead trees, and no pixels. The fill, orien, and
space parameters remained the default value. In this study, CNN with one layer of hidden
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nodes failed to show the output of the classification; therefore, CNN with seven hidden
nodes and iterations of 500 were selected to perform a CNN classification (Figure 5). Three
types of iterations have been compared to the performance of each CNN classification
method, iterations 500, iterations 700, and iterations 1000. Under all three CNN iterations,
iterations of 500 shows the best performance with an overall accuracy of 78.564% and a
Kappa Coefficient of 0.6977.

Table 4. Parameters used in CNN classification.

ROI Name Pixels Polygons Fill Orien Space

Stumps 1105 24 Solid 45 0.10
Road 38.926 20 Solid 45 0.10

Skid Trail 10,440 15 Solid 45 0.10
Fell Log 2846 46 Solid 45 0.10

Felling Trunk 2180 18 Solid 45 0.10
Forest 13,938 16 Solid 45 0.10

Car 511 3 Solid 45 0.10
Dead Trees 597 8 Solid 45 0.10

No Pixel 6888 2 Solid 45 0.10

Total 38,544 152

Other selective logging indicators that were identified to be evaluated as carbon
model variable parameters were the logging infrastructure (logging roads, skid trails),
and damaging impacts included logging gaps and a temporary log yard. These gaps are
considered a wide gap since the development of the log yard leaves out a huge opening of
forest area. Through image classification and threshold re-classification, the variables can
be identified and presented in area and length (Figure 5). The total length of the logging
roads was 2391.514 m, with 2.349 ha identified. The skid trail was classified as 2680.875 m in
total length, and the area was calculated to be 1.553 ha. The total area of logging gaps that
were considered damaged impact from the logging, including the log yard, was 7.44 ha.
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NDVI values for the study area were extracted from two satellite images before and
after the logging operations took place. The indices values were derived from the NDVI
methods using the Sentinel year 2018 and Planetscope year 2019 over the Ulu Jelai forest
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reserved area. The NDVI resulted from Sentinel 2018 images ranging from 0.51 to 0.71. By
looking at the results in 2018, nearly all the study regions were still covered in vegetation.
This is due to the imagery captured before the selective logging activities, dated 3 June 2018.
While the Planetscope image was acquired in 2019 after the selective logging operations
performed in December 2018, NDVI values are significantly lower than the NDVI value
from the 2018 image, which has a minimum value of 0.136 and a maximum value of 0.969.
The NDVI value distribution of both image displays is shown in Figure 6 The values were
extracted from the 21 plots. The difference was then calculated to represent the changes in
forest density to be used as potential forest parameters in carbon emission modeling. The
average value of NDVI for both years 2018 and 2019 were 0.637 and 0.315, respectively.

Remote Sens. 2023, 15, x FOR PEER REVIEW 15 of 22 
 

 

 
Figure 6. NDVI map between the years 2018 and 2019. 

3.3. Carbon Emission from Selective Logging’s Impact 
From the process, the area of the logging gap, area, and length of the logging roads 

was the best potential dependent variables which are stated in Table 3. Other derived 
variables, as mentioned in Table 3 from the previous process, were found to be insignifi-
cant after being screened by the variable selection process and were omitted. The potential 
selected variables then proceeded to model carbon emission. Four models were success-
fully developed, and the results were plotted to show the distributions of variables be-
tween the observed and predicted carbon emissions (Figure 7). The results of selective 
logging carbon emission estimation using SVM, RF, KNN, and LM models based on UAV 
and satellite metrics are tabulated in Table 5. For non-parametric models with machine 
learning approaches, the highest goodness of fit was found to be the SVM model with an 
RMSE of 21.10%, a bias of −0.23%, and adj-R2 equal to 0.8, followed by the KNN model 
(RMSE = 24.63%, bias = −9.29, Adj-R2 = 0.75) and RF model (RMSE = 26.93%, bias = −0.20, 
Adj-R2 = 0.66). For the parametric model, the linear model reveals an RMSE value of 
22.14% with 0.72 bias, and Adj-R2 is 0.75, which also shows a reliable result. These findings 
indicate that the best model that can estimate carbon emission from selective logging’s 
impact is the SVM model. The independent variables that had been identified before 
showed a strong relationship between observed and predicted carbon emissions accord-
ing to their R2 value. Based on the best model, SVM, the total predicted carbon emission 
after selective logging operations in the Ulu Jelai Forest Reserve, Pahang, Malaysia, was 
1102.86 Mg C per hectare which considered the emissions from the overall impact of se-
lective logging, such as tree extraction, and damage from the logging roads, skid trails, 
and logging gaps. 

Figure 6. NDVI map between the years 2018 and 2019.

3.4. Carbon Emission from Selective Logging’s Impact

From the process, the area of the logging gap, area, and length of the logging roads
was the best potential dependent variables which are stated in Table 3. Other derived
variables, as mentioned in Table 3 from the previous process, were found to be insignificant
after being screened by the variable selection process and were omitted. The potential
selected variables then proceeded to model carbon emission. Four models were successfully
developed, and the results were plotted to show the distributions of variables between the
observed and predicted carbon emissions (Figure 7). The results of selective logging carbon
emission estimation using SVM, RF, KNN, and LM models based on UAV and satellite met-
rics are tabulated in Table 5. For non-parametric models with machine learning approaches,
the highest goodness of fit was found to be the SVM model with an RMSE of 21.10%, a
bias of −0.23%, and adj-R2 equal to 0.8, followed by the KNN model (RMSE = 24.63%,
bias = −9.29, Adj-R2 = 0.75) and RF model (RMSE = 26.93%, bias = −0.20, Adj-R2 = 0.66).
For the parametric model, the linear model reveals an RMSE value of 22.14% with 0.72 bias,
and Adj-R2 is 0.75, which also shows a reliable result. These findings indicate that the best
model that can estimate carbon emission from selective logging’s impact is the SVM model.
The independent variables that had been identified before showed a strong relationship
between observed and predicted carbon emissions according to their R2 value. Based on
the best model, SVM, the total predicted carbon emission after selective logging operations
in the Ulu Jelai Forest Reserve, Pahang, Malaysia, was 1102.86 Mg C per hectare which con-
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sidered the emissions from the overall impact of selective logging, such as tree extraction,
and damage from the logging roads, skid trails, and logging gaps.
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Table 5. Training and validation results of the carbon emission model.

Carbon Emission
Model

Training Dataset Validation Dataset

RMSE (%) Bias (%) Adj-R2 RMSE (%) Bias (%) Adj-R2

SVM 14.96 −0.04 0.90 21.10 −0.23 0.80
RF 27.02 0.28 0.65 26.93 −0.20 0.66

KNN 24.63 9.29 0.76 24.63 9.29 0.76
LM 18.4 0.0 0.83 22.14 0.72 0.75

4. Discussion

The capability of remotely sensed data to identify forest selective logging indicators
such as stumps attributes, damage from logging impacts, and damage from infrastructure
construction should be taken into consideration to achieve a satisfactory remote sensing
and object-based approach for modeling carbon emissions. Using segmentation methods
as part of GEOBIA with a full lambda schedule algorithm to identify stumps as a potential
variable is considered successful since it can successfully detect stumps that vary from
0.5 m to 1.5 m in diameter size with a moderate accuracy of approximately 70%. There
are limited numbers of research intended to detect the stumps’ post-selective logging,
especially post-selective logging; hence, a limited comparison could be made.

Several studies involved applying automation techniques for stump detection but
focused on a clear-cut forest; therefore, the accuracy and approach might differ from ours.
A different segmentation approach by [21] in a similar study area used the integration of a
multiresolution segmentation algorithm and template matching. The reported moderate
accuracy included 70% of stumps being detected and 80% accuracy for image classification.
This range of accuracy (70–80%) is considered common in this kind of study event with
different approaches applied to UAV imagery, such as using segmentation integrated
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with machine learning classifications in automatically detecting stumps after logging as
applied by [17] and since the studies focused on clear cut tree harvesting, which is more
clearly visible on UAV images, the stump with the smallest diameter was easily detected
with higher accuracy. Ref. [18] generated approximately 77.3% accuracy when detecting
loblolly pine stumps using a small UAV with an image pattern recognition algorithm. The
accuracy result obtained from our study was comparable with the findings from [20,21],
with omission errors of 22.22% and commission errors ranging from 40.00% to 60.00%,
which is probably due to the use of a similar study site and an almost similar approach.
Nevertheless, both the omission and the commission error obtained by [18] were slightly
lower than those found in our study, which ranged from 16.30% to 20.4% and 12.8% to
79.50%, respectively, probably due to a different segmentation algorithm, the sensor used,
and the nature of the study area. Meanwhile, the study from [17] resulted in the same
range of omission errors (20.00% to 32.1%); however, the commission error is slightly lower,
as well as the percentage of accuracy ranging from 26.00% to 34.7%. The variation in this
omission and commission error might be due to the severity of the discoloration of the
stump and its visibility since the image was taken at a higher altitude, and some objects
might be wrongly identified using this segmentation algorithm which is of a similar nature
in the shape of other logging residues with the tree stumps.

Common ground methods to assess the extracted carbon when the timber tree fell
require the forester to analyze the condition of the stumps and their attributes. As an
alternative, automation methods using UAV data could be utilized to identify the stumps
in the first place. As used in earlier research relating to stump detection, the area and
volume could be approximated from information such as the height and diameter of the
stumps [17,18]. By detecting the stumps, the measurement of their structures can be esti-
mated. With a promising correspondence volume of the stump and log segments with R2

of 0.70 to those measured in the field, compared to ours (0.610) and which suggested the
possibility of the obtained good measurements of stump attributes, Ref. [19] estimated the
volume of the stumps and logged debris and its cross-sectional area using the convolutional
neural network (CNN) as an automated object detection method. According to the auto-
matic method used in this work, the average diameter and height of the detected stumps
were relatively similar to measurements taken from the ground, with an R2 correlation
value ranging from 0.5 to 0.8.

The process of the imagery-based automatic detection method requires minimal time
spent on the ground and less fieldwork inventory. The capability of UAVs to collect massive
data with minimal time spent could be a good help in UAV imagery estimates for larger
study scales of post-logging. An automated algorithm such as remote sensing segmentation
could offer promising accuracy and effectively detect stumps with a range of precision
accuracy from 70% to 80% [19], and the technique could also play an important role
depending on the data image visibility. To improve these results, it is necessary to obtain
the imagery at a lower altitude with fewer obstacles and implement advanced automatic
algorithms such as CNN. In this study, the detection was performed at a selective logging
area with a slightly lower accuracy but still within the acceptable range. This is due to the
dense forest canopy cover; hence, the limited visibility of the stump’s appearance and the
UAV image was taken six months after the logging activities were conducted.

To assess other selective logging impact indicators, machine learning classification is
also a reliable option. With CNN classification adopted using ENVI software, the attribute
of selective logging could be mapped for a general overview, and then further analysis
would be needed to enhance the main indicator, such as logging gaps, roads, and skid
trails. Ref. [20] evaluated two machine learning approaches, the convolutional neural
network (ANN) and conventional-based classification, to map selective logging in the Ulu
Jelai Forest Reserve. Their findings found that neural network classifications gave the
best accuracy, with an overall accuracy of 78.56% compared to the conventional-based
classification. Their findings found that SVM provided the best accuracy, with an overall
accuracy of 87.40% compared to the neural network-based (CNN) approach adopted in
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this study (78.56%). Based on previous studies [20,43,44], machine learning classification is
comparable in accuracy, and this slight difference may be due to the number of iterations
and parameters used for performing the classification that is suitable for forest and land
classification. The details of the skid trails and logging gaps were important, and this
study discovered the potential digital aerial photo derived by UAV to delineate the said
parameters. The automation of roads, skid trails, and logging gaps was validated by
the manual delineation technique and image vectorization from UAV imagery and was
compared to the measurement made on the ground. The previous study applied on-screen
digitization comparable to ours and found it acceptable with good precision, as found
by [11,27]. This study’s results reported 2391.514 m and 2680.874 m haul roads and skid
trails, respectively. Another study, by [45], discovered that haul roads and skid trails from
this delineation technique resulted in 71 km and 657.2 km, respectively. Due to the extent
of the study region, this is distinct in terms of length, which shows the efficacy of the
applied approaches.

There are limited studies that specifically investigate modeling selective logging’s
carbon impact based on remote sensing data; consequently, the number of studies that can
be compared to the findings of this study, especially in Malaysia, is limited. Hence, the
analysis of findings referred to conventional selective logging impact in another region
of tropical forest and AGB and carbon modeling from individual trees using similar ap-
proaches. On ground estimation, the carbon impact from selective logging is more likely
to be influenced by the damage from selective logging and the construction of logging
infrastructures. Undoubtedly, during the tree harvesting process, many trees are extracted
for construction and leave massive logging gaps that affect the unnecessary carbon loss.
Thus, for modeling carbon using logging variables derived from remote sensing-UAV
data, logging damage-related variables seem to have a big influence by analyzing the
findings from the variable selection procedure. Logging roads and logging gaps become
the main influenced variables that contributed to the loss of carbon in the selective log-
ging compartment for this study. This is supported by [27], which found tree extraction,
residual damage, logging infrastructures, the construction of roads and skid trail, and
logging damage such as logging gaps and log yards to contribute to 59% of AGB from the
selective logging practice in their study area. Ref. [3] conducted similar studies to study the
changes in AGB before and after selective logging using digital aerial imagery from UAVs,
which focused on felling trees and found that instead of felled trees, residual damage and
logging infrastructure also played an important role in emitting logging-sourced carbon.
The study from [45] provides comparable results with our study, only that their study
was conducted by utilizing airborne LiDAR data over the Borneo’s Forest area. Logging
gaps were automatically classified in detail based on the average elevation height with
the threshold below 3 m. This allowed the inclusion of tree crowns to be defined as gaps.
Ref. [11] decided that the forest gaps were in the range of 0 to 3 m in height, and the gap
should be 20 m2 in area. The total area of logging gaps from this study is 7.44 ha, including
all canopy gaps and the log yard. In our study, we did not separate temporary log yards
from other logging indicators since the construction of the log yards was fewer, and the
nature of the impact was the same as logging gaps from the extracted tree.

Before proceeding with the models, it is important to evaluate the logging parameters
that are most highly correlated to the value from references to carbon emission. The analysis
involved all potential predictor variables extracted from the remote sensing procedure
based on the AIC and VIF value produced from stepwise regression analysis as performed
in several types of research such as [42,46], Many studies found that machine learning
techniques, especially in estimating carbon emissions for tropical forest trees, had the
performance accuracy of RMSE in a range of 15% to 20% [11,42] with an average R2 value
below 0.8, which shows a decent result of the machine learning technique. The findings
from this study produce a slightly higher RMSE value, with most of the models showing a
range from 20% to 30%, but the range of R2 was almost similar, and bias was also acceptable
and comparable. Our model has a limited number of observations and covers a smaller
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research area due to the constraint of data collection over production forests. Among
several machine learning models, RF and SVM are commonly used and produce good
accuracy in modeling AGB and carbon [40], and RF was found to be the best model [40,46].
The overall accuracy of our approach, starting from the identification of suitable variables
or predictors which represented the selective logging indicator, might be due to the period
of data taken from the actual date of logging, the altitude of the flying height, and sensor
types that are not as precise as the one used in LiDAR and the forest conditions that
limit the number of samples to be taken. Nevertheless, the overall result is reliable even
though, in some parts, the accuracy was slightly lower than in other similar research. In
terms of deriving the logging attributes which involved the information of the terrain
heights, integration with other sources of more accurate elevation data such as DTM or
DSM was highly recommended, such as integrating with the terrain elevation derived from
LIDAR [47], terrestrial laser scanner (TLS) or using elevation data from other methods
such as leveling and geodetic measurement as provided by the related agency such as
The Department of Survey and Mapping, Malaysia. In addition to that, it is suggested to
increase the number of observations on the ground as a reference and utilize data using the
most accurate devices alongside looking forward to automation techniques that are more
advanced and sophisticated, such as deep learning classification, e.g., computer vision
algorithms such as the regional-based convolutional neural network, (R-CNN), faster R-
CNN, etc. Certainly, this technique should be evaluated since it is hard to be applied to
complicated logging forest regions such as this study area. As for modeling, a wider study
area must be considered making the model more reliable and applicable in other regions.
The evaluation of numbers of different machine learning models, such as linear-based
learners, kernel-based models, and tree-based models, can also have potential. Throughout
the study analysis, remote sensing was found to be a valuable and dependable data source,
and analysis techniques were agreed upon by most scientific researchers who actively
participated in selective logging impact analysis [3,48,49].

5. Conclusions

The analysis from this study demonstrates that metrics derived from digital aerial
photography (from UAVs)—to represent selective logging indicators—can be used to
develop cost-effective carbon impact from the logging activities of production forests. Low-
cost UAVs and multispectral satellite imagery offer moderate to good accuracy and are
considered to be a reliable and valid source of data, considering the limitation of the sensors,
location, terrain landscape, and topographic condition. Assessing carbon emissions from
selective logging practices in commercial logging compartments in production forests
in Malaysia is significant since Malaysia depends on the timber industry to generate its
gross national product (GNP). Unmanaged logging that results in significant carbon loss
will affect the 12th Malaysia Plan towards the 2030 agenda for sustainable development,
which was listed in Malaysia’s pledges to sustainable development goals (SDG) to combat
climate change. This is in line with the UN’s SDGs goal 15, which is to protect, restore, and
promote the sustainable use of terrestrial ecosystems, sustainably manage forests to combat
desertification, and halt and reverse land degradation and halt biodiversity loss. Adopting
our proposed approach to a larger area could aim in the development of a monitoring tool
to quantify the effect of selective logging in the production of forest carbon stocks at a
national and regional scale, therefore, pushing toward developing and achieving SDG.
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