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Abstract: Remote sensing is a long-distance measuring technology that obtains data about a phe-
nomenon or an object. Remote sensing technology plays a crucial role in several domains, such as
weather forecasts, resource surveys, disaster evaluation and environment protection. The application
of remote-sensing images (RSIs) is extensive in some specific domains, such as national security and
business secrets. Simple multimedia distribution techniques and the development of the Internet
make the content security of RSIs a significant problem for both engineers and scientists. In this
background, RSI classification using deep learning (DL) models becomes essential. Therefore, the
current research article develops a block-scrambling-based encryption with privacy preserving op-
timal deep-learning-driven classification (BSBE-PPODLC) technique for the classification of RSIs.
The presented BSBE-PPODLC technique follows a two-stage process, i.e., image encryption and
classification. Initially, the RSI encryption process takes place based on a BSBE approach. In the
second stage, the image classification process is performed, and it encompasses multiple phases, such
as densely connected network (DenseNet) feature extraction, extreme gradient boosting (XGBoost)
classifier and artificial gorilla troops optimizer (AGTO)-based hyperparameter tuning. The proposed
BSBE-PPODLC technique was simulated using the RSI dataset, and the outcomes were assessed under
different aspects. The outcomes confirmed that the presented BSBE-PPODLC approach accomplished
improved performance compared to the existing models.

Keywords: remote-sensing images; image encryption; deep learning; privacy-preserving; hyperpa-
rameter tuning; security

1. Introduction

Remote-sensing images (RSIs) have become significant carriers of geospatial informa-
tion. Their military and economic value are important and serve a crucial role in various
domains, such as reconnaissance, surveying and mapping, monitoring and navigation [1].
Though the open network environment and digital storage technique help in realizing rapid
communication and effective sharing of RSIs, it brings new difficulties in terms of security
for the image datasets. Recently, ownership violations, data leakage and illegal tampering
against RSIs have been repetitively prohibited [2,3]. Cloud storage is a cost-effective service
that provides huge storage space and provides a lot of new opportunities for huge RSIs.
Owing to the openness of Cloud technology, the information that is stored in the Cloud is at
risk of malicious damage or deletion by the Cloud service providers [4]. In this background,
ensuring the safety of RSIs saved in Cloud storage has been a hot research topic in recent
years.

RSIs capture sensitive data, such as military places, oilfields and airports, which
are at the risk of being misused and stolen. Further, when such images are processed
without safety precautions, it eases the extraction process and provides seamless access
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to sensitive data that in turn may be exploited for illegal activities. This scenario suggests
the requirement for developing a reliable privacy approach that ensures the encryption of
large-scale RSIs on the Cloud server without being compromised. Privacy preservation
in RSIs is essential as they frequently contain sensitive data of the individuals and their
properties. This data may be exploited for unauthorized surveillance, theft of identity and
other malicious actions. Moreover, the release of such sensitive data is unethical and illegal
and violates an individual’s right to privacy. Thus, it is essential to protect the individual’s
privacy and their properties in RSIs by executing a few methods such as access control,
data masking and data encryption.

Encryption acts as a potential means of security. If the encoded data are stored in
Clouds, it is simple to tamper with the cipher text, and the encrypted outcomes may
not be restorable [5,6]. To avoid this situation, many backups of secret information are
needed. In [7], the author presented an overview of the privacy-preservation deep learning
(PPDL) method that was implemented to protect the privacy of businesses or individual
users. This work deceptively argues that the PPDL approaches benefitted from public data
analytics. Further, the approaches also thwarted data leakage and maintained the privacy of
delicate data from illegal use and unauthorized access [8,9]. DL is typically utilized to build
prediction methods for speech and text recognition applications and image processing.
Such methods are highly accurate and particularly trained on large datasets [10]. Prediction
techniques learn from the existing available datasets and utilize the knowledge to generate
novel data that were once inaccessible. In several cases, such information even comprises
delicate data that require preservation. Thus, there is a significant challenge existing here,
i.e., to protect the privacy of the data if it is transferred to the public Cloud for analysis
and processing [11,12]. In most cases, personal computers are not capable of processing
huge satellite images. Thus, to extract the insights and valuable knowledge from such huge
RS datasets, there comes a higher demand for the execution of big data analytics utilizing
public Cloud servers [13]. As mentioned earlier, the satellite images may contain delicate
and confidential data, such as military locations, oilfields and airports that can be misused
and stolen. Similarly, if these images are processed without protection, it becomes easy
to derive the delicate data and exploit it for illegal purposes [14,15]. Hence, it is both a
challenging and a rewarding task to explore the possible PPDL approaches to implement
them in the satellite images.

Al-Khasawneh et al. [16] described a novel chaos-related encryption method that
utilizes Gauss-iterated maps, an external secret key, Henon and Logistic. The presented
encryption technique was able to effectively encode a large number of images. If the
number of images increases, though the images are smaller in size, the technology becomes
impractical or inefficient. This study also analyzed the parallel image encryption tech-
nique on a huge number of RSIs in Hadoop. Zhang et al. [17] devised a QAPP method,
i.e., quality-aware and privacy-preserving medical image release technique, which effi-
ciently compiled DCT with differential privacy (DP). To be specific, QAPP had three stages.
Initially, DCT was implemented in all the medical images to gain its cosine coefficients
matrix. Secondly, the original cosine coefficients matrixes were compressed into k*k cosine
coefficients matrixes which retained the core features of all the images. Thirdly, a suitable
Laplace noise was injected into the formed k*k matrixes to attain differential privacy. Then,
the noise-added coefficients were utilized for building the noise-added healthcare images
using inverse DCT.

In [18], a new biometric-related authentication mechanism was modelled utilizing
two servers, such as the untrusted storage server and a crypto-match server. This mecha-
nism used the Paillier cryptosystem, the biometric image cryptosystem and cryptographic
hashing. In the presented cryptosystem, the keystreams were generated from both logistic
maps and Henon. It is possible to compute the control variables of such chaotic maps from
the input biometric images. Abd EL-Latif et al. [19] presented a new encryption system for
a privacy-preserving IoT-related healthcare mechanism in order to protect the privacy of
the patients. Decryption or encryption processes depend on controlled alternate quantum
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walks. The presented cryptosystem method had two stages, such as permutation and sub-
stitution, and both were related to independently computed quantum walks. In the study
conducted earlier [20], the authors used the BC to build a new privacy-preserving remote
data integrity checking technique for IoT information management mechanism without the
inclusion of trusted third parties. This technique used BC, a lifted EC-ElGamal cryptosys-
tem and bilinear pairing to protect the security and data privacy of the IoT mechanisms
and also to support an effective public batch signature verification.

Qin et al. [21] devised a privacy-preserving image retrieval technique related to adap-
tive weighted fusion and DL. At first, the authors derived the high-level semantic features
of the images, low-level feature edge histogram descriptors and the BOW (bag of words).
Then, a pre-filter table was built for the fusion features in order to enhance the search
efficiency by the locality-sensitive hashing (LSH) technique. Both the logistic encryption
method and the KNN technique were utilized in this study to protect the privacy of the
fused images and features, correspondingly. In [22], a privacy-preserving effective and
secure remote user authentication method was proposed to be applied in agricultural WSN.
The presented technique was formally assessed through a probabilistic random-oracle-
model (ROR) to emphasize the robustness of the method. In addition, the technique was
also simulated through the AVISPA tool to exhibit its effectiveness in terms of security.

Yang and Newsam [23] examined the bag-of-visual-words (BOVW) systems for land-
use classifiers from high-resolution overhead images. The authors assumed a typical
non-spatial representation in which the frequency can be utilized for segregation amongst
the analogous classes’ and not the places of quantized image features. The proposed feature
was used to determine how words can be exploited in the text document classifier without
considering their order of presentation. In [24], the authors concentrated entirely on the
existing approaches that manage the RSI scene classifier on restricted labelled instances.
The authors classified literary works under three broad categories, such as algorithm-level,
data-level and model-level. Zhou et al. [25] conducted a systematic review of the presently
established RSIR approaches and benchmarks using over 200 papers. In particular, the
authors grouped the RSIR approaches under different hierarchical models based on label,
modality and image source. Zhu et al. [26] aimed at assisting this work by systematically
examining the DL approaches and their applications across different sensor schemes. The
authors also offered a detailed summary of the DL execution tips and connection to tutorials,
open-source codes and pre-trained approaches that act as great self-contained reference
materials for DL practitioners and individuals who are looking forward to being introduced
to DL.

Numerous automated tools are available in the literature for effective detection and
classification of RSIs. Despite the presence of ML and DL models in the earlier studies,
there is still a need to enhance the classification performance along with security. Due to
the continuous deepening of the models, the number of parameters in DL models increases
too quickly, which results in a model overfitting issue. At the same time, different hyperpa-
rameters exert significant impact on the efficiency of the CNN model. Particularly, a few
hyperparameters, such as epoch count, batch size and learning rate selection are essential to
attain effective outcomes. Since the trial-and-error method for hyperparameter tuning is a
tedious and erroneous process, the metaheuristic algorithms are applied. Therefore, in this
work, the artificial gorilla troops optimizer (AGTO) algorithm is employed for parameter
selection of the DenseNet model. The inclusion of the automated hyperparameter tuning
techniques helps reduce the computation time and improve RSI classification performance.
In addition, the inclusion of the encryption technique results in enhanced security of the
RSIs.

The current research article develops a block-scrambling-based encryption with pri-
vacy preserving optimal deep-learning-driven classification (BSBE-PPODLC) technique for
the classification of RSIs. The presented BSBE-PPODLC technique initially encrypts the
RSI using the BSBE technique, which enables the secure communication of the images in a
wireless medium. During the reception process, both decryption and image classification
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processes occur. In the presented BSBE-PPODLC technique, the image classification process
encompasses three sub-processes, namely, densely connected network (DenseNet) feature
extraction, extreme gradient boosting (XGBoost) classifier and AGTO-based hyperparame-
ter tuning. The proposed BSBE-PPODLC technique was simulated using the RSI dataset,
and the results were assessed under several aspects.

2. The Proposed Model

The current research paper introduces an effective BSBE-PPODLC approach for en-
cryption and classification of the RSIs. The presented BSBE-PPODLC technique initially
encrypts the RSIs using the BSBE technique, which enables the secure communication of
the images in a wireless medium. During the reception process, both decryption and image
classification processes occur. In the presented BSBE-PPODLC technique, the image clas-
sification process encompasses three sub-processes, namely DenseNet feature extraction,
XGBoost classifier and AGTO-based hyperparameter tuning. Figure 1 represents the block
diagram of the proposed BSBE-PPODLC approach.
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2.1. Encryption Using the BSBE Technique

The BSBE technique is employed in this study for secure encryption of the RSIs.
In the BSBE technique, a user may want to securely transmit image I to viewers using
social networking service (SNS) providers [27]. While the consumer does not provide the
confidential key K to the SNS provider, the privacy of the image that was shared under the
control of the users is secured, even if the SNS provider recompresses image I. Thus, the
consumer is assured of the privacy by him/herself. In case of CtE methods, the consumer
is bound to disclose the unencrypted images to recompress them.

In this method, an image with X×Y pixels is primarily separated into non-overlapped
blocks with Bx × By; afterwards, four block-scrambling-based processing stages are exe-
cuted to separate the images. The process to execute the image encryption to generate the
encryption image Ie is provided as follows:
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Step 1: Separate the image into X × Y pixels as blocks and each block with Bx × By
pixels. Then, permute the separated blocks arbitrarily with the help of an arbitrary integer
created by a confidential key K1, L bit per pixel. During this work, the occurrence value K1
has generally been utilized for every color element.

Step 2: Rotate and invert all the blocks arbitrarily by utilizing an arbitrary integer
created by the key K2, whereas K2 has generally been utilized for every colour element as
well.

Step 3: Execute negative–positive alteration for all the blocks by K3, whereas K3 is
generally utilized for every colour element.

During this stage, the transformed pixel value from ith block Bi, p′, is calculated as
given below.

p′ =

{
p (r(i) = 0),
p⊕

(
2L − 1

)
(r(i) = 1).

(1)

Here, r(i) implies an arbitrary binary integer created by K3 and p ∈ Bi signifies the
pixel value of a novel image with L bit per pixel. During this work, the value of the
occurrence probability P(r(i)) = 0.5 is utilized for inverting the bits arbitrarily.

Step 4: Shuffle three color elements from all the blocks by utilizing an integer that is
arbitrarily chosen amongst six integers by key K4.

An instance of the encryption image is
(

Bx = By = 16
)
. During this case, it is concen-

trated on the block-scrambling-based image encrypt for subsequent reasons.

(a) The encrypted image is well-suited for JPEG standards.
(b) The compression efficacy to encrypt the images is almost similar to the original ones

in the JPEG standard.
(c) Robustness against several attacks is established.

2.2. Image Classification Module

During the classification process, the BSBE-PPODLC technique encompasses three
sub-processes, namely DenseNet feature extraction, XGBoost classifier and AGTO-based
hyperparameter tuning. XGBoost is chosen due to the following advantages: high accuracy,
fast training speed, scalability, robustness and flexibility.

2.2.1. Feature Extraction

For the feature extraction process, the DenseNet model is exploited in the current
study [28]. DenseNet was chosen due to its efficiency on a combination of features from
many layers. Further, it also enables better feature representation and reduces the risk
of overfitting. The DenseNet model links every layer with another one in a feedforward
manner, thus generating a dense block of layers. It enables the free movement of the data
and their gradients via the network and enables robust learning of the features. It requires
fewer parameters than the classical CNN, which in turn minimizes the risk of overfitting
and makes it computationally efficient.

DenseNet differs from ResNet in the way how the data are passed. In DenseNet, the
feature map of the output layer is concatenated with the incoming feature maps instead of
adding them. Therefore, the equation is transformed as follows.

xl = Hl([x0 + x1 + . . . + xl−1]) (2)

The same problem has been confronted in the studies conducted on ResNet in which
it is not possible to combine or concatenate the activities of feature maps since they are of
distinct sizes despite. So, it is not practical to either concatenate or add the feature maps
in ResNet. DenseNet is separated into dense blocks. In this regard, the dimension of the
feature map remains unchanged, whereas the number of filters changes between them. The
layer that exists between the dense blocks is termed a transition layer. It can be utilized for
downsampling through 2× 2 pooling, batch normalization and 1× 1 convolutional layers.
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The channel dimension increases at all the layers due to the concatenation of the feature
map; ‘k’ represents the growth rate hyperparameter which maintains the quantity of the
data that is saved in all the layers of the network. When H−1 produces k feature maps,
the generalized formula to determine the number of feature maps using the l-th layer is
demonstrated in the above formula.

A feature map acts as the data or learning data of the network. All the layers have
access to the feature map of the preceding layers due to which it possesses collective
knowledge. All the layers add feature maps or new data to this collective knowledge in
a concrete k feature map of the data. Consequently, DenseNet saves and utilizes the data
from the preceding layers which is not so in the case of conventional ConvNet and ResNet
models.

2.2.2. Hyperparameter Tuning

To adjust the hyperparameter values of the DenseNet method, the AGTO algorithm is
used in this study. The knowledge of the group performances in wild gorillas inspires the
AGTO technique [29]. Initializing, global exploration and local exploitation are three stages
which make up the AGTO, similar to other intelligent approaches.

Initialization Phase

Assume that a D-dimensional space has N gorillas. To identify the position of the ith

gorilla in the universe, it is expressed as Xi = (xi,1, xi,2, . . . xi, D), in which I = 1, 2, . . . N
and is determined as follows:

XN×D = rand(N, D)× (ub− lb) + lb (3)

where rand () lies between 0 and 1. The searching range is defined based on the upper
as well as lower limits, ub and lb, respectively. The matrix X has A arbitrary value in the
range of 0 and 1, and it is assigned to every element of N rows and D columns from the
matrix signified as rand (N, D).

Exploration Phase

GX(t + 1) = (ub− lb)× r2 + lb, r1 < p

(r3− C)× XA(t) + L× Z× X(t), r1 ≥ 0.5

X(t)− L× (L× (X(t)− XB(t)) + r4× (X(t)− XB(t)))r1 < 0.5. (4)

At this point, t implies the iteration time, X(t) signifies the gorilla’s predefined position
vector, and GX(t + 1) refers to the position of the potential searching agent during the
subsequent iteration. Additionally, the arbitrary numbers r1, r2, r3 and r4 imply the number
value between 0 and 1. Two places between the predefined gorillas’ population, XA(t)
and B(t), are chosen arbitrarily; p stands for a fixed value. With the employment of the
problem dimensional as an index, Z indicates the row vector, whereas the element value is
developed arbitrarily in [−C, C]. In addition, C is expressed as follows

C = ( cos (2× r5) + 1)×
(

1− t
Maxiter

)
(5)

At this point, cos (•) implies the cosine function, r5 stands for positive real numbers
between zero and one, and Maxiter implies the highest iteration number. The following
equation is used to determine L.

L = C× l (6)

At this point, l represents an arbitrary value in the range of −1 and 1. Then, all the
probable GX(t + 1) solutions are created because of the exploration, and the fitness value
is related to them. If GX demonstrates X, then it is retained and employed in the place of X.
It can be demonstrated as a condition (GX) < F(X). Here, F refers to the fitness function
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for the problem in question (t). Furthermore, an optimum option that exists at the time is
assumed to be the silverback.

Exploitation Phase

If a novel gorilla troop is generated, the silverback is the leading male which is at
its peak health and strength. It is followed by blackback gorillas as they forage for food.
Certainly, silverbacks tend to age and die, and younger blackbacks from the troops fight
other males and occupy and control the troops. The exploitation step in this AGTO model
follows the silverback gorillas and plays for adult female gorillas. W is projected to control
these moves. Once C in Equation (6) is superior to W, then the silverback primary method
is followed.

GX(t + 1) = L×M× (X(t)− Xsilverback) + X(t) (7)

In this case, a better solution initiated is represented by the X silverback, the predefined
position vector is demonstrated as (t) and L is evaluated using Equation (7). The values of
M are determined as follows.

M =

∑n
i=1 xi(t)

N| xi(t)
N
|2l

 1
2l

(8)

where N signifies the entire individual number, and Xi(t) refers to the vector that illustrates
the position of the gorilla.

GX(t + 1) = Xsilverback− (Xsilverback×Q− X(t)×Q)× A (9)

Q = 2× r6− 1 (10)

A = φ× E, (11)

E =

{
N1, r7 ≥ 0.5
N2, r7 < 0.5

(12)

It can be a pre-determined place as signified by (t) and the influence force, Q, which
is estimated by Equations (9) and (10). An arbitrary value within 0 and 1 is employed for
r6 in Equation (6).

2.2.3. Image Classification

For image classification, the XGBoost model is used. Due to its accurate and fast
performance, XGBoost is regarded as a robust ensemble-learning-based classifier [30].
The ensemble architecture is designed based on various decision tree algorithms. In this
model, the trees are added to the parent model by training to fit into accurate prediction
and to remove the error that results from the preceding trees. In order to overcome the
loss function, the gradient descent optimization technique is utilized. The loss gradient
diminishes as the model becomes trained accurately, and the process is called gradient
boosting. The XGBoost classifier from the Python repository was utilized in this study, in its
initial condition, to check for efficiency. The efficiency of the built-in mechanism is estimated
concerning cross-entropy loss, called log loss. The more accurate the classification, the
lesser the log loss values are.

log loss = y ln (p) + (1− y)ln (1− p) (13)

where p = 1
1+e−x , y indicates the actual label within {0, 1} and p represents the probability

score.
The system efficiency of the inbuilt XGBoost classifiers are examined, and the variation

in the inherent parameter can be performed to minimize the log loss as defined earlier.
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3. Results and Discussion

In this section, the proposed BSBE-PPODLC method was experimentally validated
using the UCM dataset (http://weegee.vision.ucmerced.edu/datasets/landuse.html), ac-
cessed on 14 September 2022. The UCM dataset comprises a set of aerial images of land
use in the UC Merced area. It was developed by researchers at the University of California,
Merced and is frequently utilized as a benchmark dataset to evaluate the performance of
land-use classification tasks. The UCM dataset includes 21 classes of land use, including
agriculture, bare land, buildings, forests, grassland, highways and water bodies. It includes
2100 images, each with a size of 256 × 256 pixels and is divided into training and test
datasets. The images in the dataset were collected using aerial imagery from the National
Agricultural Imagery Program (NAIP). Figure 2 illustrates some of the sample images.
Figure 3 demonstrates the original and the encrypted images.
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Table 1 represents the overall encryption results achieved by the proposed BSBE-
PPODLC model. The experimental outcomes show that the proposed BSBE-PPODLC
method achieved effectual performance under all the images. For example, with the harbor
test image, the BSBE-PPODLC technique gained an MSE of 0.1956, RMSE of 0.4423, PSNR
of 55.22 dB, SSIM of 99.83% and a QI of 99.97%. Meanwhile, with the river test image, the
BSBE-PPODLC technique obtained an MSE of 0.2794, RMSE of 0.5286, PSNR of 53.67 dB,
SSIM of 99.80% and a QI of 99.90%. Eventually, with the runway test image, the BSBE-
PPODLC method reached an MSE of 0.3465, RMSE of 0.5886, PSNR of 52.73 dB, SSIM of
99.80% and a QI of 99.97%.

Table 1. Overall encryption outcomes of the proposed BSBE-PPODLC approach under distinct test
images.

Test-Image MSE RMSE PSNR (dB) SSIM (%) QI (%)

Harbor 0.1956 0.4423 55.22 99.83 99.97

River 0.2794 0.5286 53.67 99.80 99.90

Runway 0.3465 0.5886 52.73 99.80 99.97

Tennis Court 0.2909 0.5394 53.49 99.81 99.91

In Table 2 and Figure 4, the overall MSE analysis outcomes achieved by the proposed
BSBE-PPODLC model and other existing models are given. The outcomes display that the
HBMO-LBG and the QPSO-LBG methods attained a poor performance with maximum
MSE values. Next, the FF-LBG model and the CS-LBG methods reached moderately low
MSE values. Although the SSA-LBG model tried to attain a reasonable MSE value, the
BSBE-PPODLC model exhibited the maximum performance with a minimal MSE of 0.1956
for the Harbor image, 0.2794 for the River image, 0.3465 for the runway image and 0.2909
for the tennis court image.
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Table 2. MSE analysis results of the proposed BSBE-PPODLC method with other methods for distinct
test images.

MSE

Test-Image BSBE-PPODLC SSA-LBG CS-LBG FF-LBG HBMO-LBG QPSO-LBG

Harbor 0.1956 0.2723 0.3302 0.3780 0.4251 0.4907

River 0.2794 0.3601 0.4269 0.4969 0.5779 0.6400

Runway 0.3465 0.4168 0.4909 0.5477 0.5888 0.6496

Tennis Court 0.2909 0.3752 0.4305 0.4836 0.5706 0.6339
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In Table 3 and Figure 5, the overall PSNR study outcomes accomplished by the pro-
posed BSBE-PPODLC approach and other existing methods are portrayed. The outcomes
show that the HBMO-LBG and the QPSO-LBG algorithms achieved a poor performance
with minimal PSNR values. Then, the FF-LBG model and the CS-LBG approaches reached
moderately increased PSNR values. Although the SSA-LBG technique attempted to achieve
a reasonable PSNR value, the proposed BSBE-PPODLC algorithm exhibited improved
results with a maximum PSNR of 55.22 dB in the case of the harbor image, 53.67 dB for the
river image, 0.3465 for the runway image and 0.2909 for the tennis court image.

Table 3. PSNR analysis outcomes of the proposed BSBE-PPODLC method with other methods for
distinct test images.

PSNR (dB)

Test-Image BSBE-PPODLC SSA-LBG CS-LBG FF-LBG HBMO-LBG QPSO-LBG

Harbor 55.22 53.78 52.94 52.36 51.85 51.22

River 53.67 52.57 51.83 51.17 50.51 50.07

Runway 52.73 51.93 51.22 50.75 50.43 50.00

Tennis Court 53.49 52.39 51.79 51.29 50.57 50.11
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In Figure 6, the RSI classification results attained by the proposed BSBE-PPODLC
model are presented in the form of a confusion matrix. The results specify that the proposed
BSBE-PPODLC method effectively identified four classes.

Table 4 and Figure 7 represent the classification performance of the BSBE-PPODLC
model on 80:20 of TR/TS data. The obtained values show that the BSBE-PPODLC algorithm
identified all the class labels on the RSIs. For example, with 80% of the TR database, the
BSBE-PPODLC technique accomplished an average accuy of 99.06%, precn of 98.18%, recal
of 98.09% and an Fscore of 98.10%. Moreover, with 20% of the TS database, the BSBE-
PPODLC method attained an average accuy of 98.12%, precn of 96.26%, recal of 96.43 % and
an Fscore of 96.25%.

Table 5 and Figure 8 show the classification performance accomplished by the pro-
posed BSBE-PPODLC method on 70:30 of TR/TS data. The gained values show that the
BSBE-PPODLC technique identified all the class labels on the RSIs. For example, with 70%
of the TR database, the BSBE-PPODLC method established an average accuy of 98.39%,
precn of 96.90%, recal of 96.77% and an Fscore of 96.77%. Furthermore, with 30% of the TS
database, the BSBE-PPODLC method accomplished an average accuy of 97.50%, precn of
95.18%, recal of 95.08 % and an Fscore of 94.97%.

The TACC and VACC performance outcomes of the BSBE-PPODLC methodology, are
shown in Figure 9. The figure implies that the BSBE-PPODLC technique achieved improved
performance with increased TACC and VACC values. Notably, the BSBE-PPODLC method
reached the maximum TACC outcomes.
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Table 4. Classification outcomes of the proposed BSBE-PPODLC approach on 80:20 TR/TS datasets.

Class Accuy Precn Recal Fscore

Testing Phase (80%)

Harbor 99.06 96.34 100.00 98.14

River 99.06 98.72 97.47 98.09

Runway 98.75 100.00 94.87 97.37

Tennis Court 99.38 97.67 100.00 98.82

Average 99.06 98.18 98.09 98.10
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Table 4. Cont.

Class Accuy Precn Recal Fscore

Testing Phase (20%)

Harbor 96.25 90.91 95.24 93.02

River 97.50 100.00 90.48 95.00

Runway 100.00 100.00 100.00 100.00

Tennis Court 98.75 94.12 100.00 96.97

Average 98.12 96.26 96.43 96.25
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Table 5. Classification results of the proposed BSBE-PPODLC approach on 70:30 on TR/TS datasets.

Class Accuy Precn Recal Fscore

Training Phase (70%)

Harbor 97.86 98.46 92.75 95.52

River 99.29 98.61 98.61 98.61

Runway 97.86 92.00 100.00 95.83

Tennis Court 98.57 98.53 95.71 97.10

Average 98.39 96.90 96.77 96.77
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Table 5. Cont.

Class Accuy Precn Recal Fscore

Testing Phase (30%)

Harbor 98.33 100.00 93.55 96.67

River 96.67 87.50 100.00 93.33

Runway 98.33 96.77 96.77 96.77

Tennis Court 96.67 96.43 90.00 93.10

Average 97.50 95.18 95.08 94.97
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The TLS and VLS performance results of the BSBE-PPODLC techniques are portrayed
in Figure 10. The figure shows that the BSBE-PPODLC method had a better performance
with the least TLS and VLS values. Seemingly, the proposed BSBE-PPODLC method
achieved low VLS outcomes.

Remote Sens. 2023, 15, x FOR PEER REVIEW 15 of 19 
 

 

 
Figure 9. TACC and VACC outcomes of the BSBE-PPODLC approach. 

The TLS and VLS performance results of the BSBE-PPODLC techniques are por-
trayed in Figure 10. The figure shows that the BSBE-PPODLC method had a better perfor-
mance with the least TLS and VLS values. Seemingly, the proposed BSBE-PPODLC 
method achieved low VLS outcomes. 

 
Figure 10. TLS and VLS outcomes of the BSBE-PPODLC approach. 

A clear precision–recall study was conducted upon the proposed BSBE-PPODLC 
method under the test database and the results are shown in Figure 11. The figure shows 

Figure 10. TLS and VLS outcomes of the BSBE-PPODLC approach.

A clear precision–recall study was conducted upon the proposed BSBE-PPODLC
method under the test database and the results are shown in Figure 11. The figure shows
that the proposed BSBE-PPODLC technique achieved enhanced precision–recall values
under several classes.
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A comprehensive ROC study was conducted upon the BSBE-PPODLC technique with
the test database and the results are detailed in Figure 12. The fallouts exhibited from the
BSBE-PPODLC method established its ability in categorizing the test database into different
classes.
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In Table 6 and Figure 13, the RSI classification performance of the BSBE-PPODLC
model and other DL models are portrayed [31,32]. The outcomes show that the ResNet50
and the DenseNet models offered the least classification performance. Next, the VGG16
and the Xception models reached moderately closer performance.

Table 6. Comparative analysis results of the BSBE-PPODLC approach and other systems.

Methods Accuracy Precision Recall F-Score

BSBE-PPODLC 99.06 98.18 98.09 98.10

VGG16 97.46 95.01 96.40 94.77

Xception 97.21 95.12 94.26 92.59

ResNet50 94.51 95.46 93.76 94.94

DenseNet121 94.18 93.82 94.88 94.36

PP-DL Model 98.40 97.20 97.11 96.48

In contrast, the PP-DL method achieved a reasonable performance with an accuy of
98.40%, precn of 97.20%, recal of 97.11% and an Fscore of 96.48%. However, the proposed
BSBE-PPODLC model exhibited its supremacy with an accuy of 99.06%, precn of 98.18%,
recal of 98.09% and an Fscore of 98.10%. These results confirmed the better performance of
the proposed BSBE-PPODLC method over other DL approaches
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4. Conclusions

The current research paper introduced an effective BSBE-PPODLC technique for
encryption and classification of RSIs. The presented BSBE-PPODLC technique initially
encrypts the RSIs using the BSBE technique, which enables secure communication of the
images in a wireless medium. During the receipt process, both decryption and the image
classification processes occur. In the presented BSBE-PPODLC technique, the image clas-
sification process encompassed three sub-processes, namely DenseNet feature extraction,
XGBoost classifier and AGTO-based hyperparameter tuning. The simulation values of the
BSBE-PPODLC approach were tested on the RSI dataset and the outcomes were assessed
under different aspects. The simulation outcomes confirmed that the BSBE-PPODLC tech-
nique reached an improved performance over other models with a maximum accuracy of
99.06%. In future, the RSIs can be integrated into other kinds of data, such as LiDAR (light
detection and ranging) or radar data, to enhance the image classification performance. In
addition, the DL models can also use additional data sources in the classification process.
Moreover, future works can focus on developing methods that make DL models highly
interpretable. This phenomenon would be highly beneficial for applications in which it is
important to understand the reasoning behind the model’s decisions.
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