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Abstract: Achieving coastal and shallow-water bathymetry is essential for understanding the marine
environment and for coastal management. Bathymetric data in shallow sea areas can currently
be obtained using SDB (satellite-derived bathymetry) with multispectral satellites based on depth
inversion models. In situ bathymetric data are crucial for validating empirical models but are
currently limited in remote and unapproachable areas. In this paper, instead of using the measured
water depth data, ICESat-2 (Ice, Cloud, and Land Elevation Satellite-2) ATLO3 bathymetric points at
different acquisition dates and multispectral imagery from Sentinel-2/GeoEye-1 were used to train
and evaluate water depth inversion empirical models in two study regions: Shanhu Island in the
South China Sea, and Heron Island in the Great Barrier Reef (GBR) in Australia. However, different
sediment types also influenced the SDB results. Therefore, three types of sediments (sand, reef, and
coral/algae) were analyzed for Heron Island, and four types of sediments (sand, reef, rubble and
coral/algae) were analyzed for Shanhu Island. The results show that accuracy generally improved
when sediment classification information was considered in both study areas. For Heron Island,
the sand sediments showed the best performance in both models compared to the other sediments,
with mean R? and RMSE values of 0.90 and 1.52 m, respectively, representing a 5.6% improvement
of the latter metric. For Shanhu Island, the rubble sediments showed the best accuracy in both
models, and the average R? and RMSE values were 0.97 and 0.65 m, respectively, indicating an
RMSE improvement of 15.5%. Finally, bathymetric maps were generated in two regions based on the
sediment classification results.

Keywords: bathymetry; ICESat-2; Sentinel-2; sediment type; South China Sea; Heron Island; Great
Barrier Reef

1. Introduction

Shallow waters and coastal areas play significant roles in marine and coastal ecosys-
tems and human communities, especially in an era of rising sea levels due to global
warming [1-3]. Underwater bathymetry is used as an quantitative indicator to define
shallow waters in marine and coastal habitats [4]. Accurate water depth information is a
crucial parameter for marine and coastal applications, such as ocean modeling, navigation
safety, coastal management and environmental protection [5,6]. Traditionally, single-beam
or multibeam echo sounders can produce high-resolution bathymetric data in shallow
water areas. However, it is challenging to acquire such information in regions with com-
plex topography, due to the limited spheres of ship-based platforms [7,8]. In recent years,
airborne LiDAR bathymetry (ALB) systems have been widely used to obtain the above
and underwater topography of coastal areas quickly and accurately [1,8]. However, such
methods cannot be used in remote or sensitive areas that are difficult for aircraft to reach.
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These approaches have some spatial resolution and coverage limitations, have difficulty
obtaining large-scale measurements, and are both costly and time-consuming [9].

In shallow water areas, satellite remote sensing data provide an alternative technology
to conventional shipborne and airborne measurements [10,11]. Satellite-derived bathymetry
(SDB) is emerging as a relatively inexpensive way to realize large-scale bathymetry rapidly
and efficiently, and to support traditional surveys by assessing previously inadequately
surveyed areas [12,13]. In a number of SDB studies, many empirical and physics-based
models have been used and developed for deriving shallow water bathymetry from the
correlation between spectral reflectance and water depth [10,14-22]. Commonly, empirical
models require in situ bathymetric data for calibration, so there are certain limitations in
remote regions wherein field-measured bathymetric data are unavailable [23].

The Advanced Topographic Laser Altimeter System (ATLAS) is a 532 nm photon-
counting lidar that was launched by NASA in September 2018 onboard ICESat-2 [24]. Along
the laser tracks, this device can provide precise bathymetric points up to a maximum depth
of ~40 m [25]. Bathymetric points detected from ICESat-2 are in common usage in areas
where in situ data are unavailable, with the SDB method in recent research [11,24,26-32].
Thomas et al. [11] trained three SDB models with Sentinel-2 optical imagery using ICESat-2
data, including the two classical empirical models and supporting vector regression algo-
rithms. Li et al. [10] analyzed the potential of producing high-resolution global bathymetric
data with the ICESat-2 prototype, multiple altimeter beam experimental lidar (MABEL)
data, and Landsat imagery. Albright et al. [27] used ICESat-2 bathymetric data with Sentinel-
2 imagery to derive the seamless nearshore bathymetry of Destin, FL, USA, in areas with
similar water quality. In order to exclude the impact of clouds and tides, Xu et al. [23]
used multitemporal Sentinel-2 images with ICESat-2 datasets to produce high-precision
shallow-water bathymetric maps in the South China Sea.

Although many studies have combined ICESat-2 data with multispectral images to
derive bathymetry in shallow waters, different sediment types also influence the available
empirical models [14,33,34]. The measured radiance of multispectral images is the product
of both the reflected bottom properties and the overlying shallow-water column, so it is
important to determine the relationships between bathymetry and sediment types [35,36].
In this paper, ICESat-2 ATL03 data and multispectral imagery (Sentinel-2 and GeoEye-1)
were used to derive precise bathymetry in two study regions: Shanhu Island in the South
China Sea and Heron Island in the Great Barrier Reef (GBR), Australia. First, the ICESat-2
ATLO3 bathymetric points in 2018 and 2019 were detected using a modified DBSCAN
(Density-Based Spatial Clustering of Applications with Noise) method, correcting for
errors arising from refraction, fluctuation, and tides. Second, the calibrated ICESat-2
bathymetric points were used a priori to train the two SDB empirical models, which are
widely used and have good accuracies, along with preprocessed Sentinel-2 and GeoEye-1
images. Third, the SDB method was implemented using two empirical models combined
with sediment classification data in the two study areas. Finally, bathymetric maps of the
two study regions were generated. The accuracies of the two analyzed empirical models
between the bathymetric results derived using all points and different sediment points
were also compared.

2. Study Sites and Data Sources
2.1. Study Sites

Two study areas were analyzed using multidate ICESat-2, Sentinel-2 and GeoEye-1
multispectral data in this paper. The first study area was Heron Island in the GBR, located
at 23.27°-23.30°S, 151.51°-151.59°E, southeast of Australia. The second study area was
Shanhu Island located at 16.31°-16.33°N, 111.35°-111.38°E, which is located in the Yongle
Atoll, South China Sea. Figure 1 shows images of Heron Island and Shanhu Island along
with their geographic context.
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Figure 1. Locations of the two study areas ((a) Heron Island in the GBR, Australia, and (b) Shanhu
Island in the South China Sea). The base map of panel (a) is a Sentinel-2 image acquired on 17 August
2020. The base map of panel (b) is a GeoEye-1 image acquired on 18 February 2013. The green lines
and pink lines in panel (a) represent the laser tracks of ICESat-2 on 08 April 2019 and 15 September
2019, respectively. The yellow line, red line and blue line in panel (b) represent the laser tracks of
ICESat-2 on 21 April 2019, 22 February 2019, and 22 October 2018, respectively.

2.2. Sentinel-2 Data

The Sentinel-2A Level-1C image acquired on 17 August 2020 was used on Heron Island
and is freely available from the Sentinel Data Hub of the European Space Agency (ESA) [24].
Sentinel-2’s MultiSpectral Instrument (MSI) is equipped to provide high-resolution optical
imagery of interior and coastal regions [37]. The image used here was geometrically
corrected with the UTM/WGS84 projection scheme. Sen2Cor (version 2.10) was used to
process the Level-1C product to a Level-2A product; this is the default Level-2A processor
for atmospheric corrections. In this study, Band 2 (blue), Band 3 (green), Band 4 (red) and
Band 8 (NIR: near-infrared) were used with a spatial resolution of 10 m [38].

2.3. GeoEye-1 Data

One GeoEye-1 multispectral image acquired on 18 February 2013 was selected for
Shanhu Island in this study. GeoEye-1 is a commercial very-high-resolution satellite, the
nominal ground sample distances at the nadir of which are 0.5 m and 2 m, respectively [39].
This satellite captures data at four multispectral bands: Band 1 (blue), Band 2 (green),
Band 3 (red), and Band 4 (NIR) [39]. The image used in this study was also projected
with UTM/WGS84 reference system and preprocessed with an atmospheric correction
applied using the FLAASH (fast line-of-sight atmospheric analysis of spectral hypercubes)
model [40] in ENVI 5.3 software. Furthermore, the extracted blue and green band values
were used in this study.

2.4. ICESat-2 Lidar Data

The ICESat-2 Level-2 ATL03 datasets represented in the two study areas were used to
train the SDB models and validate the bathymetric inversion results. The ATL03 datasets
contain latitude, longitude, and elevation information based on the WGS84 ellipsoid
datum [41], as well as time data for all photons. The ATL03 raw data include significant
noise due to the solar background. The ‘confidence’ parameter could be used to identify
whether the photon is a signal or noise [41]. Instead of using the ATLO03 results, the modified
DBSCAN method based on the ‘confidence’ values was used to detect signal photons [24].
Then, the refraction effect, fluctuating effect and tides were corrected for each laser [24].
The OTPS2 tide model [42] was used to apply tide correction to the ICESat-2 points on
Shanhu Island. Tide data acquired from the Bureau of Meteorology (BOM) in the Australian
Government were used for the tidal correction on Heron Island.

2.5. Allen Coral Atlas Datasets

In this study, the bottom-type data were obtained from the Allen Coral Atlas [43], as
shown in Figure 2. This atlas is an online database designed to offer up-to-date global
coral reef maps with specific composition and structure data [44]. Two outputs can be
obtained from this atlas, including geomorphic zones and benthic type information [44].
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The atlas maps were generated from satellite techniques and regional field data, with Planet
Dove satellite data and a spatial resolution of ~4 m [10,45]. For Heron Island, the ICESat-2
tracks corresponded to underwater areas where sediment types were composed mainly of
sand, rock, and coral/algae. On Shanhu Island, the ICESat-2 tracks mainly corresponded
to underwater areas where the bottom types were composed of sand, rock, rubble, and
coral/algae.

Benthic classes l‘\ oy Benthic classes
Sand ‘Q\,ﬂ’m“ =Sand
= Rock Rock
Coral/Algae =Coral/Algae
Rubble Rubble
Seagrass 0 0.5 1 1 i Seagrass
Microalgal Mats -—— — KM = Microalgal Mats

(a) (b)

Figure 2. Benthic type maps from the Allen Coral Atlas showing the ICESat-2 tracks over in the two
study areas: (a) Heron Island in the GBR, Australia, and (b) Shanhu Island in the South China Sea.
Note that the blank areas indicate land.

3. Methods
3.1. Bathymetric Data Extraction and Bathymetric Correction of ICESat-2 Data

The standard ATL03 product cannot be directly used as it contains both signal and
noise photons [41]. In this study, a modified DBSCAN method was used to extract the signal
photons, the good performance of which has been verified [24,29]. The basic parameter
of the DBSCAN method is the MinPts threshold. Therefore, we used an adaptive method
developed in a previous study to calculate MinPts [24]:

25N; — SN,
— e 1)
25N
In( SN;)

MinPts =

where SN is the expected photon number corresponding to signals, and SN is the expected
photon number corresponding to noise.

Then, the refraction error and the fluctuation error were corrected based on methods
developed in previous studies [24,25]. The tidal effect was removed using the OTPS2 tide
model [42] and the tide data from BOM. In conclusion, Equation (2) can be used to indicate
the bathymetry D after correction.

D = {1 — tan[(91 — 92)/2] sin(91 — 92)}[RC + (Lm — LC)] + Ahy 2)

where 0, is the incidence angle to the water surface; 6, is the refraction angle in water
column; R, represents the corrected laser range obtained from Snell’s Law; Ly, is the local
mean sea level and L. is the current sea level; and Ah; is the tide height.

3.2. Bathymetry Derivation with Multispectral Imagery and ICESat-2 Data

Prior to deriving the bathymetry, the pixels covered by land and deep water areas
should be removed from the multispectral imagery. The normalized difference water index
(NDWI) was calculated for the Sentinel-2 image using Band 3 (green) and Band 8 (NIR:
near-infrared) to distinguish land in ENVI 5.3, based on the spectral differences between
water and land [46]. Similarly, Band 2 (blue) was used to distinguish deep water due to the
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obvious spectral differences between shallow and deep water areas [23]. For the GeoEye-1
imagery, Band 2 (green) and Band 4 (NIR) were used to calculate the NDWI to distinguish
land, and Band 1 (blue) was used to distinguish deep water in ENVI 5.3. After removing
the land-area and deep-water pixels, the final bathymetric maps of clear, shallow water
were derived in the two study areas.

Due to their simplicity and good accuracy, two classical empirical models were applied
in this study [47]. Two traditional empirical SDB models were used to produce bathymetric
maps of the two study sites using the green and blue bands of preprocessed Sentinel-2 and
GeoEye-1 images, as well as the corrected ICESat-2 bathymetric points.

The linear regression model was developed by Lyzenga [14,33] to derive shallow
water depths from multispectral images. The model calculates water depth using a log-
transformed linear spectral band:

N
z=ao+ ) a;In[L(A;) — Leo(A;)] ®)
i

where z is the water depth derived from the preprocessed multispectral image, L(A;) is
the water surface reflectance at the i-th band of the preprocessed multispectral image, and
ap and g; are the linear regression coefficients between the reflectance and bathymetry,
obtained using the Levenberg-Marquardt (LM) algorithm in this study.

The other empirical model is the band ratio model [15]. The blue and green bands’
reflectance values as well as the prior water depth were used in this model. A logarithmic
transformation relationship was derived between the ratio of the higher and lower absorp-
tion bands, and then a linear regression was established between the ratio and inversion
water depth [15]. The model can be represented as follows:

— myg 4)

where the bathymetry z is derived from the preprocessed multispectral image, L(A1) and
L(A;) are the reflectance of the green and blue bands, and 1 and m; are the offset and gain
values of the linear regression. By minimizing the difference between the estimated depth
z and the measured depth z” with the LM algorithm, the values of n, my and m; can be
obtained. The R?, root mean square error (RMSE) and mean absolute error (MAE) values
were calculated to evaluate the accuracy of the SDB results in this study.

4. Results
4.1. ICESat-2 Bathymetric Data with Bathymetric Error Correction

The ICESat-2 signal photons were first extracted using the method in Section 3.1. A
total of twelve ICESat-2 data tracks were measured on 8 April 2019 and 15 September 2019
for Heron Island, and three tracks were measured on 22 February 2019, 22 October 2018
and 21 April 2019 for Shanhu Island. One ICESat-2 track representing Heron Island was
selected as a sample to illustrate the results. The sampled track (in Figure 3) was captured
at 13:25:46 local time on 15 September 2019. Both of the ICESat-2 datasets derived for
Heron Island were obtained in the daytime and were very noisy. The green points are our
results using the improved DBSCAN method described in Section 3.1, which performed
better than the ATLO03 results (the blue points) in detecting seafloor signal photons and
are essential in calculating the local water depths. In Figure 3a,b, the x-axis represents the
latitude of the ICESat-2 flight route and the y-axis represents the elevation of WGS84 datum.
Then, the elevations of undersea photons were corrected using the method in Section 3.2.
The tidal effect was also removed.
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Figure 3. Sampled ICESat-2 tracks in Heron Reef, GBR, when ICESat-2 flew over this region at
13:25:46 local time on 15 September 2019. Panel (a) shows the signal photons detected from our
results and the ATLO03 results, and panel (b) shows the underwater photons (green points) corrected
from our photon results (pink points).

4.2. SDB with ICESat-2 Bathymetric Data and Multispectral Imagery

For the two study areas, the linear regression model (Equation (3)) and the band ratio
model (Equation (4)) were trained using the corrected ICESat-2 bathymetric points and
the preprocessed multispectral images. For Heron Island, the ICESat-2 data obtained on
8 April 2019 were used as training data, and the data from 15 September 2019 were used
to validate the models. Training comparisons of the two models are shown in Figure 4a.
N1 is the number of the used training data for the linear regression model, and N2 is the
number of the used training data for the band ratio model. The number of the training
ICESat-2 bathymetric points differs between the two models because some gross error
points, whose radiation values do not match the water depth to be identified as likely
outliers, were discarded. The R?, RMSE and MAE values were 0.89, 1.59 m and 1.39 m,
respectively for the linear regression model using a total of 2009 training points, whereas
the RZ, RMSE and MAE values were 0.89, 1.63 m and 1.50 m, respectively for the band ratio
model with a total of 2019 training points. For Shanhu Island, the ICESat-2 data obtained
on 22 February 2019, 22 October 2018 were used as training data, and the data from 21 April
2019 were used to validate the models. Training comparisons of the two models are shown
in Figure 4b. N is the number of the used training data for the two models of 3957 training
points. The R?, RMSE and MAE values were 0.95, 0.89 m and 0.53 m, respectively for
the linear regression model, whereas the R?, RMSE and MAE values were 0.98, 0.70 m
and 0.42 m, respectively for the band ratio model. Table 1 shows the accuracy assessment
results of the two empirical models in the two study areas.

Heron Island Shanhu Island

20 ) . s 15 . . s
_ Linear regression model P _ Linear regression model 7
g Band ratio model e g Band ratio model Py
= 157 N1=2009 P = |N=3957 e
E- N2 = 2019 R E- 10r s

10 P g AT
E : .’/ E & ‘_‘/3’!?
E 5t - 3 ol o
Y 5 5

0 A 3 0 //
0 5 10 15 20 0 5 10 15
ICESat-2 bathymetric depth (m) ICESat-2 bathymetric depth (m)
(a) (b)

Figure 4. Bathymetry inversion comparisons of the linear regression and band ratio model in the two
study areas. (a) Comparisons of the two models derived combined the ICESat-2 bathymetric points
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with the preprocessed Sentinel-2 image on Heron Island. Two models were trained with the ICESat-2
data from 8 April 2019 and validated with data from 15 September 2019. The orange points represent
the linear regression model, and blue points represent the band ratio model. The blue line is the
1:1 line. N1 is the number of the used training data for the linear regression model, and N2 is the
number of the used training data for the band ratio model. (b) Comparisons of the two derived
models combined the ICESat-2 bathymetric points with the preprocessed GeoEye-1 image on Shanhu
Island. The two models were trained with the ICESat-2 data from 22 February 2019 and 22 October
2018, and validated with data from 21 April 2019. The orange points represent the linear regression
model, and blue points represent the band ratio model. The blue line is the 1:1 line. N is the number
of the used training data for the two models.

Table 1. Accuracy evaluation of the two empirical models in the two study areas.

Training Data Test Data 2 RMSE
Study Area (ICESat-2) (ICESat-2) Model R’ (m) MAE (m)

Heron Island, All types on 8 15 September Lm%ar zegrf.s sion 823 }22 }gg

GBR, Australia Apirl 2019 2019 and ratio ; : :
4 Mean 0.89 1.61 1.45
All types on 22 Linear regression 0.95 0.85 0.53
SShaﬁlglh¥Slafédl February 2019,22 21 April 2019 Band ratio 0.98 0.70 0.42
outh China Sea October 2018 Mean 0.97 0.77 0.47

4.3. SDB Based on Bottom Types

First, for Heron Island, we picked ICESat-2 points corresponding to the three main
bottom types of (1) sand, (2) rock, and (3) coral/algae from 8 April 2019 to train the two
empirical models, and used ICESat-2 data from 15 September 2019 to test the accuracy,
as shown in Figure 2a. For the sand class, the R?, RMSE and MAE values were 0.90,
1.56 m, and 1.45 m, respectively for the linear regression model and 0.91, 1.47 m and 1.45 m,
respectively for the band ratio model, as shown in Figure 5a,b. For the rock class, the R?,
RMSE and MAE values were 0.93, 1.51 m and 1.39 m, respectively for the linear regression
model and 0.90, 1.63 m and 1.52 m, respectively for the band ratio model, as shown in
Figure 5c,d. For the coral/algae class, the R?, RMSE and MAE values were 0.80, 1.39 m
and 1.21 m, respectively for the linear regression model and 0.88, 2.37 m and 2.27 m,
respectively for the band ratio model, as shown in Figure 5e,f. Table 2 shows the accuracy
assessment results of the two empirical models used for Heron Island and for the different
sediment types.

There are four main sediment types on Shanhu Island: (1) sand, (2) rock, (3) rubble,
and (4) coral/algae, as shown in Figure 2b. For these different bottom types, ICESat-2
data from 22 February 2019 and 22 October 2018 were used to train the two empirical
models, and ICESat-2 data from 21 April 2019 were used to test the accuracy. For the
sand class, the R, RMSE and MAE values were 0.96, 0.75 m and 0.44 m, respectively for
the linear regression model and 0.98, 1.01 m and 0.88 m, respectively for the band ratio
model, as shown in Figure 6a,b. For the rock class, the RZ, RMSE and MAE values were
0.97,0.76 m and 0.54 m, respectively for the linear regression model and 0.98, 1.28 m and
0.68 m, respectively for the band ratio model, as shown in Figure 6¢,d. For the rubble class,
the R2, RMSE and MAE values were 0.96, 0.71 m and 0.49 m, respectively for the linear
regression model and 0.97, 0.60 m and 0.43 m, respectively for the band ratio model, as
shown in Figure 6e f. For the coral/algae class, the R2, RMSE and MAE values were 0.96,
1.29 m and 1.14 m, respectively for the linear regression model and 0.98, 0.52 m and 0.36 m,
respectively for the band ratio model, as shown in Figure 6g,h. Table 3 shows the accuracy
evaluation results of the two empirical models used for the different sediment types on
Shanhu Island.
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Figure 5. Bathymetry inversion comparisons of the linear regression and band ratio model with
three sediment types—sand, rock, and coral/algae—on Heron Island. (a) The linear regression
model results for sand sediments, (b) the band ratio model results for sand sediments, (c) the linear
regression model results for rock sediments, (d) the band ratio model results for rock sediments,
(e) the linear regression model results for coral/algae sediments, and (f) the band ratio model results
for coral/algae sediments. The blue line is the 1:1 line, and N is the number of the used ICESat-2
training bathymetric points.
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Table 2. Accuracy evaluation of the two empirical models with different sediment classifications for
Heron Island.

Study Trf)‘;‘;‘g Test Data Model R RMSE MAE
Area (ICESat-2) (ICESat-2) (m) (m)
Sand 15 Linear 0.90 1.56 1.45

sediment on September regression
08 April 2019 P2019 Band ratio 0.91 1.47 1.34
Heron P Mean 0.90 1.52 1.40

Island, .
GBR, Rock 15 reLfe‘:Saign 0.92 151 1.39
i sediment on September & .

Australia : P Band ratio 0.90 1.63 1.52
08 April 2019 2019 Mean 0.91 1.57 145
Coral/algae 15 Linear 0.80 1.39 1.21
sediment on September regression
08 April 2019 Pz 019 Band ratio 0.88 2.37 2.27

Mean 0.84 1.88 1.74

Table 3. Accuracy evaluation of the two empirical models with sediment classifications for Shanhu Island.

Training Data Test Data

2
Study Area (ICESat-2) (ICESat-2) Model R RMSE (m) MAE (m)
Linear
Sand sediment on 22 February 21 April 2019 regression 096 0.75 044
2019, 22 October 2018 P Band ratio 0.98 1.01 0.88
Mean 0.97 0.88 0.66
Linear
Rock sediment on 22 February 21 April 2019 regression 097 0.76 0.54
Shanhu Island, 2019, 22 October 2018 P Band ratio 0.98 1.28 0.68
South China Sea Mean 0.97 1.02 0.61
Li
Coral/algae sediment on 22 ) regizse:liim 0.96 1.29 1.14
Fegruaiy Zg(l)?ézz 21 April 2019 Band ratio 0.98 0.52 0.36
ctober Mean 0.97 091 0.75
Li
Rubble sediment on 22 ) reg;I;sesail;)n 0.97 0.69 0.47
Fegruaiy 2019, 22 21 April 2019 Band ratio 0.97 0.60 0.43
ctober 2018 Mean 0.97 0.65 0.45

Figure 7 shows the derived bathymetric maps for the two study areas. Figure 7a shows
the bathymetric map of Heron Island derived using the Sentinel-2 image and the ICESat-2
data with the band ratio model of the sand sediment classification, as this map has the best
accuracy among the derived maps of this island. Figure 7b shows the bathymetric map of
Shanhu Island derived from the GeoEye-1 image with ICESat-2 data using the band ratio
model with the rubble sediment classification, as this map has the best accuracy among
the maps representing this island. The land and deep water areas were removed from the
maps. The bathymetric maps were produced to maximum depths of 22.26 m on Heron
Island and 16.69 m on Shanhu Island. The water quality conditions (e.g., turbidity and
chlorophyll) could also affect the derived bathymetry in capturing the maximum depths in
different regions [17].
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Figure 6. Bathymetry inversion comparison results of the linear regression model and band ratio

model with three sediment types—sand, rock, rubble and coral/algae—on Shanhu Island. (a) The

linear regression model results for sand sediments, (b) the band ratio model results for sand sediments,

(c) the linear regression model results for rock sediments, (d) the band ratio model results for rock

sediments, (e) the linear regression model results for rubble sediments, (f) the band ratio model

results for rubble sediments, (g) the linear regression model results for coral/algae sediments, and

(h) the band ratio model results for coral/algae sediments. The blue line is the 1:1 line, and N is the

number of the used ICESat-2 training bathymetric points.
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Figure 7. Shallow water bathymetric maps derived using remote sensing images and ICESat-2
data. (a) Bathymetric map of Heron Island, GBR, Australia, derived by using Sentinel-2 images and
ICESat-2 data. (b) Bathymetric map of Shanhu Island in the South China Sea, derived by combining
the GeoEye-1 image with ICESat-2 data. The derived bathymetric results were based on the WGS84
projection in units of meters.

It is noted that we use different regression coefficients for different classes in two
models. Specifically, the regressions or training models of different sediments are illustrated
in Figure 5, Table 2 at Heron Island, and in Figure 6, Table 3 at Shanhu Island. However,
when generating a complete map as shown in Figure 7, we only use one model that has the
best training accuracy in each study area. If we use a separate trained model for each type
to generate its corresponding map, and then combine these partial maps from different
types into a complete map, some depths seriously change at the boundary pixels with
different sediments, making the complete map spatially inconsistent.

5. Discussion

In this study, two traditional water depth inversion empirical models were trained
using ICESat-2 ATL03 bathymetric points rather than in situ bathymetric data. According
to the results, the bathymetric accuracy has a well-accepted range, and the RMSEs obtained
for the two inversion models in the two research areas are less than or around 10% of the
maximum depths. The new method not only integrates active and passive remote sensing
data within the SDB method, but also considers the impacts of different sediment types
on the results obtained with traditional empirical models. The experimental results can be
summarized as follows:

(1) For the two study areas, all the evaluation parameters (i.e., the RZ, RMSE and MAE
values) of Shanhu Island were better than those of Heron Island, as shown in Tables 1-3.
The potential reasons for this finding are discussed as follows. (1) The spatial resolutions of
the utilized images of the two study areas differed. The resolution of the GeoEye-1 images
used for Shanhu Island was 2 m; this resolution was higher than that of the Sentinel-2
images of Heron Island, which was 10 m. The higher resolution of the GeoEye-1 images
could provide a better accuracy in the bathymetry derivations. In this study, on Heron
Island in the GBR, Australia, the maximum water depth detected from the ICESat-2 lidar
was ~22 m, and the bathymetric maps were produced to a depth of ~22 m. On Shanhu
Island in the South China Sea, the bathymetric maps were produced to a depth of ~16 m,
and the maximum water depth detected from the ICESat-2 lidar was ~17 m. (2) The number
of photons on Heron Island was more uneven than that on Shanhu Island. For Heron
Island, most photons were concentrated in the 0-5 m depth range, which could impact
the SDB results. However, the photons in the Shanhu Island region were more evenly
distributed in the water column. Indeed, after resampling the shallow-water points on
Heron Island, the overall accuracy was improved, and the RMSEs were improved by 11%
and 15% for the two empirical models, respectively (see further discussion below).
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(2) For Heron Island, the sand sediment results obtained using both models showed
better performances than the results corresponding to other sediment types, according
to the mean R?, RMSE and MAE values (Table 2). The reason for this result may be that
sand sediments are a main component of Heron Island, corresponding to the most training
points (1664 for sand sediments, 169 for rock sediments and 82 for coral/algae sediments).
For Shanhu Island, the rubble sediment results of the two models had better averages
and more consistent results than the results corresponding to the other sediment types.
The reason for this finding may be that rubble sediments cover most of Shanhu Island,
and the number of rubble sediment training samples was greatest among all sediment
types, at 1501.

(3) In the two study areas, the sand sediments obtained with both models were better
than the results corresponding to the two other common sediment types, i.e., rock and
coral/algae sediments. The reason for this result may be that sand sediments have higher
reflectance in both the blue and green bands. Therefore, the variability of their reflectance
values are less dependent on the sediment type.

(4) Considering that the large number of shallow-water points could have impacts
on the accuracy of the results, the shallow-water points were resampled for the two study
areas. As the ICESat-2 points on Heron Island were unevenly distributed with regard to
the water depth, the number of points in water shallower than 5 m was much larger than
that in water deeper than 5 m. For this reason, the points in water shallower than 5 m
were resampled randomly to the same density as the points deeper than 5 m to train the
models and test the resulting accuracy for Heron Island, including points corresponding
to different sediment classifications. Table 4 shows the consistent improvement in all
parameters both with and without sediment classifications compared to the results listed
in Tables 1 and 2. The sand sediments had the best accuracy in both models, with R?,
RMSE and MAE values of 0.97, 1.28 m and 1.06 m, respectively, for the linear model and
097, 1.05 m and 0.88 m, respectively, for the band ratio model. For Shanhu Island, after
resampling the shallow-water points (shallower than 2 m), the accuracy was not improved
compared to that obtained without resampling. The reason for this finding may be that the
bathymetric points of Shanhu Island were relatively evenly distributed with regard to the
water depth.

Table 4. Accuracy evaluation results obtained after resampling the shallow points with two inversion
models for Heron Island.

Study Training Data Test Data RMSE MAE

2
Area (ICESat-2) (ICESat-2) Model R (m) (m)
Linear
Alltypeson 08 15 September regression 0.97 146 1.20
April 2019 2019 Band ratio 0.96 1.38 1.18
Mean 0.96 1.42 1.19
Linear
i . 0.97 1.28 1.06
Heron Sandoi;‘:m.elm 15 September regression
Island, e 2019 Band ratio 0.97 1.05 0.88
GBR, Mean 0.97 1.17 0.97
Australia ;
Rock sediment Lmea.r 0.96 1.45 1.31
08 April 15 September regression
o ote 2019 Band ratio 0.97 1.20 0.98
Mean 0.97 1.33 1.15
Coral/algae Lmea_r 0.97 1.34 1.08
sediment on 15 September regression
2019 Band ratio 0.96 1.73 1.49

08 April 2019 Mean 0.97 1.54 1.29
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(5) In this study, the temporal and spatial mismatch problems of different data sources
introduce errors in the results. On Heron Island, the used ICESat-2 data were recorded in
2018 and 2019, while the multispectral images were captured in 2020. On Shanhu Island, the
ICESat-2 data were recorded in 2019, while the multispectral images were captured in 2013.
Some inevitable topographic changes over time would cause errors in the results. Moreover,
considering the different spatial resolutions from different datasets, matching image pixels
with ICESat-2 bathymetric points can also result in additional errors, particularly when the
seafloor has a relatively high slope or roughness [24].

(6) The surrounding environmental conditions during data acquisition can also affect
the accuracy of the satellite-derived bathymetry. A lot of studies illustrated that water
transparency, turbidity, and chlorophyll have impacts on the SDB method [17,48-51]. For
the ICESat-2 datasets, although most bathymetric errors were corrected, the data are also
influenced by the scattering effect in the water column (up to centimeters) [52]. For the
multispectral imagery, although atmospheric correction was carried out during image
pre-processing, the residuals of whitecaps and sun glint introduce errors to the derived
water depths [50,53].

6. Conclusions

Notwithstanding the issues highlighted in Section 5, our main findings can be con-
cluded as follows: (1) The proposed sediment classification approach can improve the SDB
accuracy in the two study areas. For Heron Island, the sand sediment type showed the
best performance in both models compared to the other sediment types, with an RMSE
improvement of 5.6% compared to that derived without considering sediment classifi-
cations. For Shanhu Island, the rubble sediment results of the two models showed the
best accuracy, with an RMSE improvement of 15.5% compared to that obtained without
considering sediment classifications. (2) The sand sediments had better accuracies in the
results of both models than the two other common sediments, i.e., rock and coral/algae
sediments. (3) Resampling shallow water points can improve the SDB accuracy when these
points are highly unevenly distributed in the water column. These results indicate that
the SDB method considering sediment classifications can improve the SDB accuracy of the
two empirical models analyzed here. This technology can provide a feasible solution for
detecting large-scale water depths in remote and sensitive shallow water areas.
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