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Abstract: Paddy rice cropping patterns (PRCPs) play important roles in both agroecosystem modeling
and food security. Although paddy rice maps have been generated over several regions using satellite
observations, few studies have focused on mapping diverse smallholder PRCPs, which include crop
rotation and are dominant cropping structures in South China. Here, an approach called the feature
selection and hierarchical classification (FSHC) method was proposed to effectively identify paddy
rice and its rotation types. Considering the cloudy and rainy weather in South China, a harmonized
Landsat and Sentinel-2 (HLS) surface reflectance product was employed to increase high-quality
observations. The FSHC method consists of three processes: cropping intensity mapping, feature
selection, and decision tree (DT) model development. The FSHC performance was carefully evaluated
using crop field samples obtained in 2018 and 2019. Results suggested that the derived cropping
intensity map based on the Savitzky–Golay (S-G) filtered normalized difference vegetation index
(NDVI) time series was reliable, with an overall accuracy greater than 93%. Additionally, the optimal
spectral (i.e., normalized difference water index (NDWI) and land surface water index (LSWI)) and
temporal (start-of-season (SOS) date) features for distinguishing different PRCPs were successfully
identified, and these features are highly related to the critical growth stage of paddy rice. The
developed DT model with three hierarchical levels based on optimal features performed satisfactorily,
and the identification accuracy of each PRCP can be achieved approximately 85%. Furthermore, the
FSHC method exhibited similar performances when mapping PRCPs in adjacent years. These results
demonstrate that the proposed FSHC approach with HLS data can accurately extract diverse PRCPs
over fragmented croplands; thus, this approach represents a promising opportunity for generating
refined crop type maps.

Keywords: paddy rice cropping patterns; crop mapping; feature selection; decision tree model;
harmonized Landsat Sentinel-2

1. Introduction

Paddy rice is one of the most important staple foods worldwide, accounting for more
than 12% of global cropland area [1]. As a major grain crop, paddy rice not only contributes
critically to global food security but also has a significant impact on climate changes caused
by greenhouse gas (GHG) emissions in agricultural production systems [2,3]. Moreover,
the widespread paddy rice cropping patterns (PRCPs) in subtropical regions, where the
paddy-rice–winter-wheat rotation and double-cropping paddy rice systems are widely

Remote Sens. 2023, 15, 1034. https://doi.org/10.3390/rs15041034 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs15041034
https://doi.org/10.3390/rs15041034
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0001-7930-8814
https://orcid.org/0000-0002-2068-8610
https://doi.org/10.3390/rs15041034
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs15041034?type=check_update&version=1


Remote Sens. 2023, 15, 1034 2 of 19

distributed, have drawn the attention of scientific communities [4–6]. The various PRCPs
have different tillage practices, such as drainage, plowing, and fertilization, that impact the
physical and chemical properties and microbial activities of soil, which in turn affect GHG
emissions [7,8]. Additionally, information on cropping rotations involving paddy rice and
other crops is critical for adjusting the cropping structure [9,10]. Therefore, it is of great
significance to extract the spatial distributions of various PRCPs accurately and to obtain
their dynamic changes over time.

Satellite remote sensing has become the most effective tool for large-scale crop type
mapping due to its wide spatial coverage with frequent data acquisition and low observa-
tion costs [11]. Previous studies focused mainly on extracting the spatial distribution of
paddy rice using various classification strategies with multi-scale satellite images (e.g., us-
ing MODIS and Landsat-5/7/8) [12–14]. Among these methods, the specific flooding signal
of paddy fields in the flooding and rice transplanting periods has been widely adopted
to map paddy rice over large regions on a regular basis [15,16]. During these phases, the
paddy rice plants are sparse, and the fields are largely covered by surface water, which
causes the pixel reflectance of the field on satellite images to be dominated by the spectral
signal of water [17]. Nevertheless, this feature alone cannot be suitable for identifying all
PRCPs, such as paddy-rice–rapeseed rotations or double-cropping paddy rice. Because
paddy rice and other crops exhibit different spectral or phenological features through-
out their growing periods [18,19], sufficient time-series images are essential for capturing
specific differences among various crop types.

Traditionally, moderate spatial resolution (≥250 m) satellite images with short revisit
cycles (e.g., MODIS, AVHRR, etc.) are preferred over obtaining long-term and continuous
observations in practice. The coarse pixel grids of these images may contain several land
cover types, leading to undesired errors when identifying PRCPs, especially over frag-
mented and smallholder croplands. By contrast, decametric resolution (10–30 m) images,
which can reduce the land cover mixtures effectively, are thus more suitable for diverse
PRCP mapping. However, due to the impacts of clouds and the long revisit cycles of these
satellites, it is difficult to derive continuous observations from only a single satellite. Thus,
several methods that combine various satellites to increase the number of high-quality
observations have been proposed and can be divided into two groups. The first group
involved the development of spatiotemporal fusion methods, including STRAFM [20],
STRUM [21], and CACAO [22], to blend a few decametric-resolution observations (e.g.,
Landsat) and continuous hectometric-resolution observations (e.g., MODIS) for the genera-
tion of continuous decametric-resolution observations. Although these methods can take
advantages of fine-scale information and high-frequency observations from decametric-
and hectometric-resolution images, respectively, the accuracy of the derived high-spa-
tiotemporal-resolution images was usually restricted by the spatial heterogeneity of the
land surface and the robustness of the fusion methods. By contrast, the combination
of various satellites with similar decametric-resolution sensors shows great potential for
generating high-quality, fine-scale, and continuous observations [23,24]. Particularly, the
harmonized Landsat and Sentinel-2 (HLS) surface reflectance product [25], which provides
an opportunity for the synergistic use of Landsat and Sentinel-2 data, is promising for the
mapping of complex crop types in smallholder farming systems.

Several studies have explored different crop type mapping strategies using time-series
images from multi-source satellite observations. For instance, imageries from the MODIS,
Landsat, and PALSAR-2 sensors were combined to derive paddy rice areas in Vietnam
during the summer growing period of 2015 using the random forest model [26]. The hybrid
convolutional neural network and long short-term memory architecture were developed to
map crop rotations in northern Hunan Province based on the combined Sentinel-1 and -2
image time series [27]. However, most previous studies suffered from several limitations in
terms of achieving the goal of mapping PRCPs. First, although temporal information is
critical for identifying different crop types, the traditional image stacking approach that
involves many temporal features may introduce unnecessary information redundancy
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and reduce computational efficiency in the classification process [28,29]. Second, only
single- and double-cropping paddy rice crops were identified, whereas detailed paddy
rice patterns (e.g., paddy-rice–rapeseed rotations and middle paddy rice systems) were
usually neglected [30], leading to increased difficulty in understanding the crop structures
or rotations which are essential for studies on crop management. Finally, although synthetic
aperture radar (SAR) data were employed to reduce the impacts of cloud contamination on
the optical data [31], the combination of SAR and optical data may introduce additional
uncertainties in crop type mapping caused by the somewhat different band wavelengths
and imaging systems of these sensors. These limitations highlight the necessity to explore
the potentials of datasets obtained from integrated optical sensors (i.e., HLS) and to propose
an effective classification approach for mapping various PRCPs.

The objective of this study is to develop a pragmatic approach, namely the feature
selection and hierarchical classification (FSHC) method, to map the crop rotations involv-
ing paddy rice and other crops using the HLS data. In view of the diverse PRCPs and
fragmented croplands in South China, the Qichun county in Hubei Province was selected
as the study area. Specifically, this paper aims to: (1) propose a phenology-based approach
to identify the cropping intensity, (2) select the critical temporal and spectral features for
separating each crop, and (3) develop a straightforward decision tree (DT) model based
on the optimal features for mapping PRCPs efficiently. Furthermore, the field samples
collected in 2018 and 2019 were employed to evaluate the performance of both cropping
intensity and PRCP maps derived by the FSHC method. This paper is organized as follows.
Section 2 describes the study area and detailed materials in this study. Section 3 introduces
the framework of the FSHC method, including cropping intensity map derivation, feature
selection, and PRCP mapping, whereas Section 4 provides the corresponding results of
each part in the FSHC method. Section 5 explores the specific advantages of the proposed
FSHC method. The limitations and future improvements are also discussed in this section.
Finally, Section 6 provides concluding remarks on this study.

2. Study Area and Materials
2.1. Study Area

Qichun county, which is located in the southern part of Hubei Province, was selected
as the study area (Figure 1). The area of Qichun county is approximately 2400 km2, of which
the proportion of cropland is greater than 28%. The agricultural landscape in this county
is quite heterogeneous due to the complex terrains and widely distributed smallholder
farming systems. Qichun is characterized by a humid subtropical monsoon climate with
four distinct seasons, and the average annual temperature and average annual precipitation
are approximately 17 ◦C and 1350 mm, respectively. The sufficient sunshine and rainfall
conditions are suitable for developing various cropping patterns, including single- and
double-cropping practices. According to field surveys and agricultural statistics, there are
four main PRCPs in the study area, i.e., double-cropping paddy rice, rapeseed–paddy-rice
rotation, middle paddy rice, and ratoon rice. Figure 1 shows a calendar schedule of these
four PRCPs in the study area. The overlapping growth periods among various crop types
indicate the good representativeness of the study area for evaluating the FSHC method
with regards to identifying diverse PRCPs.

2.2. Harmonized Landsat and Sentinel-2 (HLS) Data

The HLS surface reflectance product released by the National Aeronautics and Space
Administration (NASA) was generated from the Operational Land Imager (OLI) and Multi-
Spectral Instrument (MSI) onboard the Landsat-8 and Sentinel-2 satellites, respectively. The
combined sensors can achieve global observations every 2–3 days at a spatial resolution
of 30 m or higher [25]. Specifically, the HLS comprises three types of surface reflectance
products: L30 (OLI 30 m), S30 (MSI 30 m), and S10 (MSI 10 m). In this study, the L30
and S30 products were selected because their spatial resolutions are consistent, and both
were reprocessed by atmospheric correction, spatial coregistration, bidirectional reflectance
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distribution function normalization, and band pass adjustment to reduce the uncertainty
between the two sensors. Table 1 shows the band names and the corresponding wavelength
ranges for L30 and S30.
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Figure 1. (a) Location and DEM of Qichun county in Hubei Province, China. The cropland data were
extracted from the GlobeLand30 product in 2020. The number (N) and the spatial distribution of field
samples for different crop types obtained in 2019 and 2018 were also displayed. The example photos
of paddy-rice–rapeseed rotation, double-cropping paddy rice, ratoon rice, and middle paddy rice are
shown in the right panel. (b) The crop calendars of four PRCPs in the study area.

Table 1. Band parameters of the HLS L30 and S30 surface reflectance products.

Band Name HLS L30 Band HLS S30 Band Wavelength Range (µm)

Coastal aerosol B1 B1 0.43–0.45
Blue B2 B2 0.45–0.51

Green B3 B3 0.53–0.59
Red B4 B4 0.64–0.67

Red-edge 1 – B5 0.69–0.71
Red-edge 2 – B6 0.73–0.75
Red-edge 3 – B7 0.77–0.79

Near infrared (NIR) broad – B8 0.78–0.88
NIR narrow B5 B8A 0.85–0.88

Short wave infrared (SWIR) 1 B6 B11 1.57–1.65
SWIR 2 B7 B12 2.11–2.29

Water vapor – B9 0.93–0.95
Cirrus B9 B10 1.36–1.38

Thermal infrared 1 B10 – 10.60–11.19
Thermal infrared 2 B11 – 11.50–12.51

According to the spatial location of Qichun county and the HLS tiling system, data
corresponding to three tiles, i.e., 50RLU, 50RKU, and 50RMU, were downloaded from
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the NASA website (https://hls.gsfc.nasa.gov/data (accessed on 13 July 2022)). To select
high-quality HLS products without cloud contaminations, a quality assurance (QA) layer
and visual interpretation were both employed. As a result, totals of 28 and 38 high-quality
images taken in 2018 and 2019 were obtained, respectively. The specific observation dates
of these HLS images in each year are shown in Figure 2. It is noteworthy that the 2019 HLS
data were used to develop the FSHC method to extract PRCPs, whereas the 2018 data were
adopted to further evaluate the robustness of the proposed method in different years.
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Figure 2. The numbers (Nobs) and observation dates of high-quality HLS S30 (circle points) and L30
(square points) products obtained over the study area in 2019 and 2018. The crop samples collected
from two field surveys (Nfield = 2) and the specific date of each field survey (triangle points) were
also displayed in this figure.

2.3. Vegetation Indices Derived from HLS Data

Vegetation indices (VIs) have been widely employed to identify land cover types and to
monitor vegetation growth due to their sensitivity to green vegetation or water bodies [32].
Because NDVI exhibits high correlations with leaf area index and leaf chlorophyll content,
it has usually been selected in studies involving vegetation-growth monitoring, crop
identification, and cropping intensity mapping [33–35]. The LSWI, which is sensitive to the
water contents of the vegetation and ground, is among the most important spectral features
for paddy rice identification and was, thus, selected herein. The LSWI of paddy fields in
particular is greater than the NDVI when paddy rice is at the unique flooding stage [36,37].
Thus, a flooding signal vegetation index (FSVI) calculated by subtracting the NDVI from
the LSWI was developed to identify the flooding stage of paddy rice. Compared to the
normalized difference water index (NDWI), which can suppress vegetation information and
achieve the purpose of highlighting water signals [38], the modified normalized difference
water index (MNDWI) can further reduce background impacts, such as those induced
by vegetation and soil [39]. Therefore, the above 5 VIs were calculated for the feature
optimization and PRCP mapping in this study, as shown in Table 2.

Table 2. Five vegetation indices (VIs) selected in this study and their associated equations.

Vegetation Index (VI) Equation Reference

Normalized difference vegetation index (NDVI) ρNIR−ρRed
ρNIR+ρRed

[33]

Land surface water index (LSWI) ρNIR−ρSWIR1
ρNIR+ρSWIR1

[17]
Flooding signal vegetation index (FSVI) LSWI − NDVI [40]

Normalized difference water index (NDWI) ρGreen−ρNIR
ρGreen+ρNIR

[38]

Modified normalized difference water index (MNDWI) ρGreen−ρSWIR1
ρGreen+ρSWIR1

[39]

2.4. Field Samples

A total of 897 field survey samples were collected in Qichun county in 2019, com-
prising 840 crop samples and 57 non-crop samples (e.g., fallow land, artificial ponds, etc.).

https://hls.gsfc.nasa.gov/data
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To identify the multi-cropping patterns, these field samples were recorded twice, during
the periods of April 23–25 and September 29–30, respectively. These 840 field samples
were further divided into 586 single- and 254 double-cropping crop types. Specifically, the
spatial distributions of the crop samples, including 195 ratoon rice, 199 middle paddy rice,
192 other single-cropping types, 57 double-cropping paddy rice, 101 paddy-rice–rapeseed
rotation, and 96 other double-cropping types, are shown in Figure 1a. Among these crop
patterns, some crop samples other than paddy rice contained multiple crop types, such
as rapeseed–dryland crop rotations, wormwood crops, and so on. The field samples of
each crop type were divided into a 70% subset for training and a 30% subset for vali-
dation. Thus, 410 single-cropping samples (134 non-paddy rice samples and 276 paddy
rice samples including 139 middle paddy rice samples and 137 ratoon rice samples) and
178 double-cropping samples (67 non-paddy rice samples and 111 paddy rice samples
including 71 paddy-rice–rapeseed samples and 40 double-cropping paddy rice samples)
were employed as the training dataset to explore the optimal features for identifying var-
ious RPCPs. In addition, 166 crop field samples in 2018 were also collected (Figure 1a),
which were used only as validation dataset to evaluate the FSHC performance for mapping
various PRCPs in different years without training samples.

2.5. Land Cover Map and Slope Data

Because the single-cropping crop type and other vegetation types (e.g., deciduous
broadleaf forest or shrub) may share similar spectral and phenological features, it is
necessary to introduce a reliable cropland map to eliminate the potential misclassifi-
cation from natural vegetation types. Otherwise, the additional identification criteria
should be developed to remove other vegetation types, which would increase the com-
plexity of the classification method and, therefore, be unsuitable for large areas. In this
study, the GlobeLand30 land cover product with the spatial resolution of 30 m in 2020
(http://www.globallandcover.com (accessed on 5 June 2022)) was employed to extract
the spatial distribution of croplands. The GlobeLand30 datasets were derived from more
than 20,000 Landsat and Chinese environmental and disaster satellite (HJ-1) images with
a pixel–object–knowledge (POK)-based approach [41]. An overall classification accuracy
above 85% was achieved in China, and the difference in the cropland area between the Glo-
beLand30 and statistical data was only below 5% in Hubei Province [42,43], which imbue
our confidence in the good performance of the extracted cropland over the study area.

Additionally, previous studies have suggested that croplands with slopes greater than
9◦ are not suitable for paddy rice cropping, as these areas would require considerable
amounts of labor and material resources for rice irrigation and harvest [44]. Due to the
complex terrain in the study area, a large proportion (>22%) of cropland with a slope
greater than 9◦ was observed over all cropland pixels, indicating the necessity to introduce
the slope data to mask the non-paddy field over the cropland. Based on the Advanced
Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global Digital Elevation
Model Version 3 (GDEM V3) data (https://asterweb.jpl.nasa.gov/gdem.asp (accessed
on 10 June 2022)) [45], the land slope was calculated by obtaining the maximum rate of
elevation change between each pixel and its neighbors. We also calculated the slopes of all
paddy rice samples, i.e., –the double-cropping paddy rice, paddy-rice–rapeseed rotation,
middle paddy rice, and ratoon rice, and found that more than 98% of the paddy rice
samples were located on pixels with slopes less than 9◦, indicating good reliability with
regard to this suggestion. Therefore, slopes greater than 9◦ could be employed as a reliable
criterion to remove many non-paddy rice pixels prior to FSHC classification in this study.

3. Methods

The workflow of the FSHC method to map various PRCPs is shown in Figure 3, which
includes three sequential steps: (1) cropping intensity identification, (2) feature selection,
and (3) DT model development. Specifically, the cropping intensity, i.e., whether a cropland
was single-, double- and non-cropping, was first derived using NDVI time series from the

http://www.globallandcover.com
https://asterweb.jpl.nasa.gov/gdem.asp
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HLS data. Then, the optimal features for identifying paddy rice and its associated rotation
types were selected. Finally, the map of diverse PRCP was generated from the DT model
based on the selected spectral–temporal features. The validation samples, which were
randomly selected from field samples and were independent with training samples, were
employed to evaluate the accuracy of the derived PRCP map. The detailed description of
each step is provided in Sections 3.1–3.4.
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3.1. Cropping Intensity Identification

The cropping intensity, i.e., single-, double- and non-cropping cropland, is impor-
tant for reducing the uncertainty of PRCP mapping over regions with multi-cropping
patterns [23]. According to previous studies, NDVI and EVI were two widely adopted
indicators to capture the growth cycles of crops [46,47]. Because the blue band is easily
affected by the atmosphere, it is challenging to perform the atmospheric correction effec-
tively, leading to many invalid reflectance pixels at this band [48]. Moreover, the EVI across
different sensors may be inconsistent due to the more difficult and varying atmospheric
correction strategies of the blue band [49]. Furthermore, the VI time series of crop field
samples also exhibited that the NDVI was more stable than the EVI in this study. Therefore,
the temporal trajectory of the NDVI was utilized to identify the cropping intensity.

To further eliminate the noises caused by clouds or aerosols in the NDVI time series,
the Savitzky–Golay (S-G) temporal filtering method was used to improve the extraction
of cropping intensity. The S-G filter based on local polynomial least squares fitting in
the temporal domain is advantageous in clearly describing the long-term trends and
local mutation information of the time series [50]. In this study, the S-G filter in the
TIMESAT software package [51,52] was applied to derive the smooth HLS NDVI time
series. According to experiments and analyses, the main parameters of the S-G filter,
including the window size, spike, and adaptation, were set to 4, 2, and 1, respectively.

Based on the TIMESAT S-G filter, four phenological crop parameters [51], i.e., the
start of season (SOS), end of season (EOS), maximum NDVI value (NDVImax), and length
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of the growing period (GPlength = EOS-SOS), were derived. Specifically, according to
previous studies and the phenological characteristics of crop growth [50,53], the SOS and
EOS were determined by the criteria of NDVI(t1 + 1) > NDVI(t1) and NDVI(t1) > 0.4, and
NDVI(t2 + 1) < NDVI(t2) and NDVI(t2) < 0.5, respectively. Notably, the associated thresh-
olds of these criteria were determined following the specific crop growth characteristics of
field samples in this study. The earliest SOS and EOS dates were selected as long as they
satisfied these criteria. Similarly, two SOSs (SOS1 and SOS2) and two EOSs (EOS1 and
EOS2) can be obtained for the double-cropping cropland pixels. Then, the criteria defined
as NDVImax > 0.5 and 60 < GPlength < 220 between each SOS and EOS were employed
to determine the valid crop growth cycle. To improve the efficiency of cropping intensity
identification, some non-paddy field pixels with slopes greater than 9◦ over croplands
(Section 2.5) were excluded first. The derived results of 0, 1, and 2 for the remaining
pixels (including paddy fields and non-paddy fields) were assigned to the non-, single- and
double-cropping croplands in the cropping intensity map, respectively.

3.2. Feature Selection

According to field surveys and statistical data, the PRCPs were divided into two
groups, i.e., a single- and a double-cropping group, to identify optimal spectral–temporal
features for each group. Because the phenological parameters (SOS and EOS) can provide
additional information for capturing the growth stages of crops, these parameters were
also added as candidate features for identifying different PRCPs. Although the inclusion of
excessive features is beneficial for detecting the subtle differences among various PRCPs,
the involvement of redundant features may largely decrease the classification efficiency and
accuracy [54]. To derive the four PRCP types targeted in this study efficiently, two essential
processes, including the identification of paddy rice from the cropping intensity map and
then the identification of each PRCP from the paddy-rice-cropping intensity map, were
performed. The former process was to obtain common features for extracting all paddy
rice pixels over croplands, whereas the latter process was to select individual features to
distinguish between the different PRCPs. The details of each process are described below.

Because paddy rice has a unique flooding stage compared to other crop types, its
critical identification features were easily obtained by analyzing the temporal trajectories of
different VIs. Nevertheless, different paddy rice types within the same cropping intensity
group have similar characteristics, leading to difficulties in selecting the optimal features
for identifying each PRCP. Therefore, we employed the random forest (RF) model to
automatically identify the key features for mapping each PRCP using all spectral–temporal
and phenological features. The advantage of the RF model is that it can predict the
importance of all input variables with regards to the final result, thus supporting feature
optimization and data dimensionality reduction effectively [55]. The middle paddy rice
and ratoon rice samples in the single-cropping group, and the paddy-rice–rapeseed and
double-cropping paddy rice samples in the double-cropping group were utilized by the RF
model to select the features with the highest pairwise separability in each group. These
selected optimal features provided a basis for developing the DT model at different levels
for mapping diverse PRCPs.

3.3. DT Model Development for Mapping Diverse PRCPs

In this study, the DT model was developed as a pragmatic method for mapping diverse
PRCPs. As one of the most popular classification methods, the DT model is a hierarchical
classification approach that uses multi-layer rules within the tree structure to construct
discriminant functions of the classification rules. Due to its advantages of independent sta-
tistical assumptions and non-parametric models, DTs with high computational efficiencies,
good flexibility, and good robustness, have generally been employed in large-scale land
cover classification studies [56,57].

Specifically, the DT model in this study was constructed based on the identified
cropping intensity (Section 3.1), for which the classification rules were derived from the
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optimal features selected for identifying various PRCPs (Section 3.2), as shown in Figure 4.
First, the cropping intensity data provided the spatial distribution information of the
single-, double-, and non-cropping cropland in the study area. Then, based on the optimal
feature for identifying paddy rice from single-cropping cropland (i.e., TOF_PRSC) and double-
cropping cropland (i.e., TOF_PRDC), the crop types containing the paddy rice were further
extracted. Furthermore, the single-cropping types containing paddy rice were divided into
middle paddy rice and ratoon rice based on the optimal feature for identifying middle
paddy rice (i.e., TOF_MPR), whereas the double-cropping types containing paddy rice were
divided into double-cropping paddy rice and paddy-rice–rapeseed rotation using the
optimal feature for identifying double-cropping paddy rice (i.e., TOF_DPR). Finally, the map
associated with 7 land cover types, including 4 PRCPs, other crops, non-cropping cropland,
and other land cover types, was generated for the study area.
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Figure 4. The developed DT model for identifying each PRCP based on three hierarchical levels.
“TOF_PRSC” and “TOF_PRDC” denotes the threshold of optimal features for identifying paddy rice over
single- and double-cropping cropland, respectively, whereas “TOF_MPR” and “TOF_DPR” indicates the
threshold of optimal features for identifying middle and double-cropping paddy rice, respectively.

3.4. Performance Evaluations

To understand the performance of the proposed FSHC method comprehensively,
both the cropping intensity map and the PRCP map were evaluated. According to the
synthesized field data, the numbers of single-, double- and non-cropping cropland sam-
ples for the evaluation of the cropping intensity map were 176, 76, and 57, respectively.
Among these samples, the numbers of paddy rice and non-paddy rice over single-cropping
cropland were 118 and 58, respectively, whereas those over double-cropping cropland
were 47 and 29, respectively. Finally, field samples, including 58 ratoon rice, 60 middle
paddy rice, 30 paddy-rice–rapeseed rotation, 17 double-cropping rice, and 87 other crops,
were adopted to evaluate the FSHC performance. The overall accuracy (OA), producer’s
accuracy (PA), and user’s accuracy (UA) metrics from the confusion matrix were adopted
to evaluate the map of various PRCPs. Additionally, 166 field samples in 2018 (Section 2.1)
were employed to analyze the temporal robustness of the FSHC approach for identifying
PRCPs over different years.

4. Results
4.1. Derived Cropping Intensity Map

Figure 5 shows the NDVI temporal trajectory of four PRCPs after S-G filtering in
the study area. It can be observed that the temporal filtered NDVI captured the seasonal
crop dynamics of each PRCP well, i.e., ratoon rice, middle paddy rice, double-cropping
paddy rice, and paddy-rice–rapeseed rotation. The ratoon rice and middle paddy rice both
exhibited single-cropping patterns with one growth peak, whereas the paddy-rice–rapeseed
rotation and double-cropping paddy rice each presented two peaks in one year. The
specific characteristic of ratoon rice is that it can be harvested twice following only one
seeding. Thus, the ratoon rice was categorized into the single-cropping group in this study.
Nevertheless, the ratoon rice grew better in the first growth stage than in the ratoon stage
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(Figure 5a), which should raise awareness that the second NDVI peak may not be easily
detected in practice.
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Figure 5. The NDVI temporal trajectory with the detected SOS and EOS dates after S-G filtering
for (a) ratoon rice, (b) middle paddy rice, (c) double-cropping paddy rice, and (d) paddy-rice–
rapeseed rotation.

The cropping intensity map in the study area was generated by adopting the criteria
for detecting the number of cropping events in Section 3.1, as shown in Figure 6a. The
single-cropping crops constituted the main cultivation pattern in the study area, accounting
for over 60% of the total cropland area. The double-cropping croplands were located mostly
in hilly areas over the northeast and southern regions, whereas the non-cropping areas
were generally spatially distributed near artificial surfaces and water bodies. According to
the pseudo-color images (RGB channels were composited by near-infrared, red, and green
bands, respectively) from the HLS S30 product on June 4, 2019, the single-, double- and
non-cropping cropland were primarily displayed as dark red, bright red, and dark blue,
respectively. As expected, this is because the single-cropping crops (mainly ratoon rice) and
double-cropping crops (mainly paddy-rice–rapeseed rotation) on this observation date were
at the peak and start of growth, respectively (Figure 1). The evaluation results indicated
the good performance of the derived cropping intensity map, with an accuracy of 93.20%
based on field samples (Figure 6b). Moreover, the PA and UA of each cropping pattern
also exhibited the potential to achieve a good accuracy of over 90%. Finally, only croplands
with single- or double-cropping patterns were employed to map the diverse PRCPs.

4.2. Optimal Features for Identifying Various PRCPs

According to the developed FSHC strategy, totals of 192 (5 VIs × 38 time points + 2
phenological parameters) and 194 (5 VIs × 38 time points + 4 phenological parameters)
features were prepared for single- and double-cropping groups, respectively. Figure 7
shows the temporal trajectories of 5 VIs (Section 2.3) representing paddy rice and non-paddy
rice in the single- and double-cropping groups, respectively. For single-cropping croplands
(the lower panel of Figure 7), both NDVI and NDWI exhibited significant separability
between paddy rice and non-paddy rice on several observation dates. Specifically, the
NDVI of paddy rice was greater than that of non-paddy rice from day of year (DOY)
160–220, whereas the paddy rice displayed higher and lower NDWIs than the non-paddy
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rice from DOY 110–140 and 160–210, respectively. The higher NDWIs of paddy rice from
DOY 110–140 can be explained by the specific flooding phase of paddy rice. Apart from
NDVI and NDWI, the other VIs cannot identify paddy rice and non-paddy rice effectively
over all observation dates. In terms of the double-cropping croplands (the upper panel
of Figure 7), only LSWI showed good separability between paddy rice and non-paddy
rice from DOY 110–140 and 200–220, corresponding to the two flooding phases of paddy
rice. Thus, the derived temporal and spectral features provided critical information for
developing the criteria of the paddy rice identification within the DT model.
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Figure 6. (a) Cropping intensity map of the study area with 3 sub-regions (SRs) for details. The
corresponding HLS S30 pseudo-color images (RGB: near-infrared (B8A), red (B4), green (B3)) on June
4, 2019, over 3 SRs were also displayed. (b) Accuracy of the cropping intensity map evaluated by
crop field samples.
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Figure 7. Temporal trajectories of (a) NDVI, (b) LSWI, (c) FSVI, (d) NDWI, and (e) MNDWI for paddy
rice and non-paddy rice over double- (upper panel) and single-cropping (lower panel) croplands.
The lines and filled areas represent the VI means and standard deviations for the training samples.
The dotted square exhibited the significant VI separability between two crop types.

Regarding the separability between middle paddy rice and ratoon rice over the single-
cropping cropland, DOY 130 was the most important temporal feature, which was also
denoted by the NDVI time series (Figure 8a). This result can be explained primarily by
the different growth stages of these cropping systems at this observation date, i.e., the
flooding stage of middle paddy rice and the first tillering stage of ratoon rice. Furthermore,
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the phenological phase of the SOS and the spectral features of the NDVI and NDWI were
obviously superior to those of other features. According to the evaluation of feature
importance for paddy-rice–rapeseed rotation and double-cropping rice (Figure 8b), the
critical temporal feature was approximately DOY 150, corresponding to the flooding stage
of paddy rice in the paddy-rice–rapeseed rotation and the tillering stage of early paddy
rice in the double cropping paddy rice. Moreover, due to the different crops in the first
cropping pattern (i.e., rapeseed for the paddy-rice–rapeseed rotation and paddy rice for
the double-cropping paddy rice), SOS1 played the most important role among the four
phenological phases. Finally, NDVI and LSWI also exhibited good performances for
identifying paddy-rice–rapeseed rotation and double-cropping paddy rice.
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Figure 8. The feature importance of spectral–temporal information and phenological phase (PP)
(a) for identifying middle paddy rice and ratoon rice in the single-cropping paddy rice group and
(b) for identifying paddy-rice–rapeseed rotation and double-cropping paddy rice in the double-
cropping paddy rice group. The top panel of each figure shows the temporal trajectory of NDVI for
each PRCP.

4.3. The Developed DT Model Based on the Optimal Feature Analyses

Figure 9 shows the boxplot of selected VIs on various dates for paddy rice and non-
paddy rice in the single- and double-cropping groups, respectively. In the single-cropping
group, the NDWI can exhibit the specific characteristics of paddy rice well, i.e., paddy rice
has higher and lower NDWI than non-paddy rice during the flooding stage (DOY 110–140)
and peak stage (DOY 195–205), respectively. However, due to the negative effects of similar
spectral characteristics between paddy rice and aquatic plants (e.g., lotus) on ponds at the
flooding stage as well as other crop types (e.g., wormwood) at the peak stage, using a single
feature may not derive a satisfactory result for paddy rice and non-paddy rice identification
over the single-cropping cropland. Thus, the difference of NDWI (dNDWI) between these
two stages was calculated to highlight the unique characteristics of paddy rice, as shown in
Figure 9a. The maximum separability between paddy rice and non-paddy rice could be
observed when the dNDWI was greater than 0.35, which can be adopted to extract paddy
rice in the single-cropping group. For the double-cropping group (Figure 9b), the LSWI was
a critical indicator showing the flooding signals of paddy rice, i.e., the first flooding stage
(DOY 105–150) of paddy-rice–rapeseed rotation and the two flooding stages (DOY 105–150
and DOY 195–210) of double-cropping rice. Thus, a minimum LSWI threshold of 0.35 was
set in these two stages to identify paddy rice in the double-cropping group.

Furthermore, Figure 10 exhibits the value ranges of the top three features for the
four PRCPs. It can be observed that the separability of the SOS dates between ratoon
rice and middle paddy rice was larger than those of the NDVI and NDWI (Figure 10a),
which was determined by the growth stages of these cropping patterns. Thus, an SOS later
than DOY 150 was adopted as the criterion to identify middle paddy rice, whereas the
remaining pixels in the single-cropping paddy rice group were ratoon rice. Similarly, the
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first stage of SOS (SOS1) performed best for separating double-cropping rice and paddy-
rice–rapeseed rotation in the double-cropping group (Figure 10b), with SOS1 dates later
than DOY 70 for double-cropping rice and earlier than DOY 70 for paddy-rice–rapeseed
rotation. Overall, although the analyzed crop types have different growth stages, the SOS
or SOS1 was always the best phenological feature for extracting the specific PRCP easily as
long as the paddy rice crop intensity was identified.
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Figure 9. Boxplot of the critical VIs on specific observation dates for distinguishing paddy rice
and non-paddy rice in the (a) single- and (b) double-cropping groups. The dNDWI was calculated
by the difference between the flooding stage (DOY 110–140) NDWI and the peak-growth stage
(DOY 195–205) NDWI. The boxes represent the 25th to 75th percentiles, and the bars show the
1.5 interquartile range. Lines and triangles stand for median and mean values, respectively.

Thus, the classification rules of the DT model, i.e., TOF_PRSC: dNDWI > 0.35, TOF_PRDC:
LSWI > 0.35 in the flooding stage (DOY 105–150 or DOY 195–210), TOF_MPR: SOS > 150, and
TOF_DPR: SOS1 > 70, were determined to map diverse PRCPs based on the above selected
feature thresholds. It is noteworthy that the identification of PRCPs benefited from three
hierarchical levels, i.e., the cropping intensity, paddy rice extraction, and specific PRCP
extraction. These levels can thus greatly reduce the potential impacts of other crop types
with similar spectral or phenological features on PRCP identification results.
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4.4. Evaluation of the PRCP Map

Figure 11 shows the cropping intensity map of paddy rice and the diverse PRCP map
in 2019 based on the developed DT model. The single-cropping paddy rice was widely
distributed in flat regions within the study area, whereas the double-cropping paddy rice
was clustered over the non-flat area with low elevation. For the various PRCPs shown
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in Figure 11b, the area of ratoon rice was slightly larger than that of middle paddy rice,
and most of the paddy rice in the double-cropping croplands was represented by the
paddy-rice–rapeseed rotation system. Furthermore, Figure 11 shows that the PRCPs were
quite heterogeneous across the fragmented croplands, thus highlighting the importance of
high spatiotemporal resolution HLS data for fine-scale crop mapping.
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Additionally, the derived cropping intensity map of paddy rice was first evaluated
based on the validation samples, as shown in Figure 12a. The accuracy of paddy rice identi-
fication over single-cropping croplands was the highest (PA = 88.98% and UA = 93.75%),
followed by those of paddy rice over double-cropping croplands and other crops. These
results can be explained by the better extraction performance of single-cropping croplands
than that of double-cropping croplands, as well as by the relatively long flooding stage of
single-cropping paddy rice (Figure 1), which can be easily captured by HLS images. Fur-
thermore, the overall identification accuracy for the three crop types was 87.7%, indicating
the good reliability of the paddy rice cropping intensity map. Regarding the performance
of the derived PRCPs (Figure 12b), the proposed FSHC could distinguish ratoon rice and
middle paddy rice over the single-cropping paddy rice croplands well, with both PA and
UA greater than 85%. The extracted double-cropping paddy rice and paddy-rice–rapeseed
rotation samples also displayed good agreement with the field samples, and the OA was
87.3%. Finally, the FSHC method was also implemented to generate PRCPs based on
28 high-quality HLS images in 2018. Note that the accuracy of PRCPs in 2018 was also
evaluated using the corresponding 166 field samples, as shown in Figure 12c. The best
extraction performance was exhibited for ratoon rice, with PA and UA of 88.89% and
90.91%, respectively, whereas other crops presented the lowest accuracy of approximately
80%. The OA of the extracted PRCPs was 85.49%, which was slightly inferior to that of
results in 2019. Although the number of high-quality HLS images in 2018 was less than that
in 2019, the FSHC method holds great potential to map PRCPs with robust performances
in different years.
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5. Discussion
5.1. Specific Advantages of the Proposed FSHC Method

In this study, the proposed FSHC method was used to effectively identify various
PRCPs with an overall accuracy greater than 85%, which is comparable with that found
in other similar studies [58–60]. Particularly, the FSHC is advantageous in the following
aspects. Because different PRCPs have various impacts on the environment and food
security, this study aimed to extract fine-scale paddy rice planting information. This study
represented an important improvement in understanding cropping structures compared to
previous studies that attempted only single- or double-cropping paddy rice identifications.
Furthermore, high spatiotemporal resolution images were required to reduce the mixed-
pixel effects caused by the fragmented croplands in South China and to capture the specific
temporal features of each PRCP. Nevertheless, due to the trade-off between the spatial and
temporal resolutions of images and due to cloud impacts, a single decametric resolution
sensor may not satisfy the requirement for the number of high-quality images. Thus, the
HLS product was introduced to maximize the advantages of combining different sensors
with consistent surface reflectance, which has been demonstrated to map the diverse PRCPs
accurately (Figure 12).

Additionally, the FSHC method employed a feature selection process based on sep-
arability analyses to maximize the computational efficiency and improve the mapping
accuracy. Notably, the selected spectral and temporal features can well represent typical
growth stages of paddy rice. For instance, the reason why the importance levels of the
NDWI and LSWI were higher than those of other VIs can be attributed to the flooding
stage of paddy fields, which is the unique characteristic of paddy fields. After extracting
paddy rice in single- or double-cropping croplands, the SOS exhibited the most significant
differences among various PRCPs and was thus selected as the optimal feature. Finally,
considering the complex cropping patterns in South China, the FSHC method was devel-
oped based on three hierarchical levels, which could also be applied to other regions with
similar cropping patterns. This classification strategy can not only reduce the negative
impacts induced by the presence of other crops but can also provide important information
for the uncertainty analysis of the PRCP map.
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5.2. Implications, Limitations, and Future Improvements

Taking Qichun county as an example, this study generated the PRCP map by the
proposed FSHC method. The PRCP map is the fundamental dataset for various agricultural
applications. For instance, the sustainable management of agricultural lands is an urgent
need for feeding the growing population. Thus, the detailed spatial distribution of different
PRCPs is essential for paddy rice yield estimation, crop planting pattern adjustment, and
agricultural production management [61,62]. Particularly, because paddy rice is grown on
flooded soils, the PRCP map plays important roles in terms of both trace methane emissions
and water resource management [16,17,30]. However, there are several limitations that
should be addressed in the future.

First, due to the limited spatial coverage of field samples, the FSHC method was imple-
mented and evaluated only in Qichun county in this study. The collection of more reliable
crop samples from other regions in the future could achieve more robust evaluation results
for characterizing the performance of the FSHC method. Moreover, it is noteworthy that
the slope data used in this study may be not necessary over the plain areas, which could
improve the operational efficiency of deriving the PRCP map in larger regions in the future.
Second, the thresholds of the three hierarchical levels in the FSHC method were determined
using the field samples, restricting the practicability of this method for large regions with-
out field samples. To address this limitation, prior information on the phenological stages
could be involved because these optimized thresholds have been demonstrated to be highly
related to the critical growth stages of paddy rice. This prior agricultural information could
be acquired from the observations of agrometeorological stations or expert knowledge
in the study area, which could largely reduce the costs of field investigations, especially
in historical crop mapping applications. Third, our study demonstrated that HLS data
performed satisfactorily for identifying PRCPs. Nevertheless, the number of high-quality
HLS images can be quite different among different regions or years (e.g., 27 and 38 images
were available for 2018 and 2019, respectively, in this study). Other decametric resolu-
tion sensors, e.g., the wide field of view (WFV) cameras with 16-m resolution onboard
Gaofen-1/6 satellites, could be integrated to further improve the availability of high-quality
observations. Moreover, the SAR data (e.g., Sentinel-1A/1B), which are not sensitive to
cloud conditions, could also be ingested to identify different PRCPs. Fourth, the paddy rice
mapping was performed at the pixel scale, which inevitably introduced misclassification
errors within the same cropland. The cropland parcel-based paddy rice distribution is,
thus, very important for quantifying the changes in ecological systems and improving the
management strategies in precision agriculture. Finally, only four PRCPs were mapped
according to cropping structures of the study area. The identification of more crop types
in different regions using high spatiotemporal resolution data can be further explored in
future work.

6. Conclusions

Identifying the detailed spatial distributions of PRCPs is a prerequisite for agricultural
monitoring and management. In this study, a pragmatic FSHC method was developed
to identify four PRCPs, i.e., ratoon rice, middle paddy rice, double-cropping paddy rice,
and paddy-rice–rapeseed rotation, using the HLS time series images. The FSHC first
mapped the cropping intensity of cropland using the temporal trajectory of the S-G filtered
NDVI. Then, the optimal temporal and spectral features for identifying each PRCP were
selected based on the separability analyses among different crop types. Finally, the three
hierarchical levels of the DT model were developed to derive the detailed PRCP map. Based
on comparisons with crop field samples, the overall accuracy of the cropping intensity
map was 93.20%, and the PA and UA of single-, double- and non-cropping cropland were
greater than 85%. The NDWI and LSWI in the flooding stage and the SOS date were
identified as critical spectral and temporal features, respectively, which could well capture
the specific growth stage of each PRCP. The derived PRCP map exhibited good agreement
(OA = 87.3%) with the validation samples. Furthermore, the FSHC method showed similar
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performances when identifying RPCPs in adjacent years. Our study indicated that the
proposed FSHC method with HLS data holds great potential for mapping fine-scale PRCPs
on the fragmented croplands in regions with cloudy and rainy weather. The refined paddy
rice dataset is of great importance for rice yield estimations, agricultural land planning, and
evaluations on the impacts of rice planting system changes on the agricultural ecological
environment, such as water resource use and trace methane emissions.
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