Fault Detection via 2.5D Transformer U-Net with Seismic Data Pre-Processing
Abstract
:1. Introduction
2. Network Structure
2.1. Shifted Window-Based Self-Attention
2.2. Swin Transformer Block for Feature Extraction
2.3. Overlapped Patch Merging (OPM) Down Sampling Layer
2.4. Transformer U-Net for Seismic Fault Detection
2.5. Loss Function
3. Data Processing
3.1. Data Standardization
3.2. 2.5D Data Assemble
3.3. Data Preprocessing Workflow
4. Experimental Results and Analysis
4.1. 2.5D Transformer U-Net Result on F3 Field Data
4.2. Comparison with Different Number of Channels
4.3. Comparison Results with Different Down Sampling Layer
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- McClusky, S.; Balassanian, S.; Barka, A.; Demir, C.; Ergintav, S.; Georgiev, I.; Gurkan, O.; Hamburger, M.; Hurst, K.; Kahle, H.; et al. Global Positioning System constraints on plate kinematics and dynamics in the eastern Mediterranean and Caucasus. J. Geophys. Res. 2000, 105, 5695. [Google Scholar] [CrossRef]
- Müller, M.D.; Geiger, A.; Kahle, H.G.; Veis, G.; Billiris, H.; Paradissis, D.; Felekis, S. Velocity and deformation fields in the North Aegean domain, Greece, and implications for fault kinematics, derived from GPS data 1993–2009. Tectonophysics 2013, 597–598, 34–49. [Google Scholar] [CrossRef]
- Lazos, I.; Papanikolaou, I.; Sboras, S.; Foumelis, M.; Pikridas, C. Geodetic Upper Crust Deformation Based on Primary GNSS and INSAR Data in the Strymon Basin, Northern Greece—Correlation with Active Faults. Appl. Sci. 2022, 12, 9391. [Google Scholar] [CrossRef]
- Nyst, M.; Thatcher, W. New constraints on the active tectonic deformation of the Aegean. J. Geophys. Res. B Solid Earth 2004, 109, 1–23. [Google Scholar] [CrossRef]
- Bahorich, M.; Farmer, S. 3-D seismic discontinuity for faults and stratigraphic features: The coherence cube. Lead. Edge 1995, 14, 1053–1058. [Google Scholar] [CrossRef]
- Marfurt, K.J.; Kirlin, R.L.; Farmer, S.L.; Bahorich, M.S. 3-D seismic attributes using a semblance-based coherency algorithm. Geophysics 1998, 63, 1150–1165. [Google Scholar] [CrossRef]
- Gersztenkorn, A.; Marfurt, K.J. Eigenstructure-based coherence computations as an aid to 3-D structural and stratigraphic mapping. Geophysics 1999, 64, 1468–1479. [Google Scholar] [CrossRef]
- Li, F.; Lyu, B.; Qi, J.; Verma, S.; Zhang, B. Seismic coherence for discontinuity interpretation. Surv. Geophys. 2021, 42, 1229–1280. [Google Scholar] [CrossRef]
- Xiong, W.; Ji, X.; Ma, Y.; Wang, Y.; AlBinHassan, N.M.; Ali, M.N.; Luo, Y. Seismic fault detection with convolutional neural network. Geophysics 2018, 83, O97–O103. [Google Scholar] [CrossRef]
- Zhao, T.; Mukhopadhyay, P. A fault detection workflow using deep learning and image processing. In Proceedings of the 2018 SEG International Exposition and Annual Meeting, Anaheim, CA, USA, 16 October 2018; OnePetro: Richardson, TX, USA, 2018. [Google Scholar]
- Guitton, A. 3D convolutional neural networks for fault interpretation. In Proceedings of the 80th EAGE Conference and Exhibition, Copenhagen, Denmark, 11–14 June 2018; European Association of Geoscientists & Engineers: Bunnik, The Netherlands, 2018; Volume 2018, pp. 1–5. [Google Scholar]
- Wu, X.; Liang, L.; Shi, Y.; Fomel, S. FaultSeg3D: Using synthetic data sets to train an end-to-end convolutional neural network for 3D seismic fault segmentation. Geophysics 2019, 84, IM35–IM45. [Google Scholar] [CrossRef]
- An, Y.; Guo, J.; Ye, Q.; Childs, C.; Walsh, J.; Dong, R. Deep convolutional neural network for automatic fault recognition from 3D seismic datasets. Comput. Geosci. 2021, 153, 104776. [Google Scholar] [CrossRef]
- Wang, Z.; Li, B.; Liu, N.; Wu, B.; Zhu, X. Distilling knowledge from an ensemble of convolutional neural networks for seismic fault detection. IEEE Geosci. Remote Sens. Lett. 2020, 19, 1–5. [Google Scholar] [CrossRef]
- Dou, Y.; Li, K.; Zhu, J.; Li, T.; Tan, S.; Huang, Z. Efficient training of 3d seismic image fault segmentation network under sparse labels by weakening anomaly annotation. arXiv 2021, arXiv:2110.05319. [Google Scholar]
- Smith, S.; Zimina, O.; Manral, S.; Nickel, M. Machine-learning assisted interpretation: Integrated fault prediction and extraction case study from the Groningen gas field, Netherlands. Interpretation 2022, 10, SC17–SC30. [Google Scholar] [CrossRef]
- Lin, L.; Zhong, Z.; Cai, Z.; Sun, A.Y.; Li, C. Automatic geologic fault identification from seismic data using 2.5 D channel attention U-net. Geophysics 2022, 87, IM111–IM124. [Google Scholar] [CrossRef]
- Pochet, A.; Diniz, P.H.; Lopes, H.; Gattass, M. Seismic fault detection using convolutional neural networks trained on synthetic poststacked amplitude maps. IEEE Geosci. Remote Sens. Lett. 2018, 16, 352–356. [Google Scholar] [CrossRef]
- Jiang, F.; Norlund, P. Seismic attribute-guided automatic fault prediction by deep learning. In Proceedings of the EAGE 2020 Annual Conference Exhibition, Online, 8–11 December 2020; European Association of Geoscientists & Engineers: AJ Bunnik, The Netherlands, 2020; Volume 2020, pp. 1–5. [Google Scholar]
- Wei, X.L.; Zhang, C.X.; Kim, S.W.; Jing, K.L.; Wang, Y.J.; Xu, S.; Xie, Z.Z. Seismic fault detection using convolutional neural networks with focal loss. Comput. Geosci. 2022, 158, 104968. [Google Scholar] [CrossRef]
- Wang, E.; Amaru, M.; Jayr, S.; Payne, B. Improved 3D neural network architecture for fault interpretation on field data. In First International Meeting for Applied Geoscience & Energy; Society of Exploration Geophysicists: Houston, TX, USA, 2021; pp. 3189–3193. [Google Scholar]
- Gao, K.; Huang, L.; Zheng, Y.; Lin, R.; Hu, H.; Cladohous, T. Automatic fault detection on seismic images using a multiscale attention convolutional neural network. Geophysics 2022, 87, N13–N29. [Google Scholar] [CrossRef]
- Wu, B.; Xie, Q.; Wu, B. Seismic impedance inversion based on residual attention network. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–17. [Google Scholar] [CrossRef]
- Yu, J.; Wu, B. Attention and hybrid loss guided deep learning for consecutively missing seismic data reconstruction. IEEE Trans. Geosci. Remote Sens. 2021, 60, 1–8. [Google Scholar] [CrossRef]
- Qiu, C.; Wu, B.; Liu, N.; Zhu, X.; Ren, H. Deep learning prior model for unsupervised seismic data random noise attenuation. IEEE Geosci. Remote Sens. Lett. 2021, 19, 1–5. [Google Scholar] [CrossRef]
- Zhang, S.B.; Si, H.J.; Wu, X.M.; Yan, S.S. A comparison of deep learning methods for seismic impedance inversion. Pet. Sci. 2022, 19, 1019–1030. [Google Scholar] [CrossRef]
- Wang, Y.Q.; Wang, Q.; Lu, W.K.; Ge, Q.; Yan, X.F. Seismic impedance inversion based on cycle-consistent generative adversarial network. Pet. Sci. 2022, 19, 147–161. [Google Scholar] [CrossRef]
- Zhang, K.; Lin, N.T.; Yang, J.Q.; Jin, Z.W.; Li, G.H.; Ding, R.W. Predicting gas-bearing distribution using DNN based on multi-component seismic data: Quality evaluation using structural and fracture factors. Pet. Sci. 2022, 19, 1566–1581. [Google Scholar] [CrossRef]
- Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.; Gelly, S.; et al. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv 2020, arXiv:2010.11929. [Google Scholar]
- Dou, Y.; Li, K.; Zhu, J.; Li, T.; Tan, S.; Huang, Z. MD Loss: Efficient Training of 3-D Seismic Fault Segmentation Network Under Sparse Labels by Weakening Anomaly Annotation. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–14. [Google Scholar] [CrossRef]
- Xie, E.; Wang, W.; Yu, Z.; Anandkumar, A.; Alvarez, J.M.; Luo, P. SegFormer: Simple and efficient design for semantic segmentation with transformers. Adv. Neural Inf. Process. Syst. 2021, 34, 12077–12090. [Google Scholar]
- Liu, Z.; Lin, Y.; Cao, Y.; Hu, H.; Wei, Y.; Zhang, Z.; Stephen, L.; Guo, B. Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Virtual, 12–13 October 2021; pp. 10012–10022. [Google Scholar]
- Guarido, M.; Wozniakowska, P.; Emery, D.J.; Lume, M.; Trad, D.O.; Innanen, K.A. Fault detection in seismic volumes using a 2.5 D residual neural networks approach. In First International Meeting for Applied Geoscience Energy; Society of Exploration Geophysicists: Houston, TX, USA, 2021; pp. 1626–1629. [Google Scholar]
- Alohali, R.; Alzubaidi, F.; Van Kranendonk, M.; Clark, S. Automated fault detection in the Arabian Basin. Geophysics 2022, 87, IM101–IM109. [Google Scholar] [CrossRef]
- Zhou, R.; Yao, X.; Hu, G.; Yu, F. Learning from unlabelled real seismic data: Fault detection based on transfer learning. Geophys. Prospect. 2021, 69, 1218–1234. [Google Scholar] [CrossRef]
- Pham, N.; Fomel, S. Seismic data augmentation for automatic faults picking using deep learning. In Second International Meeting for Applied Geoscience Energy; Society of Exploration Geophysicists: Houston, TX, USA; American Association of Petroleum Geologists: Tulsa, OK, USA, 2022; pp. 1719–1724. [Google Scholar]
- Zhang, Z.; Yan, Z.; Jing, J.; Gu, H.; Li, H. Generating Paired Seismic Training Data with Cycle-Consistent Adversarial Networks. Remote Sens. 2023, 15, 265. [Google Scholar] [CrossRef]
- Jing, J.; Yan, Z.; Zhang, Z.; Gu, H.; Han, B. Fault detection using a CNN trained with PSF-Convolution-based samples. Geophysics 2022, 88, 1JF-Y3. [Google Scholar]
- Xie, S.; Tu, Z. Holistically-nested edge detection. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 1395–1403. [Google Scholar]
- Choi, Y.; Jo, Y.; Seol, S.J.; Byun, J.; Kim, Y. Deep learning spectral enhancement considering features of seismic field data. Geophysics 2021, 86, V389–V408. [Google Scholar] [CrossRef]
- Du, H.; An, Y.; Ye, Q.; Guo, J.; Liu, L.; Zhu, D.; Childs, C.; Walsh, J.; Dong, R. Disentangling Noise Patterns from Seismic Images: Noise Reduction and Style Transfer. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–14. [Google Scholar] [CrossRef]
- Yang, Y.; Soatto, S. Fda: Fourier domain adaptation for semantic segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 4085–4095. [Google Scholar]
- Zou, Y.; Yu, Z.; Kumar, B.V.K.; Wang, J. Unsupervised domain adaptation for semantic segmentation via class-balanced self-training. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 289–305. [Google Scholar]
- Cheng, H.T.; Koc, L.; Harmsen, J.; Shaked, T.; Chandra, T.; Aradhye, H.; Anderson, G.; Corrado, G.; Chai, W.; Ispir, M. Wide & deep learning for recommender systems. In Proceedings of the 1st Workshop on Deep Learning for Recommender Systems, New York, NY, USA, 15 September 2016; pp. 7–10. [Google Scholar]
- Rezende, D.; Mohamed, S. Variational inference with normalizing flows. In International Conference on Machine Learning. PMLR 2015, 37, 1530–1538. [Google Scholar]
- Dou, Y.; Li, K.; Zhu, J.; Li, X.; Xi, Y. Attention-Based 3-D Seismic Fault Segmentation Training by a Few 2-D Slice Labels. IEEE Trans. Geosci. Remote Sens. 2021, 60, 1–15. [Google Scholar] [CrossRef]
- Zhu, D.; Li, L.; Guo, R.; Tao, C.; Zhan, S. 3D Fault Detection: Using human reasoning to improve performance of convolutional neural networks. Geophysics 2022, 87, IM143–IM156. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, Z.; Wu, B.; Wu, W.; Ma, D. Fault Detection via 2.5D Transformer U-Net with Seismic Data Pre-Processing. Remote Sens. 2023, 15, 1039. https://doi.org/10.3390/rs15041039
Tang Z, Wu B, Wu W, Ma D. Fault Detection via 2.5D Transformer U-Net with Seismic Data Pre-Processing. Remote Sensing. 2023; 15(4):1039. https://doi.org/10.3390/rs15041039
Chicago/Turabian StyleTang, Zhanxin, Bangyu Wu, Weihua Wu, and Debo Ma. 2023. "Fault Detection via 2.5D Transformer U-Net with Seismic Data Pre-Processing" Remote Sensing 15, no. 4: 1039. https://doi.org/10.3390/rs15041039
APA StyleTang, Z., Wu, B., Wu, W., & Ma, D. (2023). Fault Detection via 2.5D Transformer U-Net with Seismic Data Pre-Processing. Remote Sensing, 15(4), 1039. https://doi.org/10.3390/rs15041039