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Abstract: Increases in the area of impervious surfaces have occurred with urbanization. Such surfaces
are an important indicator of urban expansion and the natural environment. The automatic extraction of
impervious surface data can provide useful information for urban and regional management and planning
and can contribute to the realization of the United Nations Sustainable Development Goal 11—Sustainable
Cities and Communities. This paper uses Google Earth Engine (GEE) high-resolution remote sensing
images and OpenStreetMap (OSM) data for Chengdu, a typical city in China, to establish an impervious
surface dataset for deep learning. To improve the extraction accuracy, the Small Attention Hybrid Unet
(SAH-Unet) model is proposed. It is based on the Unet architecture but with attention modules and a
multi-scale feature fusion mechanism. Finally, depthwise-separable convolutions are used to reduce the
number of model parameters. The results show that, compared with other classical semantic segmentation
networks, the SAH-Unet network has superior precision and accuracy. The final scores on the test set were
as follows: Accuracy = 0.9159, MIOU = 0.8467, F-score = 0.9117, Recall = 0.9199, Precision = 0.9042. This
study provides support for urban sustainable development by improving the extraction of impervious
surface information from remote sensing images.

Keywords: impervious surface; remote sensing; deep learning; SAH-Unet; Google Earth images

1. Introduction

In recent years, with the acceleration of urbanization processes around the world, the
area occupied by cities and towns has expanded. This is causing a series of environmental
problems, such as reductions in and degradation of natural habitats, losses in biodiversity,
land subsidence and water pollution [1]. According to the United Nations, the urbanization
of developing countries has been particularly prominent in the past decade. Their data
show that urban expansion is most obvious in Asia, especially China and India [2]. Rapid
urbanization has resulted in increases in the area of impervious surfaces. The United States
Geological Survey (USGS) defines impervious surfaces as hard areas that do not allow
water to seep into the ground [3]. Specifically, they refer to any natural or man-made
substance that can hinder water infiltration and, thus, affect the flood runoff, material
precipitation and pollution profile. They include building roofs covered with waterproof
materials, parking lots and sidewalks. In general, with ongoing global urbanization, the
expansion of urban impervious surfaces is having very important impacts on the ecological
balance, hydrological conditions and environment of urban areas [4]. To monitor and
evaluate sustainable urban development, the United Nations proposed 17 sustainable
development goals (SDGs) in 2015. Among them, SDG11 refers to sustainable cities and
communities; specifically, strategies to make cities and other human settlements inclusive,
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safe, resilient and sustainable. The accurate quantification of impervious surfaces is an
important planning tool for urban land use development. Careful planning can mitigate
the adverse effects of urban heat islands, water quality degradation and natural habitat loss
caused by increases in impervious surface area [5]. The automatic extraction of accurate real-
time data on impervious surfaces is very important for urban planning and environmental
and resource management [6,7]. Research on the automatic extraction of impervious surface
data is of great significance to urban ecological construction and the monitoring of urban
dynamics and for achieving sustainable development in urban and rural areas.

In the early days, impervious surfaces were mainly studied by manual survey and map-
ping. Although such methods are highly accurate, they are costly and have poor real-time
performance. Compared with traditional surveying and mapping methods, satellite-based
remote sensing technology is lower cost, very practical and provides wider coverage. Concur-
rent with its rapid development, remote sensing technology has become widely used to obtain
data on impervious surfaces and has become an important research method in sustainable
urban development. The traditional method of extracting impervious water surface data
from remote sensing images is to analyse differences in the reflected spectral characteristics of
different ground objects through spectral analysis and mixed pixel decomposition. However,
data resolution and spectral interference from different ground objects limit the accuracy of im-
pervious surface extraction. For instance, Deyong et al. applied a classification and regression
tree (CART) to Landsat and night light data to effectively extract data on impervious water
surfaces [8]. Yu et al. proposed the joint use of multi-source remote sensing data, including
multispectral images, high-spatial-resolution images and airborne LIDAR data, to extract
impervious surfaces [9]. They made full use of visible light, near-infrared radiation, thermal
infrared radiation, elevation and other features extracted from the multi-source remote sensing
data to achieve a more accurate understanding of urban impervious surfaces. In general, in
early research, the extraction of impervious surfaces was mostly based on simple machine
learning algorithms. Nevertheless, the features and algorithms must be adjusted for use in
different scenarios, applications or geographical areas [10]. These presented many problems,
such as a low utilization rate of underlying features, extreme dependence on manual work,
poor automation of the extraction process and poor overall accuracy.

In recent years, deep learning has become a major focus of machine learning. It is charac-
terized by its unique automatic feature learning ability and strong ability to represent and fit
nonlinear functions. It can generate abstract high-level representations, attributes or features by
processing and integrating low-level features [9]. Due to its great advantages over traditional
machine learning algorithms, deep learning and related methods have been successfully applied
to various computer vision tasks, such as image classification, instance segmentation and target
detection. Convolutional neural networks (CNNs) have been gradually applied to remote sens-
ing image processing because they can automatically mine the relevant context representation
of images and deeply learn the abstract image features [11]. A fully convolution neural network
(FCN) extends image-level classification to the pixel level, greatly promoting the development
of semantic segmentation networks [12]. The Unet model based on an encoder–decoder ar-
chitecture combines the characteristics of deconvolution and jump networks. Many studies
have applied it to remote sensing image research and achieved good results [13]. The Feature
Pyramid Network (FPN) is a feature pyramid model that combines multi-level features to solve
multi-scale problems. It fuses high- and low-level features to increase the expression ability of
low-level features and improve network performance. This allows targets of different scales to
be allocated to different layers for prediction, following a strategy of “divide and conquer” [14].
The DeepLabv3 network architecture adds a module for multi-scale object segmentation and
uses serial and parallel hole convolution modules. It uses a variety of different hole rates to
obtain multi-scale content information, which improves the performance of multi-scale object
instance segmentation [15,16]. LinkNet links an encoder and decoder to maintain the accuracy
of a network model while reducing the number of parameters on a large scale [17]. Through
context aggregation based on different regions, the Pyramid Scene Parsing Network (PSPNet)
allows the network model to make full use of context information and improve the network’s
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performance under scenarios with different resolutions [18]. The DeepLabv3+ architecture adds
a new decoding module to the DeepLabv3 architecture to reconstruct object boundaries more
accurately for image segmentation [19]. The Pixel Aggregation Network (PAN) architecture
adds a bottom-up pyramid based on FPN to transfer the underlying features. This allows the
model to combine semantic and positioning information to improve performance [20]. The
multi-scale attention network (MAnet) introduces a Position-wise Attention Block (PAB) and
Multi-scale Fusion Attention Block (MFAB) to capture the channel dependencies between any
feature maps by multi-scale semantic feature fusion, providing advancements in medical image
segmentation [21]. Compared with classic machine-learning methods, deep-learning methods
have better performance in image segmentation [22]. Several network models have been used
to extract impervious surfaces; Bowen et al. used a depth convolution neural network to extract
data on impervious surfaces from Gaofen 2 satellite remote sensing images of Wuhan city [23].
The efficiency and accuracy of the deep-learning methods were better than those of traditional
machine-learning algorithms such as random forest and support vector machine. Parekh et al.
used a Unet series to extract data on impervious surfaces from Landsat 8 remote sensing images
and achieved good results [3]. Based on the local attention mechanism model in a densely-
connected FCN, Pang Bo et al. extracted data on impervious surfaces from GF-2 remote sensing
images of Tianjin [24]. Their method had better integrity than other methods in extracting
details of impervious surfaces from remote sensing images. In addition, the research of Furkan
et al. shows that, even if the sample annotation precision is less than 100%, using a depth
neural network classifier to classify remote sensing images can still obtain superior classification
results [25]. Even though previous studies have demonstrated satisfactory performance in
impervious surface data extraction based on DL networks, some limitations remain that need to
be tackled [26]. For instance, as the network hierarchy deepens, small details such as impervious
surfaces and edges will be lost. In addition, due to incomplete imaging, such models may
commission or omission certain ground objects. To retain detailed information and extract more
accurate impervious surface data, further exploration of network models is required. This must
ensure their ability to extract multi-scale image features and be suitable for the extraction of
impervious surface data from high-resolution remote sensing images [27,28].

To sum up, using a deep-learning method to extract impervious surface information
can overcome the main shortcoming of traditional methods—the requirement for a large
amount of prior knowledge. Its end-to-end learning method can optimise the model
parameters, reduce the dependence on prior knowledge and human intervention, and
provide more accurate extractions on impervious surfaces. The present study produced
an impervious water surface dataset for deep learning, which is based on high-resolution
remote sensing images of Chengdu, a typical Chinese city. The data are analysed using a
proposed model—the Small Attention Hybrid Unet (SAH-Unet). Compared with other
classical semantic segmentation networks, SAH-Unet demonstrates better performance in
extracting impervious surface data. This study proposes a new method for the automatic
extraction of impervious surface information from high-resolution remote sensing images.
The method provides support for monitoring the sustainable development of cities.

2. Materials and Method
2.1. Data Collection and Processing

The data used in the study were images of Chengdu, China, obtained from GEE and
OSM. A corresponding impervious surface binary map was obtained by ENVI process-
ing. Finally, a dataset for model training was constructed through clipping and image
enhancement. The following subsections describe these processes in more detail.

2.1.1. Study Area

Chengdu is located in Sichuan Province at 30◦05′–31◦26′N, 102◦54′–104◦53′E, at the western
edge of Sichuan Basin and the hinterland of Chengdu Plain (Figure 1). To the east are the
Longquan Mountains and Pengzhong Mountains (mountain areas within the basin). The central
region is the Chengdu Plain, which has a dense river network and fertile land. To the west are the
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Qionglai Mountains, which have a great range of elevations and varied topography. Chengdu
has a monsoon-influenced humid subtropical climate (Köppen Cwa). It is mostly warm with
high relative humidity all year and an annual mean temperature of 16.27 ◦C (61.3 ◦F) [29]. It
generally features flat terrain, mainly of plains, with a crisscrossing river network. The average
elevation in the urban area is 500 m [30]. The density of the city’s river network is as high as
1.22 km/km2, the densest in Sichuan Province [31]. In the past two decades, the city’s population
has surged and urbanization has continued to expand. Chengdu has gradually become an
important central city and economic, cultural, financial and transportation centre of Southwest
China [32]. It is an ideal area for studying cities.
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Figure 1. Geographical location and remote sensing image of the study area.

2.1.2. Data Sources

The Google Earth Engine (GEE) is an open-source remote sensing image platform
that combines satellite, aerial, 3D and Street View images (Data SIO, NOAA, US Navy,
NGA, GEBCO; image Landsat/Copernicus; image IBCAO, etc.) [33]. The data used in the
study were high-spatial-resolution (2.15 m) satellite images of Chengdu obtained from the
GEE. Due to the characteristics of the integrated images on the GEE platform, the image
acquisition dates were inevitably inconsistent. The main source was the Maxar satellite,
with an acquisition date range of 2015–2022. As there was a huge number of data, it was
difficult to process data for the whole research field at the same time. On the premise of
ensuring image quality, three images of the main urban area of Chengdu were selected
as training samples and one was selected as a test sample. The size of these images was
4352 × 4352 pixels, and their selection positions are shown in Figure 2.
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Figure 2. Training and test sample selection location and remote sensing image.

OpenStreetMap (OSM) is a free, open-source geographic database that is updated
and maintained by a community of volunteers via open collaboration [34]. Volunteers
manually drew various features, such as roads, bridges, pavements and buildings, and
rendered this information on a map. Since the model needs to adjust the corresponding
weights based on data feedback, it is crucial to obtain accurate sample data. To ensure
the accuracy of impervious surface labels as much as possible, we used OSM data to help
identify impervious surface [35,36]. The overall OSM data of Chengdu is shown in Figure 3
and the correspondence between the OSM data and high-resolution remote sensing images
are shown in Figure 4 (taking the test samples as an example).
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2.1.3. Dataset Construction

An important problem in extracting impervious surfaces using deep-learning methods
is data scarcity. There are many types of urban land cover, such as buildings, roads, bridges,
forests, farmland, bare land, water and other surface objects, which have complex spatial
structures. Accurately labelling as many different types of permeable and impervious surfaces
as possible is key to the stability of model training and increasing the model’s generalisability.



Remote Sens. 2023, 15, 1042 7 of 20

In this paper, we obtained high-resolution remote sensing images from the GEE to
make a binary map of impervious surfaces. To ensure the accuracy of labels as much as
possible, we used OSM data as mask data corrected by visual interpretation and used ENVI
to mark the impervious surface areas in the image in strict accordance with their original
positions in the image. Supervised classification was used for the initial classification
of the dataset to ensure that the separation between samples was >1.9. After the initial
classification, Majority/Minority Analysis, clump classes and sieve classes operations
were carried out to eliminate data processing errors and obtain a better binary map of
impermeable surfaces.

High-resolution remote sensing images have extremely rich spatial, colour and texture
features. The different levels of feature information provide a basis for the extraction of
impervious surfaces [37]. However, directly inputting the images into the network model
will cause a huge computational burden and lead to memory overflow. To retain as much
image information as possible and reduce computational pressure, the images were cut into
blocks before being input into the network. This allowed the detection of some small and
meaningful texture and contour features related to impervious surfaces that were contained
in a small number of adjacent pixels. When there are limited data, data augmentation can
improve the quality and quantity of existing data, expand the learning range during model
training, and enhance data robustness. This is done by adding noise to better train the
network model and enhance its generalisability. Due to the angle and temporal image of
remote sensing image sensors [38], the image quality can be improved through geometric
changes and other data enhancement methods. This can make the image features more
obvious, thus enhancing the recognition of impervious surfaces. In this paper, we used
noise and Gaussian blur to enhance the learning ability of the model and improve its
robustness. Multi-angle rotation was adopted to resolve the inconsistency between the
remote sensing image distribution and reality.

Based on the above analysis, the unified picture block size used in this paper was
256× 256. After image enhancement, the images with poor quality (where the features were
not obvious) and unbalanced sample distribution were filtered out to form 7605 images
of 256 × 256 pixels. There were 5760 used in the training set, 1440 in the verification set
and 405 in the test set. An example of the final sample is shown in Figure 5. The marked
impervious surfaces mainly include buildings and roads, while the other surfaces include
vegetation, water bodies and bare land.
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2.2. Methodology

This section introduces the proposed SAH-Unet model proposed for the extraction of
impermeable surfaces, and describes its training process and evaluation index.

2.2.1. SAH-Unet

The model that we propose here builds upon and extends the Unet architecture. As
shown in Figure 6, the Unet architecture consists of an encoder–decoder structure that
results in a U-shape [39]. The encoder part (corresponding to the left half of Figure 6)
applies max-pooling and convolution, which halves the image size and doubles the number
of feature maps, respectively. The encoders are subsequently followed by the same number
of decoders (corresponding to the right half of Figure 6), which consist of three parts:
a bilinear upsampling operation to double the feature map size, a concatenation of the
resulting feature maps with the previous encoder’s output via skip-connections, and, lastly,
convolution to half the number of feature maps. Unet can use multiple scales of input to
generate its output, which is conducive to the extraction of impervious surfaces.

The Small Attention Hybrid Unet (SAH-Unet) makes three modifications to Unet.
Firstly, we add the CBAM attention mechanism to the encoder part. Secondly, we introduce
the multi-scale feature fusion (MFF) mechanism to the encoder part. Thirdly, we transform
the regular convolutional operations to depthwise-separable convolutions (DSC).
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2.2.2. CBAM Attention Mechanism

In the field of deep learning, the introduction of an attention mechanism means that
the network model does not need to process huge amounts of input information, some of
which may be redundant, to the same standard, allowing the network to focus on specific
parts of the input [40,41]. In the detection of impervious surfaces, due to the existence of
small, complex and overlapping samples, the spatial perception ability of the model is
also very important. As it is lightweight and generalisable, a convolutional block attention
module (CBAM) can be integrated into any CNN architecture seamlessly with negligible
overhead. Such modules have demonstrated usefulness in feature extraction [42]. In CBAM,
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the attention mechanism is applied first across the channels of the image and subsequently
to the spatial dimension, as shown in Figure 7. The channel attention module focuses
on deciding what is meaningful information. It uses two parallel max-pooling (Maxpool)
layers and an average-pooling (Avgpool) layer. It then passes through a shared multi-layer
perceptron (MLP) module and, finally, adds the two output results and uses a sigmoid
activation function to obtain the weights of each channel use. The channel attention is
computed as follows:

Mc(F) = σ(MLP(Avgpool(F)) + MLP(Maxpool(F))) (1)

where F denotes the input feature and σ denotes the sigmoid function.
The spatial attention module focuses on the informative parts. It obtains two feature

maps through the Maxpool and Avgpool layers, then concatenates the feature maps and,
finally, obtains the weights of each pixel in the entire image through 7 × 7 convolution and
the sigmoid activation function. In short, it is computed as:

Ms(F′) = σ
(

f 7×7([Avgpool(F′); Maxpool(F′)])
)

(2)

where F′ denotes the input characteristics of the through channel attention module and
f 7×7 represents a convolution operation with a filter size of 7 × 7.
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Figure 7. CBAM schematic diagram. The module has two sequential sub-modules: channel and
spatial. the channel sub-module utilises both max-pooling outputs and average-pooling outputs
with a shared network; the spatial sub-module utilises similar two outputs that are pooled along the
channel axis and forward them.

In SAH-Unet, CBAM is placed after the convolution calculation of each encoder to
enlarge important features and suppress relatively unimportant ones at the image scale. It
is worth noting that the input of each encoder is still based on the features of the previous
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encoder after convolution and maximum pooling down-sampling, rather than on the
feature information with the attention mechanism applied. This way, the original image
features are preserved until the last encoder. In the subsequent network, the features
processed by the attention mechanism are connected with the feature information sampled
on the decoder through skip-connection.

2.2.3. Multi-Scale Feature Fusion Mechanism

The original Unet only predicts the last layer from top to bottom. The shallow-layer
features can provide more accurate location information, while multiple up-sampling and
down-sampling network operations will introduce errors into the positioning information of
the deep network, resulting in easy loss of detail in small coverage areas, and irregular shape
coefficients for impervious surfaces [43]. The SAH-Unet model adds a branch path to the
decoder (corresponding to the part of the decoder marked by the yellow arrow in Figure 6).
The specific implementation is divided into three parts: (1) 1 × 1 convolution is conducted to
obtain a feature map with 1 channel; (2) convolution and upsampling of this map are done a
corresponding number of times to obtain a feature map with the same size and channel number
as the final output; (3) we add the outputs from each encoder to obtain the final output of
the model. By predicting the classification results at different scales in the upsampling step,
the model can use multi-scale information in the backpropagation and weight update process
and apply the feature map of each layer to the prediction. This enhances the sensitivity of the
network to impervious surface details, improves the ability to extract the impervious surfaces of
small targets, and thus improves the accuracy of impervious surface data extraction.

2.2.4. Depthwise-Separable Convolutions

Finally, we use depthwise-separable convolutions in our model to reduce the number of
parameters. It consists of two parts: depthwise convolution and pointwise convolution [44,45].
Each channel conducts a convolution operation to obtain the corresponding output, and
then passes a 1 × 1 convolution kernel to obtain the final output, as shown in Figure 8. Its
advantage is that it can greatly reduce the number of parameters and amount of computation
when extracting multi-scale features of impervious surfaces. Assume that the size of the input
feature map is DG ×DG ×M. In depthwise convolution, a channel can only be convolutioned
by one convolution kernel; thus, assume that the size of the filter is DK × DK × 1. Then,
the calculation amount after depthwise convolution is M× DG

2 × DK
2. Because depthwise

convolution only calculates a single channel, the information between each channel is not
exchanged. The introduction of pointwise convolution completes the further fusion of feature
channels. Because its convolution kernel size is 1× 1, assume that the size of the output feature
map is DG ×DG × N. Thus, the filter is 1× 1×M and the number is N. Then, the calculation
amount after pointwise convolution is N ×M× DG

2 and that after regular convolution is
N × DG

2 × DK
2 ×M. The formula for calculating the ratio of the depthwise-separable and

regular convolution calculation amounts can be obtained as follows:

Depthwise–separable Conv
Regular Convolutional =

M×DG
2(DK

2+N)
N×DG

2×DK2×M = DK
2+N

DK2×N
(3)

In SAH-Unet, we substitute all convolutions of the original Unet model with depthwise-
separable convolutions, but in CBAM we still apply regular convolutions. Table 1 compares
the models’ parameters. It can be seen that the number of parameters of the proposed
SAH-Unet model is greatly reduced after improving the original Unet, and the increase in
parameters compared with Unet with DSC is also within an acceptable range. The final
network model parameters are about 4 M.
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Table 1. Comparison Table of Model Parameters.

Model Parameters

Unet 17,272,577
Unet with CBAM 17,428,781

Unet with DSC 3,955,185
SAH-Unet 4,121,398

2.2.5. Model Training and Evaluation

To better evaluate the performance of each model, we pre-trained them on the Im-
ageNet dataset [46], and then used pre-trained weights to extract impervious surfaces.
In model training, the epochs were pre-set to 200 and an early stop standard was used
whereby training stopped when the verification loss did not improve for five consecutive
epochs [47]. The experiment shows that all the models were satisfied within 200 epochs.
When the gradient descent optimisation algorithm is used to optimise the objective function,
the learning rate should be reduced appropriately so that the global minimum of the loss
function can be approached as much as possible. The cosine function has the characteristics
of slowly decreasing and then accelerating and then decelerating with the increase in the
value of the independent variable. To avoid falling into local optimisation, we used cosine
annealing to optimise the learning rate. Its formula is:

ηt = ηmin +
1
2 (ηmax − ηmin)

(
1 + cos

(
Tcur
Tmax

π
))

(4)

where ηt denotes current learning rate, ηmax denotes maximum learning rate, ηmin denotes
minimum learning rate, Tcur denotes the current number of iterations and Tmax denotes the
maximum number of iterations.

The initial learning rate was set to 0.001; we used the Adam optimiser with default
values [48]. The loss function used was the Dice Loss function between the impervious
surface label of the predicted image and the actual label [49,50]. This is a region-related
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loss function that provides an ideal effect in the training of positive and negative sample
imbalance. Its formula is:

DiceLoss = 1− 2 ∑N
i=1 yi ŷi

∑N
i=1 yi+∑N

i=1 ŷi
(5)

where yi represents the label value of pixel i, ŷi represents the predicted value of pixel i,
and N represents the total number of pixels.

2.2.6. Model Evaluation

To compare the impervious surface data extraction accuracy of each model, we used
the Accuracy, MIOU, F-score, Recall and Precision indicators [51,52]. A true positive (TP) is
when an impervious surface is consistent with the model’s identification, a false positive
(FP) is when a permeable surface is misidentified by the model as impervious, a false
negative (FN) is when an impervious surface is misidentified by the model as permeable,
and a true negative (TN) occurs when a permeable surface is correctly identified by the
model [53,54]. These values are achieved by the Confusion Matrix defined in Table 2. The
metrics are calculated as follows:

Table 2. Explanation of the confusion matrix.

Actual Labels Predicted Labels
Impervious Permeable

Impervious TP FN

Permeable FP TN

Precision = TP
TP+FP (6)

Recall = TP
TP+FN (7)

Accuracy = TP+TN
TP+FN+TN+FP (8)

F-score = 2×recall×precision
recall+precision (9)

MIOU = TP
FP+FN+TP (10)

3. Results

The experiments were conducted in Python language based on the Pytorch 1.12 frame-
work. The experiments were done on a single Tesla P100 GPU with 12.5 GB of RAM. To further
demonstrate the performance of the proposed SAH-Unet in impervious surface extraction,
the classical semantic segmentation network architectures Unet, DeepLabv3+, PAN, FPN,
LinkNet, PSPNet and PAN were trained under the same environment for comparison.

3.1. Training and Validation Results

The final training results of each model on the validation and test sets are shown in Table 3.
The results are the averages of five experiments.
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Table 3. Comparison table of model training and test results.

Set Model Mean Accuracy Score Mean Loss

LinkNet 0.9153 0.0979
DeepLabv3+ 0.9237 0.0831

Training set

PAN 0.9293 0.0745
Unet 0.9352 0.0706

MAnet 0.9337 0.0690
PSPNet 0.9089 0.0947

FPN 0.9262 0.0807
SAH-Unet 0.9432 0.0640

LinkNet 0.8543 0.1511
DeepLabv3+ 0.8714 0.1327

Validation set

PAN 0.8656 0.1400
Unet 0.8863 0.1206

MAnet 0.8830 0.1209
PSPNet 0.8375 0.1673

FPN 0.8682 0.1367
SAH-Unet 0.8873 0.1169

Table 3 shows that the proposed SAH-Unet architecture achieves the best performance
after training, with the lowest training loss of 0.0640. It also has the lowest loss and highest
accuracy of the verification set: 0.1206 and 0.8863, respectively.

3.2. Metric Results

The final metric results of each model on the test set are shown in Table 4. The results
are the averages of five experiments.

Table 4. Comparison table of model metric results.

Model Accuracy MIOU F-Score Recall Precision

LinkNet 0.8759 0.7836 0.8726 0.8866 0.8596
DeepLabv3+ 0.8974 0.8166 0.8944 0.9096 0.8805

PAN 0.8907 0.8062 0.8875 0.9003 0.8756
Unet 0.9078 0.8339 0.9041 0.9149 0.8943

MAnet 0.9052 0.8299 0.9020 0.9150 0.8902
PSPNet 0.8747 0.7799 0.8712 0.8821 0.8609

FPN 0.8885 0.8019 0.8859 0.9040 0.8693
SAH-Unet 0.9159 0.8467 0.9117 0.9199 0.9042

Table 4 compares the Precision of each model on the test set. The results show that
SAH-Unet has advantages in terms of five evaluation indicators—Accuracy, MIOU, F-score,
Recall and Precision—as well as having the highest extraction precision of all models.
Compared with other semantic segmentation networks, the Unet network also achieved
relatively good results, indicating that its unique jump-connection architecture can improve
the accuracy of extracting impermeable water surface data from high-resolution remote
sensing images, making it suitable for this task.

3.3. Visualization Results

To verify the actual effect of extracting impervious surfaces with SAH-Unet, the
extraction results were visually evaluated. As a large range of extraction results cannot
clearly reflect the differences between various methods, three typical areas in the test
sample were selected for detailed comparison. A detailed comparison of the impervious
surface extraction results of the SAH-Unet, LinkNet, DeepLabV3+, PAN, Unet, MAnet,
PSPNet and FPN networks is shown in Figure 9.
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From the visualisation of the impervious surface extraction results shown in Figure 9,
it can be seen that the extraction results of SAH-Unet have the highest rate of coincidence
with the true values. The contour is relatively complete, the boundary is clear and the
extraction effect is the best. In scene 1, due to shooting restrictions, vegetation blocks
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the scene, resulting in extremely irregular contours. Unlike SAH-Unet, the other models’
extractions of impermeable surfaces in scene 1 have commissions or omissions. This
indicates that the proposed model is also good at extracting complex and irregular contours.
In scene 2, due to the size limitation of the image, the shed in the lower-left corner is only
partly visible, which increases the difficulty of recognition. As a result, all the models
except SAH-Unet produce wrongly divided results. In addition, the proposed model also
shows better performance in extracting ground objects with clear and fixed contours, such
as roads. The difficulty in scene 3 lies in the extraction of unobvious details on the right
side and the interference of noise. Through comprehensive comparison, we can see that
SAH-Unet achieves the best extraction effect, with no incorrect division due to noises.

3.4. Generalization Results

To verify the generalisation performance and scalability of the proposed model, aerial
images of Boston, Massachusetts, USA that were not used in training were selected for
model verification. The results of impervious surface extraction are shown in Figure 10.
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It can be seen from Figure 10 that SAH-Unet can still accurately extract impervious
surfaces from images taken at different times and in different regions. The distribution of
impervious surfaces in this area is clear, and the road and building structures are obvious.

It is noteworthy that the shadow of the highway is not correctly identified as an impervi-
ous surface. On the other hand, small shadows of cars and buildings are correctly recognised.
It is speculated that the ground feature model containing shadows in the image block was
sufficiently studied during training, and the recognition ability of the large image models is
insufficient due to the limitations of image size. In fact, regardless of the overall image, for
some shadows in the image block, it is also difficult for humans to accurately identify the
impervious surfaces. In general, the extraction result of SAH-Unet is in good agreement with
the real values, and it also extracted some small-scale details well, indicating that the model
has a certain generalisability in impervious surface data extraction.

3.5. Ablation Study

It can be seen from Table 5 that, compared with Unet, the introduction of CBAM and
multi-scale feature fusion (MFF) can further improve the accuracy, while the introduction
of DSC causes accuracy loss while reducing the number of model parameters. SAH-Unet
significantly improves the modelling accuracy while greatly reducing the parameters.
Compared with Unet, the indexes of the extraction results of SAH-Unet are improved by
0.89%, 1.53%, 0.84%, 0.55% and 1.11%, respectively, which shows that the introduction of



Remote Sens. 2023, 15, 1042 16 of 20

attention modules and feature fusion can achieve better model performance, even with
a reduced number of parameters. In general, SAH-Unet is feasible for the extraction of
impervious surface data and has excellent accuracy. The total accuracy of impervious
surface data extraction based on high-resolution images is 0.9159, and the MIOU, F-score,
Recall and Precision are 0.8467, 0.9117, 0.9199 and 0.9042, respectively.

Table 5. Comparison table of the test accuracy of different Unet models.

Model Accuracy MIOU F-Score Recall Precision

Unet 0.9078 0.8339 0.9041 0.9149 0.8943
Unet with CBAM 0.9096 0.8386 0.9095 0.9164 0.9003
Unet with MFF 0.9105 0.8391 0.9102 0.9166 0.9009
Unet with DSC 0.9021 0.8320 0.9019 0.9100 0.8895

SAH-Unet 0.9159 0.8467 0.9117 0.9199 0.9042

Scene 3 in Figure 9 is used as an example to visually analyse the Unet-series mod-
els (Figure 11). It can be seen from the figure that Unet CBAM does not suffer from noise
misclassification, which indicates that the introduction of an attention mechanism makes
the model more accurate in identifying impervious surfaces and more capable of dealing
with noise. However, there is still some room for improvement in extracting certain details
of the impervious surface. Unet with MFF has a strong ability to extract the impervious
surface details, which indicates that the introduction of a multi-scale feature fusion mecha-
nism increases the ability to extract network details. However, it is affected by some other
factors that result in misclassification. SAH-Unet combines the advantages of both and
shows the best performance.
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4. Discussion

This paper proposes the SAH-Unet network model for extracting impervious surface data
from high-resolution remote sensing images. The experimental results show that the network
structure setting is effective. Table 5 and Figure 11 show that the introduction of CBAM helps
the model to extract impermeable surface information more accurately, while the introduction
of MFF enhances its ability to extract impermeable surface details. Tables 1 and 5 show that the
introduction of depth separable convolution greatly reduces the number of model parameters
while maintaining model performance. In the experiment testing the generalisation ability of
the proposed model with high-resolution remote sensing images of Chengdu, good results in
the extraction of impervious surface information were achieved.

Historically, impervious surface modeling is based on statistical indices computed to
accentuate impervious surfaces in satellite imagery; the use of deep-learning methods to
extract the impermeable surface is still a frontier topic [55]. SAH-Unet achieves the best results
in terms of target edges and details and has certain advantages over the LinkNet, DeepLabV3+,
PAN, Unet, MAnet, PSPNet and FPN frameworks. Tables 3 and 4 show the precision results of
each model on the training, validation and test set: the total extraction precision of SAH-Unet
on the test set was 0.9159, while the MIOU, F-score, Recall and Precision were 0.8467, 0.9117,
0.9199 and 0.9042, respectively, the best of all models. Figure 9 shows the visualisation results
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of impervious surface extraction. Figure 10 uses high-resolution remote sensing images of
different time images and regions to test the generalisation ability of SAH-Unet. SAH-Unet
also has great advantages over other models. In view of the difficulties of detail and shadow
extraction with impervious surface data, this method also has some improvements.

It is worth mentioning that both buildings and vegetation will produce shadows,
and when large shadows are used as input features, due to the incomplete information
contained in the image, it greatly increases the difficulty of model recognition, resulting in
the phenomenon of misclassification. In addition, due to the small amount of bare surface
leakage in the urban area, it may lead to insufficient recognition by the model.

In general, there is still much room for improvement in the extraction of impervious
surface information from high-resolution remote sensing images. With the continuous
development of network architectures and remote sensing technology, further progress
will be made in the extraction of data on urban impervious surface via deep learning.

5. Conclusions

The real-time extraction of impervious surface data is of great significance to urban
sustainable development. This paper used GEE high-resolution remote sensing images and
OSM data for Chengdu, a typical city in China, to make an impervious surface dataset via
pre-processing and image enhancement. This was applied to network model training based
on deep learning. In addition, this paper improved upon Unet by proposing the SAH-Unet
architecture. It introduced an attention mechanism and feature prediction combined with
multi-scale fusion, and, finally, used depthwise-separable convolution instead of traditional
convolution to reduce the model parameters. The experimental results show that, compared
with other classical models, the proposed model can extract impervious surface data better,
while it achieved higher accuracy.

As future research, we will introduce other attention mechanisms and test their effects
on the model. Additionally, later research will strive to build a higher quality dataset and
further explore the network architecture.
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Abbreviations

Abbreviation Definition
Avgpool average-pooling
CART classification and regression tree
CBAM convolutional block attention module
CNNs Convolutional neural networks
DSC depthwise-separable convolutions
FCN fully convolution neural network
FN false negative
FP false positive
FPN Feature Pyramid Network
GEE Google Earth Engine
MAnet multi-scale attention network
Maxpool max-pooling
MFAB Multi-scale Fusion Attention Block
MFF multi-scale feature fusion
MLP multi-layer perceptron
OSM OpenStreetMap
PAB Position-wise Attention Block
PAN Pixel Aggregation Network
PSPNet Pyramid Scene Parsing Network
SAH-Unet Small Attention Hybrid Unet
SDGs sustainable development goals
TN true negative
TP true positive
USGS United States Geological Survey
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