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Abstract: The block adjustment method can correct systematic errors in the bistatic Synthetic Aper-
ture Radar Interferometry (InSAR) satellite system and effectively improve the accuracy of the
InSAR-generated Digital Elevation Model (DEM). Presently, non-parametric methods, which use
the polynomial to model the systematic errors of InSAR-generated DEMs, are most frequently used
in spaceborne InSAR-DEM adjustment. However, non-parametric methods are not directly related
to the physical parameters in the InSAR imaging process. Given the issue, this paper conducts
adjustments in the parameter domain and proposes a three-dimensional block adjustment method
for spaceborne bistatic InSAR systems based on the Range-Doppler-Phase (RDP) model. First, we
theoretically analyze the sensitivities of spatial baseline, azimuth time, and slant range to the RDP
geolocation model and confirm the analysis method with a simulated geolocation result. Second, we
use total differential and differential geometry theories to derive adjustment equations of available
control data based on sensitivity analysis. Third, we put forward an iterative solution strategy to
solve the corrections of parallel baseline, azimuth time, and slant range to improve the plane and
elevation accuracies of InSAR-generated DEMs. We used 29 scenes of TanDEM-X Co-registered
Single look Slant range Complex (CoSSC) data to conduct simulated and real data experiments. The
simulated results show that the proposed method can improve the accuracies of baseline, range,
and timing to 0.05 mm, 0.1 m, and 0.006 ms, respectively. In the real data experiment, the proposed
method improves the plane and elevation accuracies to 4.14 m and 1.34 m, respectively, and effectively
suppresses the fracture phenomenon in the DEM mosaic area.

Keywords: DEM; Range-Doppler-Phase model; sensitivities analysis; spaceborne bistatic InSAR;
three-dimensional adjustment

1. Introduction

The bistatic Synthetic Aperture Radar Interferometry (InSAR) technology [1,2] uses
two SAR satellites in formation to observe the ground and obtains the phase difference
through interference processing to inverse the Digital Elevation Model (DEM). The TerraSAR-
X/TanDEM-X [3,4] developed by German Aerospace is a typical representative of spaceborne
bistatic InSAR systems.

The interference factors, such as measurement noise, can affect the accuracy of InSAR
geometric parameters, thus leading to systematic errors in inversed DEMs [2]. The InSAR
block adjustment technology [5,6] can jointly correct these errors. The core idea is to list
the loss function using control data and solve adjustment parameters using optimization
algorithms. According to the adopted models, the current adjustment methods can be
divided into two categories: the method based on general models [5,7], called the non-
parametric method, and the method based on strict models [6,8,9], called the parametric
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method. The former models the systematic elevation errors of DEMs as polynomials about
image coordinates and the systematic errors of each DEM can be directly compensated by
polynomial coefficients. The latter method is developed based on the physical geolocation
model, the Range-Doppler-Phase (RDP) model [10], of the bistatic InSAR system to solve
the measurement errors of slant range, baseline, and other parameters. After adjustment,
subscribers need to eliminate the measurement errors from the original parameters to
re-inverse DEMs. The non-parametric method is widely employed in spaceborne InSAR
systems [11]. In 2010, González, Jaime Hueso et al. verified the general adjustment method
using simulated experiments [12]. Huber, Martin et al. put forward the concept of tie
point chips to constrain the height accuracy of the DEM overlapping area [13]. In 2012,
Gruber, Astrid et al. obtained the first result of TanDEM-X DEM using the general method,
proving that the elevation accuracy after adjustment can reach 2.0 m. At present, this
method has been applied in TanDEM-X Mosaic and Calibration Processor (MCP) [14].
The parametric method is usually used to adjust airborne InSAR systems [15,16]. In 2011,
Jin Guowang et al. jointly calibrated the baseline error of airborne systems using the block
adjustment method [16]. In 2012, Ma Jing et al. proposed an airborne three-dimensional
block adjustment method by extending the Range-Doppler model [8]. After adjustment,
the plane and elevation accuracies are 1.60 m and 2.22 m, respectively.

However, the current adjustment methods still have room for improvement. On the
one hand, the non-parametric method can not be applied to the plane adjustment because
it only models the elevation error [17]. On the other hand, the adjustment parameters (i.e.,
polynomial coefficients) in the non-parametric method do not have strict physical signifi-
cance and cannot correspond to the physical parameters in the InSAR inversion process.
Most parametric methods are derived from airborne geometry without considering the
characteristics of spaceborne InSAR systems. For example, the airborne adjustment usu-
ally uses manually-deployed corner reflectors as external control points, which are strong
reflection points in SAR images with high recognition and incredible three-dimensional
accuracy [18–20]. However, due to the limitation of cost, accessibility, and other issues,
the feasibility of this strategy is extremely low for spaceborne large-area mapping. It
undoubtedly brings challenges to spaceborne InSAR adjustment.

In response to the above problems, this paper proposes a three-dimensional spaceborne
InSAR-DEM block adjustment method based on the RDP geolocation model. In Section 2,
we analyze the sensitivities of physical parameters, derive the mathematical expressions be-
tween geolocation errors and the uncertainty of physical parameters by the total differential
and differential geometry theories, and determine the slant range, spatial baseline, and tim-
ing parameters as adjustment parameters. In Section 3, we derive the adjustment equations
of available control data, including control points and tie points, establish the spaceborne
InSAR-DEM adjustment model based on the RDP model, and propose an iterative solution
strategy. In Section 4, we use 29 scenes of CoSSC data to design the simulated and real data
experiments to verify the proposed adjustment method. The simulated results show that
the proposed method can accurately correct the slant range, parallel baseline, and timing
parameters, and the corresponding uncertainties are 0.1 m, 0.05 mm, and 0.006 ms, respec-
tively. In the data experiment, the proposed method improves the plane and elevation
accuracies of InSAR-generated DEM to 4.14 m and 1.34 m, respectively, where the height
adjustment accuracy is consistent with the popular non-parametric adjustment method.

2. Analysis of the Range-Doppler-Phase Model

From the solution perspective, sensitivity analysis and parameter adjustment are op-
posite processes. The former is to calculate the geolocation errors with known parameters’
errors, while the latter is to solve the corrections of InSAR parameters with known geolo-
cation errors. In this section, we use total differential and differential geometry theories
to analyze the sensitivities of InSAR geometric parameters, then reveal the mathematical
relationship between the parametric and geolocation errors, and verify the correctness of
the analysis method.
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2.1. Range-Doppler-Phase Model

The rigorous geolocation model of the spaceborne bistatic InSAR system includes
equations of slant range, Doppler frequency, and interferometric phase, called the RDP
model [10], as Equation (1). 

|−→Pm −
−→
T |2 = R2

(
−→
Pm −

−→
T ) · −→Vm = −1

2
λ fdcR

|−→Pm +
−→
B −−→T |2 = (R + ∆R)2

(1)

where λ is the electromagnetic wave length. R and fdc are the slant distance and Doppler
frequency of the master satellite.

−→
Pm = (Pm,x, Pm,y, Pm,z) and

−→
Vm = (Vx, Vy, Vz) are the

position and velocity of the master satellite, respectively, and
−→
B = (Bx, By, Bz) is the spatial

baseline, representing the spacial vector formed by Antenna Phase Centers (APCs) of
the master and slave satellites, i.e., B =

−→
Ps −

−→
Pm, where

−→
Ps is the position of the slave

satellite.
−→
Pm,
−→
Vm, and

−→
B can be expressed as polynomial functions of azimuth time t. ∆R

represents the wave path difference between the master and slave satellites, which can
be calculated using the absolute interference phase, i.e., ∆R = λφabs

2π .
−→
T = (X, Y, Z) is

the geographical coordinates of the ground objects and satisfies the Earth’s ellipsoidal
Equation [21], as Equation (2).

X2 + Y2

(Ra + h)2 +
Z2

(Rb + h)2 = 1 (2)

where Ra and Rb are the semi-major and semi-minor axises of the ellipsoidal model,
respectively, and h is the elevation of the ground target. Therefore, after calculating

−→
T

through Equation (1), the target’s elevation h can be solved by Equation (2). It should
be noted that Equations (1) and (2) are based on the Earth-Centered Earth-Fixed (ECEF)
coordinate system.

2.2. Analysis for RDP Model

In positioning model Equation (1), the uncertainty of parameters such as spatial
baseline will affect the three-dimensional positioning results. In this section, we use the
total differential method and differential geometry theory to analyze the influence of
these parameter errors on geolocation results, including horizontal and vertical accuracies.
In order to visually illustrate their impacts, we choose a specific set of geometric parameters
to draw the sensitivity curves, as Table 1. The ENU coordinate system is necessary when
determining the vertical and horizontal components of three-dimensional geolocation error.
Appendix A deduces the conversion relationship between the ENU and ECEF coordinate
systems. Table 1 also shows the northern, eastern, and upper unit direction vectors in the
ECEF coordinate system.

Table 1. The parameters used for sensitivity analysis.

Parameters Values

Slant range (km) 682.70
Satellite position (km) (−2706.04, 5088.03, 3765.30)
Satellite velocity (m/s) (−524.50, 4389.90, −6288.98)

Baseline vector (m) (0.62, −266.42, 430.36)
Absolute interferometric phase (rad) −174.18

Target coordinate (km) (−2070.03, 4915.39, 3486.46)
Eastern unit vector (m) (−0.91, −0.42, 0.0)

Northern unit vector (m) (0.23, −0.51, 0.83)
Upper unit vector (m) (−0.35, 0.75, 0.56)
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2.2.1. Spatial Baseline

The spatial baseline is an essential parameter in the inversion process, representing
the relative position of the APCs between the master and slave satellites. Figure 1 shows
the vector decomposition of spatial baseline in a bistatic InSAR system.

Figure 1. Vector decomposition of spatial baseline in a bistatic InSAR system. The red, blue, and green
lines are along-track, perpendicular, and parallel baselines, respectively.

It is generally believed that the parallel baseline error will affect the vertical accuracy of
DEMs [22–25]. In fact, due to the side-view imaging pattern, the elevation error will affect
the plane accuracy, which means that the baseline error will affect the three-dimensional
accuracy of DEMs. The differential of Equation (1) for

−→
B and

−→
T is

(
−→
T −−→P ) · d−→T = 0
−→
Vm · d

−→
T = 0

(
−→
T −−→Ps ) · d

−→
T = (

−→
T −−→Ps ) · d

−→
B

(3)

where d
−→
B = [dBx, dBy, dBz]T is the error of baseline

−→
B . The symbol · stands for inner

product operation of vectors. Equation (3) establishes the relationship between the three-
dimensional baseline error d

−→
B and the resulting geolocation error d

−→
T , and we can further

solve this relationship through matrix transformation. Let
D = [

−→
T −−→Pm,

−→
Vm,
−→
T −−→Ps ]

T =

X− Pm,x Y− Pm,y Z− Pm,z
Vx Vy Vz

X− Ps,x Y− Ps,y Z− Ps,z


−→uB = [0, 0, (

−→
T −−→Ps ) · d

−→
B ]T

(4)

It can be found from Equation (4) that D is composed of two line-of-sight (LOS)
vectors and a velocity vector. According to the geometric relationship of the bistatic InSAR
system [1,2], the three vectors are linearly uncorrelated, which means that D is a full-rank
matrix. Therefore, the geolocation error can be expressed as Equation (5),

d
−→
T = D

−1−→uB (5)

Then, we can calculate the normalized direction vectors in point (X, Y, Z) (we have
shown this process in Appendix A) and solve the components of geolocation error in
elevation dTu, east dTe, and north dTn, as follows.

dTu = d
−→
T · −→nu

dTe = d
−→
T · −→ne

dTn = d
−→
T · −→nn

(6)
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According to the currently published literature, the baseline uncertainty of the bistatic
InSAR system is usually less than 2 mm [7,23,24,26], and that of some round-pass systems
is on the order of centimeters [27]. In order to vividly show the impact of spatial baseline
error, we have changed the errors of along-track, parallel and perpendicular baselines,
respectively, and calculated the resulting three-dimensional geolocation errors according
to Equations (5) and (6). At the same time, we calculated the actual geolocation errors
according to the RDP model Equation (1) to verify the proposed analysis method. We use
dotted and solid lines to express the real and analyzed positioning errors, respectively,
in Figure 2. It can be seen that our analysis results coincide with the actual geolocation
errors, which demonstrates the effectiveness of the proposed analysis method. The parallel
baseline error has a significant impact on the geolocation results. In contrast, the impact of
the perpendicular and the along-track baseline errors can be ignored.

(a) (b) (c)

Figure 2. The influence of the (a) along-track, (b) perpendicular and (c) parallel spacial baseline
error on the three-dimensional geolocation accuracy. It should be noted that since the impact of
perpendicular baseline error is too small, we adjust the ordinate unit of (b) to millimeters.

2.2.2. Slant Range

The measurement accuracy of the slant range is affected by various factors, including
systematic delay, atmospheric delay, and solid earth tide. Currently, the slant range accuracy
can generally reach meters. After accurate corrections, it can reach the level of decimeters
or centimeters [28,29]. We can follow Equations (3)–(6) to analyze the sensitivity of slant
range. Here we only list the differential form of Equation (1) for range error dR and the
resulting geolocation error d

−→
T .
(
−→
T −−→Pm) · d

−→
T = RdR

−→
Vm · d

−→
T = −1

2
λ fdcdR

(
−→
T −−→Ps ) · d

−→
T = (R + ∆R)dR

(7)

We set the range error as −15 to 15 m and calculate the resulting three-dimensional
geolocation error according to Equation (7), as shown in Figure 3. It can be seen that the
geolocation errors in the elevation and east directions are the same magnitude as dR.

Figure 3. The influence of the range error of the master satellite on the three-dimensional geoloca-
tion accuracy.
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2.2.3. Orbit and Timing Parameter

The orbit information of the master satellite is another essential parameter in Equation (1).
At present, the position and velocity vectors of SAR satellites are highly accurate. For example,
the position accuracy of TerrSAR-X can reach 3.0 cm [30], and the velocity and position
accuracies of GF-3 orbit data can reach 5 cm and 0.05 mm/s [31], respectively. These errors
have little impact on geolocation results, so they can be ignored in adjustment.

The satellite state vectors are usually fitted as polynomials of azimuth time. Therefore,
the timing delay will cause inaccurate position and velocity, leading to the plane offset of
geolocation results. For example, the timing delay of TerrSAR-X is about 0.18 ms, which will
cause a plane error of about 1.27 m [30]. Here we list the differential form of Equation (1)
for timing error dt and the resulting geolocation error d

−→
T .

(
−→
T −−→Pm) · d

−→
T = (

−→
T −−→Pm) ·

d
−→
Pm

dt
dt

−→
Vm · d

−→
T = (

−→
Pm −

−→
T ) · d

−→
Vm

dt
dt +

−→
Vm ·

d
−→
Pm

dt
dt

(
−→
T −−→Ps ) · d

−→
T = (

−→
T −−→Ps ) ·

d
−→
Ps

dt
dt = (

−→
T −−→Ps ) ·

d(
−→
Pm +

−→
B )

dt
dt

(8)

where the symbol d·
dt represents the derivatives for the azimuth time t. All the derivatives

can be easily calculated because of the polynomial relationships. Take
−→
Pm as an example,

−→
Pm = [Pm,x, Pm,y, Pm,z] =

[ Np

∑
n=0

pn
m,xtn,

Np

∑
n=0

pn
m,ytn,

Np

∑
n=0

pn
m,ztn

]
−→
Pm

dt
= [

dPm,x

dt
,

dPm,y

dt
,

dPm,z

dt
] =

[ Np

∑
n=1

npn
m,xtn−1,

Np

∑
n=1

npn
m,ytn−1,

Np

∑
n=1

npn
m,ztn−1

] (9)

where N is the order of polynomials, and pn
m,x, pn

m,y, and pn
m,z are the fitting coefficients.

Figure 4 shows the sensitivity curve of the geolocation error versus dt. It can be seen
that dt mainly affects the positioning error in the north (approximately azimuth) direction
but has little impact in the east and elevation.

Figure 4. The influence of the timing error of the master satellite on the three-dimensional geoloca-
tion accuracy.

3. Method

We can draw two conclusions from the discussion in Section 2. First, the proposed
analysis method combining differential geometry and total differential theory is correct.
The sensitivity curves demonstrate that our theoretical analysis method can accurately de-
scribe the impact of error sources on InSAR three-dimensional geolocation results. Second,
the errors of parallel baseline, slant range, and azimuth time are the main physical param-
eters that affect the positioning results of spaceborne InSAR. The influences of parallel
baseline and slant range are concentrated in height and east–west directions, while that of
azimuth time is concentrated in the north–south direction.
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According to the above two conclusions, we can apply the differential geometry
and total differential theory to the field of InSAR adjustment and correct the spacial
baseline, slant range, and timing parameters to improve the three-dimensional accuracy of
InSAR-generated DEMs. Figure 5 shows the derivation process workflow of the proposed
method. Our derivation process can be divided into three steps. The first step is to use
the total differential theory to calculate the explicit expression of InSAR three-dimensional
positioning errors concerning the errors of physical parameters in the ECEF coordinate
system, similar to Equation (5). The second step is to use the differential geometry theory
to calculate the northern, eastern, and upper three-dimensional unit vectors corresponding
to the current ECEF coordinates of ground object points and project the geolocation errors
obtained in the first step in these three directions, the control directions of various control
data. This step is designed to enable the proposed method to utilize the advantages of
various control data comprehensively. For example, the Height Control Points (HCPs)
have accurate elevation information and can be used to correct the systematic elevation
error of DEMs. Consequently, the InSAR geolocation errors in the ECEF coordinate need
to be converted to the elevation directions to be consistent with the control directions of
HCPs. The third step is to list adjustment equations according to the characteristics of
various control data. For example, we can discard the adjustment equations in their planes
(northern and eastern directions) for height control points and only use their height (in
upper directions) equations.

Figure 5. The derivation process of the proposed method consists of three steps, including calculating
the three-dimensional geolocation errors caused by InSAR parameters, calculating the projection of
geolocation error vectors, and obtaining adjustment equations.

In this section, according to Figure 5, we first derive the explicit expression of the
three-dimensional geolocation error, i.e., d

−→
T = f (dR, dt, d

−→
B ). Then, we further derive

adjustment equations for HCPs, Plane Control Points (PCPs), Height Tie Points (HTPs),
and Plane Tie Points (PTPs) employing the vector projection method. Finally, we propose
an iterative scheme to solve adjustment parameters.

3.1. Three-Dimensional Geolocation Error Equation

Before analyzing various control data, we need to establish the fundamental adjust-
ment equation, solving the integrated three-dimensional geolocation error of Equation (1)
caused by all the parameter errors. First, the total differential of Equation (1) was calculated,
as follows. 

(
−→
T −−→Pm) · d

−→
T = RdR + (

−→
T −−→Pm) · d

−→
Pm

−→
Vm · d

−→
T = (

−→
Pm −

−→
T ) · d−→Vm +

−→
Vm · d

−→
Pm +

1
2

λ fdcdR

(
−→
T −−→Ps ) · d

−→
T = (R + ∆R)dR + (

−→
T −−→Ps ) · (d

−→
Pm + d

−→
B )

(10)

Based on the analysis in Section 2, we model the parallel baseline error dB‖ as a

polynomial about azimuth time t. Then the three-dimensional baseline error d
−→
B can be

expressed as the product of dB‖ and the unit LOS vector of the master satellite
−→
lm .
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
dB‖ =

Nb

∑
n=0

bntn

d
−→
B = dB‖

−→
lm =

−→
lm

Nb

∑
n=0

bntn

(11)

where
−→
lm is the unit direction vector of

−→
T − −→Pm. Nb and bn are polynomial order and

coefficients of dB‖, respectively. In order to avoid the Runge phenomenon, we can select a

low-order polynomial to fit the baseline error, for example, Nb = 1. Then, let
−→
Lm =

−→
T −−→Pm,

−→
Ls =

−→
T −−→Ps and Rs = R + ∆R, Equation (10) can be further deduced as

−→
Lm · d

−→
T = RdR +

−→
Lm ·

d
−→
Pm

dt
dt

−→
Vm · d

−→
T =

1
2

λ fdcdR +

(
−→
Vm ·

d
−→
Pm

dt
−−→Lm ·

d
−→
Vm

dt

)
dt

−→
Ls · d

−→
T = RsdR +

−→
Ls ·

(
d
−→
Pm

dt
+
−→
lm

Nb

∑
n=1

nbntn−1

)
dt +

−→
Ls ·
−→
lm

Nb

∑
n=0

tndbn

(12)

Appendix B.1 (in Appendix B) shows part of the derivation of Equation (12). Similar
to Equation (3), Equation (12) can still be expressed as D · d−→T = −→u . Let

D
−1

=

X− Pm,x Y− Pm,y Z− Pm,z
Vx Vy Vz

X− Ps,x Y− Ps,y Z− Ps,z

−1

=

d11 d12 d13
d21 d22 d23
d31 d32 d33

 (13)

then we can get the specific form of d
−→
T = (dX, dY, dZ), as Equation (14). On the whole,

the adjustment parameter is x = (dR1, dT1, db1,0, · · · , db1,Nb , dR2, · · · )T.

dX =

(
d11R− d12

1
2

λ fdc − d13Rs

)
dR + d13

−→
Ls ·
−→
lm

Nb

∑
n=0

tndbn

+

[
d11
−→
Lm ·

d
−→
Pm

dt
+ d12

(
−→
Vm ·

d
−→
Pm

dt
−−→Lm ·

d
−→
Vm

dt

)
+ d13

−→
Ls ·

(
d
−→
Pm

dt
+
−→
lm

Nb

∑
n=1

nbntn−1

)]
dt

dY =

(
d21R− d22

1
2

λ fdc − d23Rs

)
dR + d23

−→
Ls ·
−→
lm

Nb

∑
n=0

tndbn

+

[
d21
−→
Lm ·

d
−→
Pm

dt
+ d22

(
−→
Vm ·

d
−→
Pm

dt
−−→Lm ·

d
−→
Vm

dt

)
+ d23

−→
Ls ·

(
d
−→
Pm

dt
+
−→
lm

Nb

∑
n=1

nbntn−1

)]
dt

dZ =

(
d31R− d32

1
2

λ fdc − d33Rs

)
dR + d33

−→
Ls ·
−→
lm

Nb

∑
n=0

tndbn

+

[
d31
−→
Lm ·

d
−→
Pm

dt
+ d32

(
−→
Vm ·

d
−→
Pm

dt
−−→Lm ·

d
−→
Vm

dt

)
+ d33

−→
Ls ·

(
d
−→
Pm

dt
+
−→
lm

Nb

∑
n=1

nbntn−1

)]
dt

(14)

3.2. Adjustment Equations of Various Control Data

After obtaining Equation (14), we have completed the first step in Figure 5, i.e., solving
the relationship between three-dimensional geolocation errors and physical parameters’
errors in the ECEF coordinate system. Equation (14) is linear about each error source
because of the total differential theory used in the solution process and can be written
as follows.
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d
−→
T =

dX
dY
dZ

 =

c11dR + c21dt + c31 ∑Nb
n=0 tndbn

c12dR + c22dt + c32 ∑Nb
n=0 tndbn

c13dR + c23dt + c33 ∑Nb
n=0 tndbn

 = −→c1 dR +−→c2 dt +−→c3

(
Nb

∑
n=0

tndbn

)
(15)

where−→ci = (ci,1, ci,2, ci,3), (i = 1, 2, 3) is the vector representation of coefficients in Equation (14),
which is known during the adjustment. For the above equation, we need to make a few ad-
ditional explanations. First, the derivations of Equation (14) are all in the ECEF coordinate
system and do not involve the conversion of different coordinate systems. Second, Equation (14)
is actually the adjustment equation for high-precision three-dimensional control points, such
as corner reflectors. Third, as we discussed earlier, the unknown parameters in Equation (14)
are the physical parameter errors, including dR, dt, and dbn, which need to be determined by
control data.

Generally speaking, the available control data have different characteristics. For ex-
ample, the data with high elevation but low plane accuracy can be employed as HCPs.
Therefore, Equation (14) needs to be further modified by geometric projection, the second
and third steps in Figure 5.

3.2.1. Equation of HCPs

The HCP is a kind of data with accurate elevations, which is used to improve the
absolute elevation accuracy of interferometric DEMs. The global public laser altimetry
data of the Ice, Cloud, and land Elevation Satellite (ICESat) is an essential source of HCPs,
the elevation accuracy of which is better than 1.0 m [32], has been widely used in the
field of non-parametric adjustment [5,7,9]. However, this data does not have recogniz-
able image information and cannot be matched with InSAR image or DEM data, so it
cannot provide plane control information. Therefore, we hope that the height errors (pro-
jection of three-dimensional positioning errors in height direction) caused by the InSAR
physical parameters’ errors equal deviations between InSAR-generated DEMs and HCPs,
as Equation (16).

∆Tu,hc = hHCP − hDEM = d
−→
T · −→nu

= −→nu · −→c1 dR +−→nu · −→c2 dt +−→nu · −→c3

(
Nb

∑
n=0

tndbn

)
(16)

where hHCP and hDEM represent the elevation of HCP and the corresponding pixel in DEM,
respectively, and −→nu is the upper unit vector at a ground target T (please refer to Appendix A).
Equation (16) can be further summarized in the form of an error equation, as,

vhc =
−→nu · −→c1 dR +−→nu · −→c2 dt +−→nu · −→c3

(
Nb

∑
n=0

tndbn

)
− ∆Tu,hc (17)

where vhc is the residual error, which is 0 in the ideal case. For multi-scene data and
multiple groups of HCPs, Equation (17) can be further written in matrix form.

Vhc = Ahcx− ∆Thc (18)

where Ahc is the design matrix composed of coefficient −→nu · −→ci (i = 1, 2, 3), and its specific
form is shown in Appendix B.2. Assuming that the number of adjustment InSAR tracks
is N and the polynomial order of baseline error is Nb, then the parameters to be adjusted,
namely, the corrections of slant range, azimuth time, and parallel baseline in each scene
data, is x = [dR1, dt1, db1,0, · · · , db1,Nb , dR2, · · · , dbN,Nb ]. In the following text, x has the
same meaning as Equation (18). ∆Thc represents the elevation deviation vector composed
of ∆Th,hc in Equation (16). Vhc is the residual vector. In the subsequent text, we will omit
the error equation as Equation (17).
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3.2.2. Equation of PCPs

The PCP is a kind of control data with high plane accuracy, which is used to im-
prove the absolute plane accuracy of DEM. We can obtain PCPs from globally distributed
DEM/DSM data (such as AW3D30) [33,34] or optical image data (such as Google Maps) [35]
by homologous or heterogeneous matching methods. The elevation quality of such data is
usually inferior to interferometric DEMs, so it is difficult to use as elevation control data.
Therefore, we hope that the plane errors (projection of three-dimensional positioning errors
in northern and eastern directions) caused by the InSAR physical parameters’ errors equal
deviations between InSAR-generated DEMs and PCPs, as

∆Tn,pc = yPCP − yDEM = d
−→
T · −→nn

= −→nn · −→c1 dR +−→nn · −→c2 dt +−→nn · −→c3

(
Nb

∑
n=0

tndbn

)
∆Te,pc = xPCP − xDEM = d

−→
T · −→ne

= −→ne · −→c1 dR +−→ne · −→c2 dt +−→ne · −→c3

(
Nb

∑
n=0

tndbn

)
(19)

where (x, y) is the plane coordinate of DEMs or PCPs. Similar to Equation (18), Equation (19)
can also be written as

Vpc = Apcx− ∆Tpc (20)

where Apc is the design matrix composed of coefficient −→nn · −→ci and −→ne · −→ci (i = 1, 2, 3). ∆Tpc
represents the horizontal deviation vector composed of ∆Tn,pc and ∆Te,pc in Equation (19).
Vpc is the residual vector.

3.2.3. Equation of HTPs

In order to ensure the relative elevation accuracy of elevation DEM, M. Huber et al. put
forward the concept of Tie Point chips [13], that is, the elevation chips located in different
images corresponding to the same area. The core idea of TP chips is to calculate the median
elevation in an overlapping area as the observation value to avoid height outliers [5,7].
In this article, we call such data as HTPs. They can be obtained only through geolocation
calculation without image-matching methods. Therefore, such data cannot guarantee the
relative plane accuracy of DEMs. We hope the corrected DEMs have identical elevation
values in overlapping areas during adjustment, that is,

hDEM,J + d
−→
TJ · −→nn = hDEM,I + d

−→
TI · −→nn (21)

where I and J are the indexes of DEMs. Then Equation (21) can be further transformed into

∆Tu,ht = hDEM,J − hDEM,I = d
−→
TI · −→nu − d

−→
TJ · −→nu

= −→nu · −→c1,IdRI +
−→nu · −→c2,IdtI +

−→nu · −→c3,I

(
Nb

∑
n=0

tndbn,I

)

−−→nu · −→c1,JdRJ −−→nu · −→c2,JdtJ −−→nu · −→c3,J

(
Nb

∑
n=0

tndbn,J

) (22)

Here, ∆Th,ht represents the elevation deviation of the same ground point in different
InSAR-generated DEMs. For multi-scene data and multiple groups of HTPs, Equation (22)
can be further written in matrix form.

Vht = Ahtx− ∆Tht (23)
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where Aht is the design matrix composed of the coefficient −→nu · −→ci (i = 1, 2, 3) of different
points corresponding to a same ground object, and its specific form is shown in Appendix B.2.
∆Tht represents the elevation deviation vector composed of ∆Th,ht in Equation (22). Vht is the
residual vector.

3.2.4. Equation of PTPs

The PTPs are the tie points in our general sense: the pixel points located in different
images and corresponding to the same ground object [36–38]. It is used to constrain the
relative plane accuracy of DEMs and can be obtained by homologous-image matching
methods. However, such points are usually located at the boundary area of imaging data.
Compared with the internal area, their elevations may be polluted by heavier noise [7,13],
so they cannot be used to ensure the relative elevation accuracy of DEMs. After adjustment,
we hope different DEMs can get consistent plane positioning results at the PTP position,
that is, {

xDEM,I + d
−→
TI · −→ne = xDEM,J + d

−→
TJ · −→ne

yDEM,I + d
−→
TI · −→nn = yDEM,J + d

−→
TJ · −→nn

(24)

The above equation can be further transformed into

∆Te,pt = xDEM,J − xDEM,I = d
−→
TI · −→ne − d

−→
TJ · −→ne

= −→ne · −→c1,IdRI +
−→ne · −→c2,IdtI +

−→ne · −→c3,I

(
Nb

∑
n=0

tndbn,I

)

−−→ne · −→c1,JdRJ −−→ne · −→c2,JdtJ −−→ne · −→c3,J

(
Nb

∑
n=0

tndbn,J

)
∆Tn,pt = yDEM,J − yDEM,I = d

−→
TI · −→nn − d

−→
TJ · −→nn

= −→nn · −→c1,IdRI +
−→nn · −→c2,IdtI +

−→ne · −→c3,I

(
Nb

∑
n=0

tndbn,I

)

−−→nn · −→c1,JdRJ −−→nn · −→c2,JdtJ −−→nn · −→c3,J

(
Nb

∑
n=0

tndbn,J

)

(25)

Here, ∆Te,pt and ∆Tn,pt are the horizontal deviations of the same ground point in
different InSAR-generated DEMs. Similar to Equation (23), Equation (25) can also be
written as

Vpt = Aptx− ∆Tpt (26)

where Apt is the design matrix composed of coefficient −→nn · −→ci and −→ne · −→ci (i = 1, 2, 3) of
different points corresponding to a same ground object. ∆Tpt represents the horizontal
deviation vector composed of ∆Tn,pt and ∆Te,pt in Equation (25). Vpt is the residual vector.

3.3. Solution Strategy

In the previous subsection, we have derived the adjustment equations of various
control data and given the corresponding matrix expressions. It can be found that the
residual vectors in Equations (18), (20), (23) and (26) represent the vertical or horizontal
positioning residuals, the units of which are meters. Therefore, we consider unifying all
equations into a loss function to solve the adjustment parameter x. We give the loss function
as follows,

L(x) = qhc‖Vhc‖2
2 + qpc‖Vpc‖2

2 + qht‖Vht‖2
2 + qpt‖Vpt‖2

2 + µ‖x‖2
2

= qhc‖Ahcx− ∆Thc‖2
2 + qpc‖Apcx− ∆Tpc‖2

2

+ qht‖Ahtx− ∆Tht‖2
2 + qpt‖Aptx− ∆Tpt‖2

2 + µ‖x‖2
2

(27)
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where x = [dR1, dt1, db1,0, · · · , db1,Nb , dR2, · · · , dbN,Nb ] is the parameters to be adjusted and
N is the number of adjustment InSAR tracks. µ‖x‖2

2 is a regular term in the loss function
to avoid the rank defect problem in the optimization process. When the control data
are sufficient and there is no rank deficiency, µ can be set as zero. Otherwise, µ can be
determined by the ridge mark method [39]. qhc, qpc, qht, and qpt are the weights of control
data, which are determined by the number Nhc, Npc, Nht, Npt, and the prior accuracy σhc,
σpc, σht, σpt of control data, as follows

qhc = (σ2
hcNhc)

−1

qpc = (σ2
pcNpc)

−1

qht = (σ2
htNht)

−1

qpt = (σ2
ptNpt)

−1

(28)

The control data should be as much as possible to ensure the absolute and relative
accuracy of DEMs. The adjustment parameter x can be solved by minimizing the loss
function, equivalent to calculating the gradient zero point of L(x), as follows.

min
x

L(x)⇔ ∇xL(x) = 0 (29)

The gradient function of L(x) is

∇xL(x) = qhcAT
hcAhcx + qpcAT

pcApcx + qhtA
T
htAhtx + qptAT

ptAptx + µx

− qhcAT
hc∆Thc − qpcAT

pc∆Tpc − qhtA
T
ht∆Tht − qptAT

pt∆Tpt
(30)

Let {
A = qhcAT

hcAhc + qpcAT
pcApc + qhtA

T
htAht + qptAT

ptApt + µI

L = qhcAT
hc∆Thc + qpcAT

pc∆Tpc + qhtA
T
ht∆Tht + qptAT

pt∆Tpt
(31)

where I is unit matrix. Then the Least-Square (LS) solution of Equation (29) is

x = A−1L (32)

Since rigorous model Equation (1) is nonlinear, we adopt the iterative least squares
method to solve adjustment parameters. The specific steps are as follows:

i. Initialize adjustment parameter x, i.e., x0 = 0.
ii. Set tolerance limits tolB, tolR, and tolT for the increment of baseline, range, and timing

parameters. According to the analysis in Section 2, tolB, tolR, and tolT should be below
millimeters, meters, and 0.1 milliseconds, respectively. For example, tolB = 0.1 mm,
tolR = 0.1 m, and tolT = 0.01 ms.

iii. List the loss function Lk(x) as Equation (27), and solve the adjustment parameter incre-
ment δxk using Equation (32), i.e., δxk = A−1

k Lk, where k represents the kth iteration.
iv. Sperate the corrections of slant range, azimuth time, and spatial baseline accord-

ing to their track, add the corrections to the result of the previous iteration, i.e.,
xk = xk−1 + δxk, to update the range, timing, and baseline parameters.

v. Judge whether the increment of each parameter is less than the tolerance limit. If less
than, end iterative calculation and take xk as the solution of adjustment parameters.
Otherwise, re-execute step iii.

4. Experiment and Discussion
4.1. Experiment Data

We conduct experiments with twenty-nine scenes of TerraSAR-X/TanDEM-X Co-
registered Single look Slant range Complex (CoSSC) data, including twenty ascending data
and nine descending data. The specific information on InSAR data is shown in Table 2.
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The experimental area covers Xuchang and Zhengzhou, Henan Province, China, covering
an area of about 56,000 square kilometers with rich geomorphic features. The Yellow
River flows through the north, the Songshan Mountains are located in the west, and most
experimental areas are plains. Figure 6 shows the location and elevation of experimental
data, respectively. The HCPs used in the experiment are ICESat laser altimetry data
GLAH14 selected according to the extreme criteria proposed in [9], with an elevation
accuracy of about 0.2 m. The height checkpoints are from ICESat-2 ATL08 data (Land and
Vegetation Height), with a vertical accuracy of 2.0 m and 0.2 m, respectively, in mountainous
areas and flat lands [40]. The PCPs and PTPs are matched using the DEM matching
method [33,34], where PCPs are from the public SRTM-DEM.

Table 2. Specific information of CoSSC data. The table is listed by track.

Time Orbit Incidence (◦) Resolution (m) Baseline Length (m)

26 January 2012 ASC 33.63 1.34 × 1.98 506.15
6 February 2012 ASC 34.16 1.36 × 2.03 577.90

17 February 2012 ASC 33.58 1.36 × 2.19 607.98
2 November 2012 ASC 33.91 1.36 × 2.04 485.38
5 December 2012 ASC 33.86 1.36 × 1.99 657.02

16 December 2012 ASC 33.83 1.36 × 1.71 612.14
24 July 2013 ASC 33.95 1.36 × 1.85 559.86

27 January 2018 DEC 34.27 1.36 × 2.19 479.02
27 February 2019 DEC 38.35 1.36 × 1.83 459.50

10 March 2019 DEC 33.72 1.36 × 1.98 480.65

Figure 6. Experimental data and area, including the terrain of the experimental area and the location
of CoSSC data. The left picture is the optical map of the experimental area, the upper right image is
the administrative division map, and the lower right image is the external DEM.

4.2. Simulated Experiment

The simulated experiment is designed to verify the performance of the proposed
method in the noise environment. The primary benchmarks are the adjustment parameters
and three-dimensional accuracy after adjustment. The specific steps of the simulated
experiment are as follows:

i. Generate absolute interferometric phase. We select the external DEM in the experimen-
tal area as the simulated terrain and the geometric parameters of InSAR data, such as
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orbit and baseline, as the accurate geometric parameters. The absolute interferometric
phase is calculated through the reverse geolocation method.

ii. Generate checkpoints and control points. We select a series of geographic points in
the simulated terrain, part of which are checkpoints, and the other points are added
with Gaussian white noise as the HCPs and PCPs, respectively.

iii. Generate DEMs. We add systematic error into baseline, slant range, and timing
parameters and then generate DEMs according to the strict model Equation (1). Then,
we determined the observation values of heights corresponding to HCPs and PCPs
extracted in step ii.

iv. Extract tie points. As described in Sections 3.2.3 and 3.2.4, HTPs can be selected by
the geolocation method, while PTPs need to be extracted by matching methods.

v. Adjust and verify accuracy. Unlike the real data experiment, the accuracy verification
of the simulated experiment includes not only the plane and elevation accuracies of
adjusted DEMs but also the difference between the simulated error and the adjustment
calculation value. The latter is used to verify whether the proposed method can
accurately calculate the systematic errors of bistatic InSAR systems.

Figure 7 shows the flow chart of the simulated experiment. Generally speaking,
the simulated data experiment consists of three parts: InSAR processing, control data
extraction, and adjustment.

Figure 7. Flow chart of simulation experiment. The simulated data experiment includes three steps:
InSAR processing, control data extraction, and adjustment.

In practice, high-precision height control points (ICESat data) are more accessible,
while plane control points are more challenging to obtain. Therefore, the simulated ex-
periment takes the noise of PCPs as a variable, controls its standard deviation within 0 to
10.0 m, and conducts ten groups of experiments. Each group is composed of thirty Monte
Carlo simulated experiments. That is, under the same noise level, we have conducted thirty
simulated experiments. We use the Root-Mean-Square Error (RMSE) to measure the adjust-
ment accuracy. Figure 8 shows the results of the simulated experiment. Figure 8a,b show
the height and plane accuracies after adjustment. Figure 8c–e, respectively, show the errors
of parallel baseline, slant range, and timing parameters obtained by our proposed method.
In Figure 8, the blue lines are the curves of median RMSEs versus noise standard deviation
after adjustment and the point represent the RMSEs of all Monte Carlo experiments.

When the PCP noise changes from 0.0 m to 10.0 m, the RMSE median of each parameter
changes steadily, demonstrating that our proposed methods can obtain stable results in
the simulated environment. From the perspective of median RMSE, the adjustment errors
of spacial baseline, slant range, and timing parameters after adjustment are, respectively,
stable at about 0.05 mm, 0.1 m, and 0.006 ms, and the plane and elevation accuracies are,
respectively, stable at about 0.2 m. Under the same noise level, some simulated experiments
may use the outlier control data for adjustment so that the results will have a fluctuation
range. Even so, the adjustment accuracy is still high, and RMSEs of elevation and plane
are stable below 1.0 m, which indicates that the method proposed by us has an excellent
adjustment effect.
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(a) (b) (c)

(d) (e)

Figure 8. RMSEs of parameters after adjustment in the simulated experiment for noise. (a,b) are the
horizontal and vertical adjustment accuracies, respectively. (c–e) are the RMSEs of parallel baseline,
slant range, and timing parameters, respectively. The data points are the results of all experiments,
and the lines are median change curves of RMSEs of each group of experiments.

In order to verify the influence of the number of control data on the adjustment
accuracy, we designed a simulated experiment. The core idea of this experiment is to
gradually increase the number of PCPs and observe the corresponding adjustment accuracy.
The experimental framework is consistent with Figure 7. Figure 9 shows the simulated
experiment results for the number of PCPs. It can be seen that when the number of
PCPs contained in each track changes from 1 to 10, the estimated errors of the adjustment
parameters, that is, baseline, range, and azimuth time, gradually decrease. For example,
when the number of PCPs is 1, the baseline estimated error is about 0.14 mm. When PCPs
exceed 5 per track, the estimation error is stable at about 0.06 mm. With the increase in
the number of PCPs, the plane accuracy of DEM has gradually improved from 0.6 m to
0.2 m. Since the number of HCPs has not changed, the elevation accuracy of ten groups of
experiments is stable at about 0.15 m, and there is no clear law with the number of PCPs.

(a) (b) (c)

(d) (e)

Figure 9. RMSEs of parameters after adjustment in the simulated experiment for the number of
PCPs. (a,b) are the horizontal and vertical adjustment accuracies, respectively. (c–e) are the RMSEs of
parallel baseline, slant range, and timing parameters, respectively. The data points are the results of
all experiments, and the lines are median change curves of RMSEs of each group of experiments.
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In addition, Figure 10 shows the convergence curve of an iterative calculation process.
In general, after three to five iterations, the increments of spatial baseline, slant range,
and timing parameters all tend to zero, which proves that the proposed method has
strong convergence.

(a) (b) (c)

Figure 10. Convergence curves of (a) spacial basline, (b) slant range, and (c) timing parameters.

4.3. Real-Data Experiment

In this part, we first introduce the elevation and plane fracture phenomenon in DEM
mosaic maps caused by systematic geolocation errors before adjustment. Then, we show
the three-dimensional accuracies of InSAR-generated DEMs after adjustment and compare
them with the non-parametric adjustment method.

4.3.1. Fracture in DEM Mosaic Maps

We use Global Mapper to mosaic twenty-nine InSAR-generated DEMs. Figure 11a is
the rendered mosaic map before adjustment. In order to visually illustrate the fracture phe-
nomenon of DEM in the overlapping area, we have selected two typical areas in Figure 11a
for magnification. Figure 11b is the gradient map of marked area (b), and Figure 11c is an
enlarged view of marked area (c). Here, the gradient map highlights the elevation differ-
ence of DEMs in the mosaic area and clearly shows the elevation fracture phenomenon.
The slope of DEMs are calculated as follows:

s = tan−1
√

h2
x + h2

y; (33)

hx and hy are gradients in two orthogonal directions, which can be calculated by filtering
operators [41]. It can be seen that elevation fracture will occur in the DEM overlapping
area, which is shown as a straight line of the mosaic boundary in the slope map. A similar
phenomenon occurs in the plane. In Figure 11c, a railway runs through the southeast
and northwest directions, so the elevation in this area should be continuous on the plane.
However, there are apparent fractures in the red-marked area in Figure 11c, which shows
that the eastern DEM has shifted a certain distance to the north. In Figure 11c, the red
arrows indicate the position and direction of the plane offset. Therefore, it is necessary to
adopt the three-dimensional adjustment method to eliminate systematic errors of interfero-
metric DEMs.

4.3.2. Adjustment Effect

We obtain 1225 HCPs, 63 PCPs, 938 pairs of HTPs, and 947 pairs of PTPs to conduct
the real data experiment. The maximum shooting duration of the CoSSC data is about 22 s.
During this period, the baseline error can be considered a constant [22–24]. Therefore, we
set the order of the baseline error polynomial to zero. We use RMSEs of height and plane
checkpoint to measure three-dimensional geolocation accuracy, and the expressions are
as follows.
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
RMSEh =

√√√√Nhckp

∑
i=1

(hDEM,i − hCKPs,i)2

Nhckp

RMSEp =

√√√√Npckp

∑
i=1

(xDEM,i − xCKPs,i)2 + (yDEM,i − yCKPs,i)2

Npckp

(34)

where RMSEh and RMSEp are the vertical and horizontal RMSEs, respectively. h is the
elevation of height checkpoints or DEM points. (x, y) are the plane coordinates of plane
checkpoints or DEM points. In addition, we use the nonparametric method to adjust the
elevation of InSAR-generated DEMs as a comparative experiment of the proposed method.

(a)

(b) (c)

Figure 11. The mosaic rendering map of InSAR-generated DEMs before adjustment. (b,c) are the
slope map and enlarged view of the corresponding marked areas in (a). The yellow boxes indicate
the fracture areas. The yellow arrow indicates the direction of the plane offset.

Table 3 shows the parameter correction after adjustment. The corrections of parallel
baseline are less than 3 mm, which is consistent with the current TanDEM-X baseline cali-
bration results. Figure 12a,b are the elevation and plane accuracy counted by tracks before
and after adjustment, respectively. The cyan bars in Figure 12a represent the adjustment
accuracy obtained by the general method. Before the adjustment, the elevation accuracy
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is 1.70 m. The non-parametric and proposed methods can decrease the overall elevation
error to 1.35 m and 1.34 m, respectively. Moreover, the RMSEs of the non-parametric and
proposed methods in Figure 12a are roughly consistent, demonstrating that our proposed
method can get the same good results as the non-parametric method regarding elevation
accuracy. Figure 12b is the plane accuracy statistics diagram. Figure 13 is the error vector
diagram of plane checkpoints, wherein circles are the checkpoint locations, and arrows
represent the size and direction of plane errors. Before adjustment, the plane error is about
14.31 m, and our method can improve the plane accuracy to 4.14 m. Besides, it can be found
that the systematic plane error of each orbit disappears after the adjustment, which shows
that the proposed method can effectively improve the horizontal geolocation accuracy of
the spaceborne InSAR-generated DEM.

Table 3. The adjustment results of InSAR parameters. The table is listed by track.

Data Range (m) Timing (ms) Basline Offset (mm)

26 January 2012 5.47 0.109 2.03
6 February 2012 4.40 0.054 1.51

17 February 2012 5.42 −0.28 2.34
2 November 2012 2.01 −0.641 1.99
5 December 2012 −14.84 −0.459 1.26

16 December 2012 0.75 −0.040 0.25
24 July 2013 2.61 1.40 0.10

27 January 2018 2.47 0.937 2.12
27 February 2019 1.87 0.540 0.20

10 March 2019 0.95 0.734 1.14

(a) (b)

Figure 12. Statistics of (a) elevation and (b) plane accuracies before and after adjustment.

(a) (b)

Figure 13. Error vector diagrams of checkpoints (a) before and (b) after adjustment by the proposed
method. The circles and arrows are the positions and errors of checkpoints.

In order to visually display the adjustment results, we compensated the adjustment
parameters to the original parameters and re-produced DEMs, as shown in Figure 14b,c are
the adjusted maps corresponding to Figure 11b,c, respectively. In Figure 14b, the height frac-
ture phenomenon disappears compared with Figure 11b; that is, the abnormal slope values
at the mosaic boundary have disappeared. Furthermore, the plane fracture phenomenon
shown in Figure 11c also disappears, as Figure 14c. To clearly illustrate the improvement
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of the relative plane accuracy after adjustment, we further enlarge the critical areas of
Figures 11c and 14c, as shown in Figure 15. The dotted line indicates the rail’s shape.
Before adjustment, the two tracks of DEM located at the mosaic area had different degrees
of plane errors, resulting in the fracture of the rail, as Figure 15a. After adjustment, the rail
area presents a continuously changing straight line, as Figure 15b. The disappearance of
the plane fracture phenomenon demonstrates that the plane geolocation accuracies of the
two DEMs tend to be consistent. Therefore, the proposed method effectively enhances the
relative geolocation accuracy of InSAR-generated DEMs.

(a)

(b) (c)

Figure 14. The mosaic rendering map of twenty-nine scenes DEM data after adjustment. (b,c) are the
slope map and enlarged view of the corresponding marked areas in (a).

(a) (b)

Figure 15. Enlarged view (a) before and (b) after adjustment of railway area. The dotted lines indicate
the locations of the railway.
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In addition, Figure 16 shows the change trends of adjustment parameter increments
with iterations. After three to four iterations, the adjustment increment tends to zero,
consistent with the simulated experiments, indicating that the proposed method has a
strong convergence characteristic in natural environments.

(a) (b) (c)

Figure 16. In the data experiment, the convergence curves of (a) slant range, (b)timing parameters,
(c) parallel baseline. The vertical axis are the module length, and the horizontal axis represents the
number of iterations.

5. Conclusions

This paper proposed a three-dimensional adjustment method for spaceborne bistatic
InSAR based on the RDP model. We use the total differential theory to linearize the RDP
model to deduce the sensitive equations and obtain the adjustment equations of available
control data, including HCPs, PCPs, HTPs, and PTPs, with the help of differential geometry
theory. The proposed adjustment method can correct the errors of spatial baseline, slant
range, and timing parameters and jointly improve the three-dimensional accuracy of
InSAR-generated DEMs. We conduct experiments using 29 scenes of TanDEM-X CoSSC
data covering the Henan Province, China. The simulated data experiment shows that the
proposed method can accurately calculate the systematic errors of physical parameters
under different noise levels. The adjustment accuracies of the parallel baseline, slant
range, and timing parameters are 0.05 mm, 0.1 m, and 0.006 ms, respectively. In the
real data experiment, the proposed method improves the plane and elevation accuracies
to 4.14 m and 1.34 m, respectively. It effectively overcomes the horizontal and vertical
fracture phenomenon in DEM mosaic maps and improves the relative accuracy of InSAR-
generated DEMs.
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Abbreviations
The following abbreviations are used in this manuscript:

InSAR Synthetic aperture radar interferometry
CoSSC Co-registered Single look Slant range Complex
DEM Digital Elevation Model
RDP Range-Doppler-Phase
HCP Height control point
HTP Height tie point
PCP Plane control point
PTP Plane tie point

Appendix A. Derivation of the North, East and Upper Unit Vectors in the ECEF
Coordinate System

Figure A1 shows the geometric relationship when acquiring the interferometric data.
The magnified part shows the unit direction vectors at the ground object point pointing
to the sky, north, and east. According to the differential geometry theory, the upper unit
vector at point (X, Y, Z) can be expressed as:

−→nu = unit
{[

X
(Ra + h)2 ,

Y
(Ra + h)2 ,

Z
(Rb + h)2

]}
(A1)

where unit(·) is the normalization operation of vector. Let the temporary vector −→n tmp =
−→
Vm ⊗−→nu , where ⊗ represents the outer product of vectors, the eastern and northern unit
vectors can be expressed as, {−→ne = unit

(−→n tmp ⊗−→nu
)

−→nn = unit
(−→nu ⊗−→ne

) (A2)

Due to the different directions of the satellite flight and the side view, the direction
vector obtained from above equations may differ from the actual situation by 180 degrees,
but this does not affect the adjustment calculation.

Figure A1. The geometric relationship when acquiring the interferometric data. Ra and Rb are the
semi-major and semi-minor axes of the Earth model, respectively.
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Appendix B. Deduction of Adjustment Equations

Appendix B.1. Derivation of the Total Differential Form of the RDP Model

(
−→
T −−→Ps ) · (d

−→
Pm + d

−→
B )

=
−→
Ls · (

d
−→
Pm

dt
dt +

−→
lm

dB‖
dt

dt +
−→
lm

Nb

∑
n=0

dB‖
dbn

dbn)

=
−→
Ls ·

(
d
−→
Pm

dt
dt +

−→
lm

Nb

∑
n=1

nbntn−1dt +
−→
lm

Nb

∑
n=0

tndbn

)

=
−→
Ls ·

(
d
−→
Pm

dt
+
−→
lm

Nb

∑
n=1

nbntn−1

)
dt +

−→
Ls ·
−→
lm

Nb

∑
n=0

tndbn

(A3)

Appendix B.2. The Concrete Form of Design Matrixes in Adjustment Equations

Ahc is a matrix with a width of N(2 + Nb), and its height is the number of HCPs.
The specific form of Ahc is

Ahc =


Ahc,1

Ahc,2
. . .

Ahc,N

 (A4)

where Ahc,I is the HCP design matrix of Ith track data. Accordinfg to Equation (16), let
ai,p,I =

−−→nu,p,I · −−→ci,p,I , (i = 1, 2, 3), where p and I are the indexes of HCPs and InSAR data.
The specific form of Ahc,I when Nb = 1 is

Ahc,I =


a1,1,I a2,1,I a3,1,I
a1,2,I a2,2,I a3,2,I
· · · · · · · · ·

a1,p,I a2,p,I a3,p,I

 (A5)

Furthermore, the specific form of Aht when Nb = 1 is

Aht =a1,1,1 a2,1,1 a3,1,1 0 · · · −a1,1,I −a2,1,I −a3,1,I 0 · · ·
...

...
0 · · · a1,t,J a1,t,J a1,t,J · · · 0 −a1,t,N −a1,t,N −a1,t,N

 (A6)

where t is the index of HTPs.
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