Evaluation of Habitat Suitability for Asian Elephants in Sipsongpanna under Climate Change by Coupling Multi-Source Remote Sensing Products with MaxEnt Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
2.2.1. Asian Elephant Distribution Data
2.2.2. Environmental Data Affecting the Distribution of Asian Elephants
2.2.3. Administrative Division Data
2.3. Data Processing and Parameter Optimization
2.3.1. Optimization of Distribution Data, Correlation Analysis, and Screening of Environmental Variables
2.3.2. Analysis and Optimization of Habitat Area Variables Using the MaxEnt Model
2.3.3. Delineation and Model Assessment of Current and Future Potentially Suitable Areas for Asian Elephants
2.4. Habitat Connectivity Analysis
3. Results
3.1. Dominant Variables Affecting the Distribution of Asian Elephants in Sipsongpanna
3.2. Response Analysis of the Main Environmental Variables Affecting the Distribution of Asian Elephants
3.3. Prediction of Suitable Areas for Asian Elephants in Sipsongpanna under Current Climatic Conditions
3.4. Potentially Suitable Areas for Asian Elephants in Sipsongpanna under Different Future Climate Scenarios
3.5. Potential Migration Corridors of Asian Elephants
4. Discussion
4.1. The Importance of Constructing a Basic Dataset for Species Conservation Using Multisource Remote Sensing Data
4.2. Prediction of Suitable Habitat for Asian Elephants in Sipsongpanna under Current Conditions Based on the Optimized MaxEnt + ClimateAP Model
4.3. Prediction of Suitable Habitat for Asian Elephants in Sipsongpanna under Future Conditions
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Name of Remote Sensing Data | Time | Spatial Resolution and Accuracy | Source | Description |
---|---|---|---|---|
ClimateAP | 2017202520552085 | 30 m/99% | Available online: https://climateap.net/ (accessed on 28 December 2021) | Coupling several climate models and land surface process models with satellite remote sensing data to simulate surface climate environment changes. |
ASTER GDEM v3 | 2019 | 30 m | Available online: http://www.gscloud.cn/search (accessed on 22 February 2022) | ASTER GDEM data products are derived from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and are the only high-resolution global elevation data currently available. |
Land Cover Type | 2017 | 30 m/71% | Available online: http://data.ess.tsinghua.edu.cn/ (accessed on 25 February 2022) | Classification based on remote sensing satellite images. |
Landsat8 OLI | 2017 | 30 m | Available online: http://www.gscloud.cn/search (accessed on 23 February 2022) | Landsat 8 is the eighth satellite of the U.S. Landsat program (Landsat). |
Roads | 2019 | Available online: https://lbs.amap.com/ (accessed on 2 March 2022) | The Gaode Map JS API is a programming interface for map applications developed in JavaScript. It is suitable for mobile applications and PCs. | |
Rivers | 2019 | Available online: https://lbs.amap.com/ (accessed on 2 March 2022) | The Gaode Map JS API is a programming interface for map applications developed in JavaScript. It is suitable for mobile applications and PCs. | |
Residential Locations | 2019 | Available online: https://www.openstreetmap.org/ (accessed on 4 March 2022) | OpenStreetMap is an open-source map based on satellite imagery. The data are updated daily and can be edited. | |
Night Lights | 2017 | 500 m/69% | Available online: https://www.ngdc.noaa.gov/eog/viirs/download_dnb_composites.html (accessed on 6 March 2022) | This dataset was derived from the Visible Infrared Imaging Radiometer Suite (VIIRS) that obtains nighttime imagery (Day/Night Band, DNB band). |
Landscan | 2017 | 1000 m/75% | Available online: https://landscan.ornl.gov/ (accessed on 6 March 2022) | An innovative approach that combines Geographic Information System (GIS) and Remote Sensing (RS) imagery. |
Worldpop | 2017 | 1000 m/66% | Available online: https://www.worldpop.org/project/categories?id=3 (accessed on 6 March 2022) | Open high-resolution geospatial datasets on population distribution, demographics, and dynamics derived from remote sensing imagery and geoinformation technology. |
Social Media Tweet Density | 2017 | Available online: http://open.weibo.com/wiki/SDK (accessed on 8 March 2022) | Weibo Open Platform provides a convenient cooperation model for mobile applications, meeting the needs of diversified mobile terminal users to quickly log in and share information anytime and anywhere. It provides social access to multiple types of terminals, such as mobile Apps, health devices, smart homes, and vehicles. |
References
- IPCC. Climate Change 2013—The Physical Science Basis; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Lister, A.M.; Stuart, A.J. The impact of climate change on large mammal distribution and extinction: Evidence from the last glacial/interglacial transition. C. R. Geosci. 2008, 340, 615–620. [Google Scholar] [CrossRef]
- Ye, S.; Fang, Y.; Li, K. Impact of urbanization on insect diversity. Biodiversity 2013, 21, 260–268. [Google Scholar] [CrossRef]
- Schloss, C.A.; Nunez, T.A.; Lawler, J.J. Dispersal will limit ability of mammals to track climate change in the Western Hemisphere. Proc. Natl. Acad. Sci. USA 2012, 109, 8606–8611. [Google Scholar] [CrossRef]
- Jiang, Z. Maximum Entropy Model (MaxEnt) Prediction of Suitable Habitat for Wild Asian Elephants in China in a Climatic Context. Master’s Thesis, Yunnan University, Kunming, China, 2019; p. 97. [Google Scholar]
- Levinsky, I.; Skov, F.; Svenning, J.; Rahbek, C. Potential impacts of climate change on the distributions and diversity patterns of European mammals. Biodivers. Conserv. 2007, 16, 3803–3816. [Google Scholar] [CrossRef]
- Paula, A.; Pedro, A.; Josefa, V.; David, T.B.; Andrés, M.; David, S.F. Evaluating drivers of vulnerability to climate change: A guide for insect conservation strategies. Glob. Chang. Biol. 2012, 18, 2135–2146. [Google Scholar] [CrossRef]
- Wenwen, L.; Peng, L.; Xianming, G.; Lanxin, W.; Qiaoyan, W.; Yang, Y.; Yunchuan, D.; Li, L.; Li, Z. Human-elephant conflict in Xishuangbanna Prefecture, China: Distribution, diffusion, and mitigation. Glob. Ecol. Conserv. 2018, 16, e00462. [Google Scholar] [CrossRef]
- Wu, J.; Lv, J. Potential impacts of climate change on the distribution of giant pandas. Sci. Technol. 2009, 32, 168–177. [Google Scholar] [CrossRef]
- Grekousis, G.; Mountrakis, G.; Kavouras, M. An overview of 21 global and 43 regional land-cover mapping products. Int. J. Remote Sens. 2015, 36, 5309–5335. [Google Scholar] [CrossRef]
- Zacarias, D.; Loyola, R. Distribution modelling and multi-scale landscape connectivity highlight important areas for the conservation of savannah elephants. Biol. Conserv. 2018, 224, 1–8. [Google Scholar] [CrossRef]
- Jun, C.; Ban, Y.F.; Li, S.N. Open access to Earth land-cover map. Nature 2014, 514, 434. [Google Scholar] [CrossRef] [Green Version]
- Mehler, K.; Burlakova, L.E.; Karatayev, A.Y.; Biesinger, Z.; Bruestle, E.; Valle-Levinson, A.; Castiglione, C.; Gorsky, D. Integrating remote sensing and species distribution modelling to predict benthic communities in a Great Lakes connecting channel. River Res. Appl. 2017, 33, 1336–1344. [Google Scholar] [CrossRef]
- Li, Y.; Han, B.; Wang, X. Resource one operational satellite development overview. Spacecr. Eng. 2020, 29, 1–9. [Google Scholar] [CrossRef]
- Wang, Q.; Zheng, S.; Feng, H.; Wang, Y.; Bai, Z.; Meng, B.; Chen, H. Construction of a national comprehensive monitoring technology system for urban ecological environment. J. Geo-Inf. Sci. 2020, 22, 1922–1934. [Google Scholar] [CrossRef]
- Wang, F.; Zheng, X.; Ma, J.; Wang, Z.; Liu, Y.; Yao, C.; Li, Z.; Chen, M. Application of UAV technology in the survey and monitoring of wild Asian elephants in China. For. Constr. 2019, 6, 38–44. [Google Scholar]
- Yan, L.; Liao, X.; Zhou, C.; Fan, B.; Gong, J.; Cui, P.; Zheng, Y.; Tan, X. An overview of China’s UAV remote sensing technology breakthrough and industrial development. J. Geo-Inf. Sci. 2019, 21, 476–495. [Google Scholar] [CrossRef]
- Stephenson, P.J. Integrating Remote Sensing into Wildlife Monitoring for Conservation. Environ. Conserv. 2019, 46, 181–183. [Google Scholar] [CrossRef]
- Yang, H. Habitat Analysis of Wild Camels in the Kumtag Desert Region and the Impact of Climate Change. Ph.D. Thesis, China Academy of Forestry Science, Beijing, China, 2011; p. 112. [Google Scholar] [CrossRef]
- He, Y. Simulation of Geographical Distribution and Analysis of Dominant Climatic Factors of Five Species of Piper spp. Master’s Thesis, Northwest A&F University, Yangling, China, 2015; p. 58. [Google Scholar] [CrossRef]
- Ou, Y. Predicting the Impact of Climate Change on the Potential Distribution of the Pecan Family. Master’s Thesis, Northwestern University, Evanston, IL, USA, 2019; p. 94. [Google Scholar]
- Booth, T.H.; Nix, H.A.; Busby, J.R.; Hutchinson, M.F. BIOCLIM: The first species distribution modelling package, its early applications and relevance to most current MAXENT studies. Divers. Distrib. 2014, 20, 1–9. [Google Scholar] [CrossRef]
- Deng, D.; Ruan, Y.; Ma, P.; Du, Y. Ecological niche and GIS-based analysis of the suitability of broad-leaved edelweiss in China. Southwest China J. Agric. Sci. 2012, 25, 2272–2278. [Google Scholar] [CrossRef]
- Wang, S. Ecological Suitability Zone of Red Pine (Pinus koraiensis Sieb.) in Northeast China Based on MaxEnt Model. Master’s Thesis, Northeast Agricultural University, Harbin, China, 2018; p. 51. [Google Scholar]
- Wang, J.; Cao, B.; Bai, C.; Zhang, L.; Che, Y. Predicting the potential distribution and suitability evaluation of Chuanbeijia based on Maxent and ArcGIS. Bull. Bot. Res. 2014, 34, 642–649. [Google Scholar] [CrossRef]
- Cao, B. Prediction of Potential Distribution of Cornus Officinalis Resources and Analysis of Environmental Factors Affecting the Formation of Active Ingredients. Master’s Thesis, Shaanxi Normal University, Xi’an, China, 2014; p. 132. [Google Scholar]
- Wang, T.; Wang, G.; Innes, J.L.; Seely, B.; Chen, B. ClimateAP: An application for dynamic local downscaling of historical and future climate data in Asia Pacific. Front. Agric. Sci. Eng. 2017, 4, 448. [Google Scholar] [CrossRef]
- Fan, S.X.; Zhang, Z.D. Predicting spatial distribution of plant functional traits in a forest-steppe zone. Pol. J. Ecol. 2021, 69, 1–13. [Google Scholar] [CrossRef]
- Wang, T.L.; Wang, G.Y.; Innes, J.; Nitschke, C.; Kang, H.J. Climatic niche models and their consensus projections for future climates for four major forest tree species in the Asia-Pacific region. Forest Ecol. Manag. 2016, 360, 357–366. [Google Scholar] [CrossRef]
- Feng, L.; Sun, J.J.; Shi, Y.B.; Wang, G.B.; Wang, T.L. Predicting Suitable Habitats ofCamptotheca acuminataConsidering Both Climatic and Soil Variables. Forests 2020, 11, 891. [Google Scholar] [CrossRef]
- Peng, L.; Hui, W.; Liu, L.; Jing, L.; Li, Z. Habitat evaluation for Asian elephants (Elephas maximus) in Lincang: Conservation planning for an extremely small population of elephants in China. Biol. Conserv. 2016, 198, 113–121. [Google Scholar] [CrossRef]
- Zhang, M. The rise and Fall of Chinese Asian Elephant and its Causes—Also on the vicissitude of historical climate and ecology. Southeast Cult. 1992, 6, 68–75. [Google Scholar]
- Lin, L.; Jin, Y.; Chen, D.; Guo, X.; Luo, A.; Zhao, J.; Wang, Q.; Zhang, L. Population and habitat evaluation of Asian elephant in Menglazi Protected Area of Xishuangbanna National Nature Reserve. Acta Ecol. Sin. 2014, 34, 1725–1735. [Google Scholar] [CrossRef]
- Hong, Z.; Zhao, G.; Shi, Y. The battle between man and elephant behind the exodus of elephants. Ecol. Econ. 2021, 37, 5–8. [Google Scholar]
- Yang, H.; Wang, Q.; Zhang, Z.; Yao, Z.; Li, Z.; Wang, L.; Xu, H.; Li, J.; Song, Z.; Zhou, J. Population Quantity and Distribution of Wild Asian Elephant in Xishuangbanna; Xishuangbanna National Natural Reserve Keyansuo: Yunnan, China, 2015. [Google Scholar]
- Zhang, L. China’s homeless elephants need linked reserves. Nature 2021, 595, 172. [Google Scholar] [CrossRef]
- Huang, H. Man’s advance and Elephant’s Retreat. New reasons for elephant’s retreat in Yunnan province. Acad. Explor. 2016, 7, 130–135. [Google Scholar] [CrossRef]
- Liu, P.; Wen, H.; Harich, F.K.; He, C.; Wang, L.; Guo, X.; Zhao, J.; Luo, A.; Yang, H.; Sun, X.; et al. Conflict between conservation and development: Cash forest encroachment in Asian elephant distributions. Sci. Rep. 2017, 7, 6404. [Google Scholar] [CrossRef] [PubMed]
- Hamm, M.; Drossel, B. Habitat heterogeneity hypothesis and edge effects in model metacommunities. J. Theor. Biol. 2017, 426, 40–48. [Google Scholar] [CrossRef]
- Jason, L.B.; Joseph, R.B.; Connor, M.F. SDMtoolbox 2.0: The next generation Python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. PeerJ 2017, 5, e4095. [Google Scholar] [CrossRef]
- Huang, C.; Li, X.; Khanal, L.; Jiang, X. Habitat suitability and connectivity inform a co-management policy of protected area network for Asian elephants in China. PeerJ 2019, 7, e6791. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Yu, Y.; Liu, P.; Tang, R.; Dai, Y.; Li, L.; Zhang, L. Identifying climate refugia and its potential impact on small population of Asian elephant (Elephas maximus) in China. Glob. Ecol. Conserv. 2019, 19, e00664. [Google Scholar] [CrossRef]
- Zomer, R.J.; Trabucco, A.; Wang, M.; Lang, R.; Chen, H.; Metzger, M.J.; Smajgl, A.; Beckschäfer, P.; Xu, J. Environmental stratification to model climate change impacts on biodiversity and rubber production in Xishuangbanna, Yunnan, China. Biol. Conserv. 2014, 170, 264–273. [Google Scholar] [CrossRef]
- Zhang, X.; Yin, W.; Xie, F.; Fan, H.; Chen, F. Habitat suitability evaluation of Asian elephants in the Yuanjiang-Lixian River Basin. Based on meta-analysis and remote sensing big data analysis. Acta Ecol. Sin. 2022, 42, 5067–5078. [Google Scholar] [CrossRef]
- Wu, D.; Wei, J.; Fan, H. Impacts of land use change on Asian elephant habitat in the South Rolling River Basin. Acta Ecol. Sin. 2021, 41, 6476–6485. [Google Scholar] [CrossRef]
- Warren, D.L.; Glor, R.E.; Turelli, M. ENMTools: A toolbox for comparative studies of environmental niche models. Ecography 2010, 33, 607–611. [Google Scholar] [CrossRef]
- Guo, Y.; Shi, M.; Li, J.; Fu, J.; Wu, M. Prediction of potential distribution area of Pseudostellaria based on Maxent model. J. Trop. Subtrop. Bot. 2019, 27, 250–260. [Google Scholar] [CrossRef]
- Wang, R.; Yang, H.; Luo, W.; Wang, M.; Lu, X.; Huang, T.; Zhao, J.; Li, Q. Predicting the potential distribution of the Asian citrus psyllid, Diaphorina citri (Kuwayama), in China using the MaxEnt model. PeerJ 2019, 7, e7323. [Google Scholar] [CrossRef] [PubMed]
- Lin, W.; Xu, M.; Quan, Y.; Liao, L.; Gao, L. Suitability analysis of Armyworm armyworm based on MaxEnt model. Plant Quar. 2019, 33, 69–73. [Google Scholar] [CrossRef]
- Kong, W.; Li, X.; Zou, H. Optimization of the maximum entropy model for species distribution prediction. Chin. J. Appl. Ecol. 2019, 30, 2116–2128. [Google Scholar] [CrossRef]
- Lin, L. Study on Population Phenotypic Difference of Acer Camabra and Prediction of Potential Distribution Area. Master’s Thesis, Shaanxi Normal University, Xi’an, China, 2015; p. 57. [Google Scholar]
- Cobos, M.E.; Peterson, A.T.; Barve, N.; Osorio-Olvera, L. kuenm: An R package for detailed development of ecological niche models using Maxent. PeerJ 2019, 7, e6281. [Google Scholar] [CrossRef]
- Zhu, G.; Qiao, H. Effect of Maxent model complexity on prediction of potential distribution areas of species. Biodivers. Sci. 2016, 24, 1189–1196. [Google Scholar] [CrossRef]
- Guillera-Arroita, G.; Lahoz-Monfort, J.J.; Elith, J.; Gordon, A.; Kujala, H.; Lentini, P.E.; McCarthy, M.A.; Tingley, R.; Wintle, B.A. Is my species distribution model fit for purpose? Matching data and models to applications. Glob. Ecol. Biogeogr. 2015, 24, 276–292. [Google Scholar] [CrossRef]
- Shi, X.; Yin, Q.; Sang, Z.; Zhu, Z.; Jia, Z.; Ma, L. Prediction of potentially suitable areas for the introduction of Magnolia wufengensis under climate change. Ecol. Indic. 2021, 127, 107762. [Google Scholar] [CrossRef]
- Warren, D.L.; Seifert, S.N. Ecological niche modeling in Maxent: The importance of model complexity and the performance of model selection criteria. Ecol. Appl. 2011, 21, 335–342. [Google Scholar] [CrossRef]
- Zhang, Y. Ecological environment satisfaction estimation based on knife cutting method in Kunming City. Environ. Impact Assess. 2021, 43, 69–72. [Google Scholar] [CrossRef]
- Yin, D.; Yuan, Z.; Li, J.; Zhu, H. Mitigate human-wildlife conflict in China. Science 2021, 373, 500–501. [Google Scholar] [CrossRef]
- He, C.; Du, J.; Zhu, D.; Zhang, L. Population viability analysis of small population: A case study for Asian elephant in China. Integr. Zool. 2020, 15, 350–362. [Google Scholar] [CrossRef] [PubMed]
- Jathanna, D.; Karanth, K.U.; Kumar, N.S.; Karanth, K.K.; Goswami, V.R. Patterns and Determinants of Habitat Occupancy by the Asian Elephant in the Western Ghats of Karnataka, India. PLoS ONE 2015, 10, e0133233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, Y.; Chen, Y.; Díaz-Sacco, J.J.; Shi, K.; Corti, P. Assessing population structure and body condition to inform conservation strategies for a small isolated Asian elephant (Elephas maximus) population in southwest China. PLoS ONE 2021, 16, e248210. [Google Scholar] [CrossRef]
- Ying, J. MaxEnt Model to Predict the Impact of Climate Change on Potential Distribution of Endemic Viburnum in China. Master’s Thesis, University of Chinese Academy of Sciences, Beijing, China, 2021; p. 99. [Google Scholar]
- Aaron, A.W.; Jeff, B.; Dennis, L.M.; Paul, J.W. Functional connectivity of lynx at their southern range periphery in Ontario, Canada. Landsc. Ecol. 2012, 27, 761–773. [Google Scholar] [CrossRef]
- Hall, K.R.; Anantharaman, R.; Landau, V.A.; Clark, M.; Dickson, B.G.; Jones, A.; Platt, J.; Edelman, A.; Shah, V.B. Circuitscape in Julia: Empowering Dynamic Approaches to Connectivity Assessment. Land 2021, 10, 301. [Google Scholar] [CrossRef]
- McRae, B.H.; Beier, P. Circuit theory predicts gene flow in plant and animal populations. Proc. Natl. Acad. Sci. USA 2007, 104, 19885–19890. [Google Scholar] [CrossRef] [PubMed]
- Annika, T.H.K.; Paul, B.; Jeffrey, W.G. Estimating landscape resistance from habitat suitability: Effects of data source and nonlinearities. Landsc. Ecol. 2016, 31, 2151–2162. [Google Scholar] [CrossRef]
- Liu, C.; White, M.; Newell, G. Selecting thresholds for the prediction of species occurrence with presence-only data. J. Biogeogr. 2013, 40, 778–789. [Google Scholar] [CrossRef]
- Wang, R.; Li, Q.; Feng, C.; Shi, C. Prediction of suitable habitats of Tibetan migratory locust in China based on MaxEnt. Acta Ecol. Sin. 2017, 37, 8556–8566. [Google Scholar] [CrossRef]
- Li, D. On the Integrated Space and Sky Earth Observation Network. J. Geo-Inf. Sci. 2012, 14, 419–425. [Google Scholar] [CrossRef]
- Song, H.; Zhang, X.; Chen, Y. Optimization of land cover classification accuracy of multi-source remote sensing products based on evidence theory. Trans. Chin. Soc. Agric. Eng. 2014, 30, 132–139. [Google Scholar] [CrossRef]
- Yang, P. Reflections on the Future Development of the Field Scientific Observation Research Network of the Chinese Academy of Sciences. Bull. Chin. Acad. Sci. 2021, 36, 104–112. [Google Scholar] [CrossRef]
- He, Z. Southward migration of wild elephants and forest destruction in China. Chin. J. Ecol. 1984, 5, 48–51. [Google Scholar]
- Jake, W.; Iain, D.; Fritz, V. Elephants avoid costly mountaineering. Curr. Biol. 2006, 16, PR527–PR529. [Google Scholar] [CrossRef]
- Lin, L.; Feng, L.M.; Pan, W.J.; Guo, X.M.; Zhao, J.W.; Luo, A.D.; Zhang, L. Habitat selection and the change in distribution of Asian elephants in Mengyang Protected Area, Yunnan, China. Acta Theriol. 2008, 53, 365–374. [Google Scholar] [CrossRef]
- Kang, D.; Li, J. Overall protection of Asian elephants in China. Conserv. Lett. 2021, 15, e12854. [Google Scholar] [CrossRef]
- Dai, Y.; Li, L.; Wu, G.; Zhou, Y.; Li, W. Spatial and temporal characteristics of extreme temperatures in Sipsongpanna, 1961–2010. Resour. Dev. Market. 2016, 32, 813–817. [Google Scholar] [CrossRef]
- de la Torre, J.A.; Wong, E.P.; Lechner, A.M.; Zulaikha, N.; Zawawi, A.; Abdul Patah, P.; Saaban, S.; Goossens, B.; Campos Arceiz, A. There will be conflict—Agricultural landscapes are prime, rather than marginal, habitats for Asian elephants. Anim. Conserv. 2021, 24, 720–732. [Google Scholar] [CrossRef]
- Mohd Taher, T.; Lihan, T.; Tajul Arifin, N.A.; Khodri, N.F.; Ahmad Mustapha, M.; Abdul Patah, P.; Razali, S.H.A.; Mohd Nor, S. Characteristic of habitat suitability for the Asian elephant in the fragmented Ulu Jelai Forest Reserve, Peninsular Malaysia. Trop. Ecol. 2021, 62, 347–358. [Google Scholar] [CrossRef]
- Mahmood, T.; Vu, T.T.; Campos-Arceiz, A.; Akrim, F.; Andleeb, S.; Farooq, M.; Hamid, A.; Munawar, N.; Waseem, M.; Hussain, A.; et al. Historical and current distribution ranges and loss of mega-herbivores and carnivores of Asia. PeerJ 2021, 9, e10738. [Google Scholar] [CrossRef]
- Li, Z.; Ning, W. An initial study on habitat conservation of Asian elephant (Elephas maximus), with a focus on human elephant conflict in Simao, China. Biol. Conserv. 2003, 112, 453–459. [Google Scholar] [CrossRef]
- Glaeser, S.S.; Shepherdson, D.; Lewis, K.; Prado, N.; Brown, J.L.; Lee, B.; Wielebnowski, N. Supporting Zoo Asian Elephant (Elephas maximus) Welfare and Herd Dynamics with a More Complex and Expanded Habitat. Animals 2021, 11, 2566. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.; Li, C.; Ding, C. The roaming wild Asian elephants of Yunnan, China, pose a challenge to conservation. Oryx 2021, 55. [Google Scholar] [CrossRef]
Type | Variable | Description | Unit | Source and Preprocessing Method |
---|---|---|---|---|
Climate factors | MAT [8] | Mean Annual Temperature | °C | ClimateAP_v2.30, Original Value |
MWMT [42] | Mean Warmest Month Temperature | °C | ClimateAP_v2.30, Original Value | |
MCMT [42] | Mean Coldest Month Temperature | °C | ClimateAP_v2.30, Original Value | |
TD [5] | Temperature Difference between MWMT and MCMT | °C | ClimateAP_v2.30, Original Value | |
MAP [41] | Mean Annual Precipitation | mm | ClimateAP_v2.30, Original Value | |
AHM [8] | Annual Heat. Moisture index (MAT + 10)/(MAP/1000) | ClimateAP_v2.30, Original Value | ||
Natural Factors | Alt [43] | Altitude | m | ASTER GDEM V3, Original Value |
Slope [43] | Slope | ° | ASTER GDEM V3, Surface Analysis Tool Extraction | |
Aspect [43] | Aspect | ASTER GDEM V3, Surface Analysis Tool Extraction | ||
VCT [44] | Vegetation Cover Type | Landsat8 OLI, Random Forest Classification | ||
NDVI [44] | Normalized Difference Vegetation Index | Extraction calculated from Landsat8 OLI | ||
Dis_river [44] | Distance To Water Resource | m | Rivers, Euclidean distance | |
Anthropogenic influence factors | PD [34] | Population Density | people/km² | Calculated from land cover type and population to obtain |
NL [34] | Nighttime Light | Resampling according to NPPVIIRS | ||
Dis_road [45] | Distance To Roads | m | Roads, Euclidean distance | |
Dis_res [45] | Distance To Residential | m | Residential Locations, Euclidean distance |
Type | Variable | Description | Percent Contribution/% | Cumulative Percentage/% |
---|---|---|---|---|
Non-anthropogenic Interference (NAI) | Alt | Altitude | 37.1 | 37.1 |
MAP | Mean Annual Precipitation | 25.5 | 62.6 | |
MWMT | Mean Warmest Month Temperature | 22.4 | 85 | |
TD | Temperature Difference between MWMT and MCMT | 8.8 | 93.8 | |
Dis_river | Distance to Water Resources | 3.3 | 97.1 | |
Aspect | Aspect | 2.9 | 100 | |
Anthropogenic Interference (AI) | Alt | Altitude | 42.5 | 42.5 |
MAP | Mean Annual Precipitation | 23.7 | 66.2 | |
MWMT | Mean Warmest Month Temperature | 14.9 | 81.1 | |
TD | Temperature Difference between MWMT and MCMT | 5.1 | 86.2 | |
Dis_road | Distance to Roads | 4.1 | 90.3 | |
PD | Population Density | 4 | 94.3 | |
Aspect | Aspect | 2.5 | 96.8 | |
Dis_res | Distance to Residential Areas | 2.2 | 99 | |
Dis_river | Distance to Water Resources | 1 | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, K.; Fan, C.; Zhong, M.; Cao, F.; Wang, G.; Cao, L. Evaluation of Habitat Suitability for Asian Elephants in Sipsongpanna under Climate Change by Coupling Multi-Source Remote Sensing Products with MaxEnt Model. Remote Sens. 2023, 15, 1047. https://doi.org/10.3390/rs15041047
He K, Fan C, Zhong M, Cao F, Wang G, Cao L. Evaluation of Habitat Suitability for Asian Elephants in Sipsongpanna under Climate Change by Coupling Multi-Source Remote Sensing Products with MaxEnt Model. Remote Sensing. 2023; 15(4):1047. https://doi.org/10.3390/rs15041047
Chicago/Turabian StyleHe, Kai, Chenjing Fan, Mingchuan Zhong, Fuliang Cao, Guibin Wang, and Lin Cao. 2023. "Evaluation of Habitat Suitability for Asian Elephants in Sipsongpanna under Climate Change by Coupling Multi-Source Remote Sensing Products with MaxEnt Model" Remote Sensing 15, no. 4: 1047. https://doi.org/10.3390/rs15041047
APA StyleHe, K., Fan, C., Zhong, M., Cao, F., Wang, G., & Cao, L. (2023). Evaluation of Habitat Suitability for Asian Elephants in Sipsongpanna under Climate Change by Coupling Multi-Source Remote Sensing Products with MaxEnt Model. Remote Sensing, 15(4), 1047. https://doi.org/10.3390/rs15041047