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Abstract: The Asian elephant (Elephas maximus Linnaeus) is a globally endangered species, an inter-
nationally protected species, and a first-class protected animal in China. However, future climate
change and human activities exacerbate the instability of its habitat range, leading to a possible
reduction in the range. By using multi-source remote sensing data and products, as well as climate
change models, including ASTER GDEM v3, Landsat8 OLI image and ClimateAP, we examined
the effects of ecological factors related to climate and natural and anthropogenic influences on the
distribution of Asian elephants in Sipsongpanna. Multiyear elephant field tracking data were used
with a MaxEnt species distribution model and the climate model. First, the distribution of Asian
elephants in potentially suitable areas in Sipsongpanna was simulated under current climatic con-
ditions without considering human activities. The predicted distribution was verified by existing
Asian elephant migration trajectories. Subsequently, the distribution of potentially suitable areas
for Asian elephants in Sipsongpanna was simulated under two climate change scenarios (RCP4.5,
RCP8.5) in three periods (2025, 2055, and 2085). The changes in potentially suitable areas for Asian
elephants in Sipsongpanna were analyzed under multiple climate change scenarios for the current
(2017) and different future periods by considering the effects of human activities. The results show the
following: (1) under anthropogenic interference (AI), the optimal MaxEnt model has a high prediction
accuracy with the area under the curve (AUC) of 0.913. The feature combination (FC) includes linear,
quadratic, and threshold features, and the regularization multiplier (RM) is 2.1. (2) Jackknife analyses
of the non-anthropogenic interference (NAI) and anthropogenic interference (AI) scenarios indicate
that topography (altitude (Alt)), temperature (mean warmest month temperature (MWMT)), and
precipitation (mean annual precipitation (MAP)) are the top three factors influencing the distribution
of Asian elephants. (3) The total area suitable for Asian elephants under current climate conditions
and AI accounts for 46.35% of the total area. Areas of high suitability (occurrence probability >0.5) are
located in Jinghong City in central Sipsongpanna and Mengla County in southeastern Sipsongpanna.
Among them, the minimum habitat range and ecological corridors are mainly located in Mengman
Town, Mohan Town, Mengla Town, Mengban Township, Dadugang Township, and Mengwang
Township. (4) The change in potentially suitable areas for Asian elephants between current and
future conditions is small under AI and large under undisturbed conditions.

Keywords: remote sensing; Asian elephant; habitat suitability; climate change; MaxEnt; population
projections; Sipsongpanna

1. Introduction

The global climate is changing rapidly, and research has shown that many climate-
sensitive species will change their distribution in response to climate change [1]. Radio-
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carbon data show that complex climate change (e.g., warming) has significantly impacted
the range of large mammals in recent years [2]. Climate change is manifested not only by
temperature changes but also by precipitation, frequency of extreme weather, and many
other changes [3]. Its impact on the distribution of large mammals is twofold. First, as
temperatures rise in high-latitude and high-altitude areas, species will migrate to these
areas. Second, low latitudes will be affected by increasing temperatures and drought stress,
and some species will migrate to areas with more abundant water resources [4]. If the
rate of climate change accelerates in the future, some mammals may be unable to adapt to
the new changes in time. Moreover, the effects of climate change on species distribution
may be more widespread than previously anticipated, making it difficult for researchers to
predict suitable habitats based on climate change [5]. According to the Intergovernmental
Panel on Climate Change (IPCC) projections, 32–46% of free-ranging mammals could be
severely impacted and lose approximately 30% of their current range [6]. At the same
time, threats to wildlife and their habitat from human activities are increasing in areas with
expanding populations and rapid urbanization, leading to a reduction in the habitat area
and exacerbating species fragmentation [7]. When existing habitats cannot ensure the sur-
vival of wildlife, conflicts between humans and wildlife will intensify, causing substantial
economic losses to residents and severe impacts on their lives, production, and personal
safety [8]. The uncertainty of climate change and human development will significantly
impact species distribution. If we can predict future climate change and human activities
and analyze their impact on the distribution of suitable areas for species, we can improve
species conservation [9].

Remote sensing data-driven habitat suitability evaluations have broader applicability
than field-based evaluations due to the ability of large-scale habitat suitability mapping and
a rapid satellite revisit time. Thus, these methods have significant potential for responding
to wildlife emergencies [10–13]. Studies have shown that integrating high-resolution
satellite data [14], domestic high-resolution data [15], and UAV remote sensing data [16,17],
or a near real-time “air-sky-ground” integrated species monitoring and emergency response
platform [18] can provide more comprehensive, real-time, and accurate decision support
for species conservation and emergency management and prevention. Using remote
sensing data and products can quickly reflect environmental changes and development
trends in large areas. In conjunction with ecological factor models, these data can be
used for habitat suitability area prediction and to improve research efficiency. Ecological
factor models require species distribution data to determine ecological niches [19,20].
Therefore, ecological factor models should be considered in species distribution models
when distribution data are difficult to obtain or precise distribution data are not available.
A commonly used ecological factor model based on remote sensing data is the ecological
niche factor analysis (ENFA) model. This model relies on species occurrence data and a
range of ecogeographic variables, but some of the required data are not easily accessible [21].
Bioclimatic analysis (BIOCLIM) methods have been used in earlier ecological studies. The
principle is straightforward and based on ecological principles, but the models assume
that populations remain stable even under extreme environmental conditions [22,23]. The
domain distance (DOMAIN) method accurately simulates the potential species distribution
with few environmental variables, but the critical threshold to distinguish the presence
or absence of a species is difficult to determine [24]. The genetic algorithm for rule-set
prediction (GARP) is widely used and is a stable model for predicting species distributions
at larger scales but is not suitable for species with small sample sizes [20]. The maximum
entropy (MaxEnt) model provides accurate results, is reliable, has simple assumptions, and
can simplify the complexity of natural systems better than other models [25]. The prediction
results are more accurate when the species distribution dataset is small or incomplete [26].
Based on prior work, we concluded that the MaxEnt model and circuit theory were the
most suitable for investigating the suitable habitat and migration of Asian elephants, a
large and rare mammal, considering the topography and climate of the Sipsongpanna area.
Moreover, scenario prediction under future global climate change has been performed using
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remote sensing data. Most climate datasets are in a grid format with low spatial resolution.
Although these data are suitable for climate impact modeling and analysis at global and
ecosystem scales, current modeling studies are increasingly shifting to regional scales to
develop more targeted adaptive management strategies [27]. Given the high heterogeneity
of the climate in different regions, gridded climate data are insufficient for these studies.
ClimateAP is an application for downscaling historical and future climate data in the Asia-
Pacific region. It can provide high spatial resolution climate data for spatial analysis at the
local scale and has been used for future climate modeling for two greenhouse gas (GHG)
representative concentration pathways (RCPs) (RCP4.5 and RCP8.5) [27]. The monthly
temperature and precipitation prediction errors were 27% and 60% lower, respectively, for
ClimateAP than the baseline data, with even more significant improvements for historical
and future data [27]. The ClimateAP model can provide historical, current, and future
climate data for evaluating species’ habitat suitability efficiently and scientifically. This
model has been used to predict the spatial distribution of plant functional traits in forest-
steppe areas [28], establish ecological niche models for four major tree species in the
Asia-Pacific region under future climate [29], and predict suitable habitat for Pleurotus
species considering climate and soil variables [30].

The Asian elephant is a free-ranging large mammal listed as endangered by the
International Union for Conservation of Nature (IUCN). Its habitat range is substantially
influenced by topography and vegetation type [31,32]. The most suitable habitat for Asian
elephants is low-altitude river valleys, and areas rich in tropical plants are their preferred
habitat [33]. The northern boundary of their distribution is the southern foothills of the
Himalayas in Nepal, Bhutan, and northern India, and their range is near the equator.
Asian elephants and their habitat plants are affected by climate change. Plants occurring in
suitable habitats for Asian elephants, such as rubber trees, have been affected by the gradual
warming of the climate and have expanded their distribution. Rubber tree plantation areas
have also expanded, reducing the natural habitat of Asian elephants and leading to habitat
loss. The phenomenon has a greater role in the gradual northward migration of Asian
elephants [34]. The Sipsongpanna and surrounding areas in China are the northernmost
areas in Southeast Asia where wild Asian elephants are known to exist, and more may
migrate to China in the future due to climate change. Currently, Asian elephants are only
found in a few areas of Sipsongpanna, Pu’er, and Lincang in Yunnan Province in China, with
a population of approximately 300, accounting for less than 1% of the total number of Asian
elephants in the world [35]. The Asian elephant population in Sipsongpanna is the largest,
with 228 to 279 individuals [32]. Due to the uncertainty of Asian elephant activities, human-
elephant conflict (HEC) has existed for more than 20 years due to human encroachment on
elephant habitat, resulting in wild elephants injuring people and destroying cash crops. For
example, 15 Asian elephants from the Sipsongpanna Prefecture trekked north about 500 km
in 2021, causing destruction and worldwide concern [36]. With the rapid development
of the population and economy, predicting HEC areas by identifying suitable habitats for
Asian elephants could mitigate economic losses [8].

In response to the fragmentation and reduction of suitable habitats for Asian elephants,
this study uses multisource remote sensing data and products and optimizes the MaxEnt
model parameters to evaluate the habitat suitability for wild Asian elephants under current
and future climate change in Sipsongpanna. The research objectives of this paper are:
(1) to construct a basic dataset for species conservation in the study area using multisource
heterogeneous remote sensing data (products); (2) to optimize the MaxEnt model parame-
ters and the climate model (MaxEnt + ClimateAP) using Asian elephant observation data
and validate the simulation results under current climate conditions; (3) to simulate the
distribution of suitable areas, minimum habitat ranges and ecological corridors for Asian
elephants under two climate change scenarios (RCP4.5 and RCP8.5) in three future periods
(2025, 2055, and 2085). We simulate future changes with a population model (predicting the
changes in the population size for different future periods), consider the effects of human
activities, and optimize the simulation again to compare the predicted potential suitable
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areas for Asian elephants under nonanthropogenic interference (NAI) and anthropogenic
interference (AI).

2. Materials and Methods

This study was divided into three parts, which were data collection and processing,
model accuracy check, and analysis of results, as shown in Figure 1.
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2.1. Study Area

Sipsongpanna Prefecture (21◦09′–22◦36′N, 99◦58′–101◦50′E) has the largest number of
Asian elephants in China. It is located in the southernmost part of Yunnan Province, China,
and its capital is Jinghong city [35]. It is located on the northern edge of the tropics south of
the Tropic of Cancer, covers an area of 19,124.5 km2, and has a population of 1,301,407. It
borders Pu’er city in the northeast and northwest, Laos in the southeast, and Myanmar in
the southwest. The elevation range is 474–2429 m, and the region has a tropical monsoon
climate [37]. Sipsongpanna has one county-level city (Jinghong City) and two counties
(Mengla County and Menghai County). It has the largest tropical forest area in China,
with a wide variety of flora and fauna. The Sipsongpanna Nature Reserve was established
in 1958 to protect the local flora and fauna. It is the largest national nature reserve in
China to protect tropical forests and covers five areas: Mengyang, Mengla, Shangyong,
Mangyang, and Menglun. Asian elephants are currently found in the Mengla, Shangyong,
and Mengyang subregions of the Sipsongpanna National Nature Reserve and surrounding
areas [38].

2.2. Data Collection

The data in this study included Asian elephant distributions, environmental data
affecting the distribution of Asian elephants, and administrative division data.

2.2.1. Asian Elephant Distribution Data

The Asian elephant distribution data in Sipsongpanna were obtained from a local
survey of wild Asian elephants in Yunnan, China, conducted from January to June 2018
and combined with past surveys. The survey obtained the migration trajectories of Asian
elephants in Sipsongpanna from 2013 to 2017 (Figure 2). This survey utilized the manage-
ment experience of grassroots managers, applied remote sensing integration technologies,
such as UAVs, an infrared camera, and GPS, and consisted of interviews, a counting and
tracking survey, and a comprehensive assessment of the background of wild Asian elephant
resources in Yunnan, China. The migration of Asian elephants occurs in March, and the
migration time is very short. The Asian elephant distribution data were preprocessed as
follows. The Asian elephant migration trajectories from 2013 to 2017 were combined. The
sdmtoolbox tool (http://www.sdmtoolbox.org/, accessed on 22 January 2023) was used to
eliminate redundant sample data with a threshold of 5 km to ensure that each raster cell
had only one sample point to avoid overfitting, reduce the sampling bias caused by the
cluster effect, and improve the simulation [39,40]. Ultimately, 101 valid distribution points
were retained.

2.2.2. Environmental Data Affecting the Distribution of Asian Elephants

We selected environmental factors affecting the habitat of Asian elephants by conduct-
ing a literature review and examining the environmental characteristics of Sipsongpanna.
The environmental data included climate, natural, and anthropogenic influence factors. The
main changes in the Sipsongpanna region in recent years have been in population numbers
and climate, and the region has seen no significant changes in cropland and construction
land due to the high priority given to ecological control. Therefore, we do not consider
land use changes in the model. The remote sensing data and products used in this study
are described in detail in Appendix A.

http://www.sdmtoolbox.org/
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Figure 2. The study area (the map contains elevation data and Asian elephant migration tracks) in
Sipsongpanna Prefecture (Menghai County, Mengla County, and Jinghong City).

(1) Climate factors. Six annual climate variables were selected for the current scenario
(2017) and the two climate scenarios in the future (2025, 2055, and 2085), including the
mean annual temperature (MAT) [8], mean annual precipitation (MAP) [41], and mean
warmest month temperature (MWMT) [42]. In the RCP8.5 scenario (high emissions), the
CO2 concentration in the air is 3–4 times higher in 2100 than at pre-industrial levels. In
the RCP4.5 scenario (medium-low emissions), the level of anthropogenic carbon emissions
decreases after 2080 but still exceeds the allowed value [27].

(2) Natural factors included slope [43], aspect [43], altitude (Alt) [43], distance to
water resource (Dis_river) [44], normalized difference vegetation index (NDVI) [44], and
vegetation cover type (VCT) [44]. The underlying data for VCT was obtained from the
Google Earth Engine (GEE) platform. We downloaded Landsat 8 OLI images with less than
5% cloud acquired in February 2017 and preprocessed them. The images were mosaicked
to obtain an image of the study area. We obtained land cover data and selected training
and test samples for the vegetation change map of the Asian elephant range. The random
forest model was used for the classification, and we performed validation of the results.
The overall accuracy was >85%. We used nine categories of VCT: broadleaf forest, tropical
rainforest, shrubland, water, coniferous forest, bare ground, cropland, grassland, and
impervious surface. The details are shown in Figure 3.
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Figure 3. Sixteen environmental factors under current climate conditions: (a1–a6) climate factors:
MAT, AHM, MCMT, TD, MAP, and MWMT; (b1–b6) natural factors: Alt, Aspect, VCT, NDVI, Slope,
and Dis_river; (c1–c4) anthropogenic factors: PD, NL, Dis_road, and Dis_res. The definitions, units,
and abbreviations of the environment variables are listed in Table 1.

(3) Anthropogenic influence factors included population density (PD) [34], night-
time lights (NL) [34], distance to roads (Dis_road) [45], and distance to residential areas
(Dis_res) [45]. We performed projections of future population density. The impervious
surface land cover type was extracted, and the rural and township areas were divided
by the ground survey and tenure data. The population data at the township level were
obtained from the 2017 statistical yearbook released by the Sipsongpanna Bureau of Statis-
tics. The data were spatially matched to the rural and township layers to obtain the 2017
PD data of Sipsongpanna. The data were validated by comparing them with Landscan
and Worldpop data from the same period. Population size projections were conducted
according to China’s 14th Five-Year Plan and Territorial Spatial Planning. The future PD
data were obtained by projecting the population at future growth rates using the World
Population Prospects 2022 (https.//population.un.org/wpp, accessed on 22 November
2022) published by the United Nations Department of Economic and Social Affairs.

https.//population.un.org/wpp
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Table 1. Environmental variables used in predicting the distribution of Asian elephants
in Sipsongpanna.

Type Variable Description Unit Source and Preprocessing Method

Climate factors MAT [8] Mean Annual Temperature ◦C ClimateAP_v2.30, Original Value
MWMT [42] Mean Warmest Month Temperature ◦C ClimateAP_v2.30, Original Value
MCMT [42] Mean Coldest Month Temperature ◦C ClimateAP_v2.30, Original Value

TD [5] Temperature Difference between
MWMT and MCMT

◦C ClimateAP_v2.30, Original Value

MAP [41] Mean Annual Precipitation mm ClimateAP_v2.30, Original Value

AHM [8] Annual Heat. Moisture index
(MAT + 10)/(MAP/1000) ClimateAP_v2.30, Original Value

Natural Factors Alt [43] Altitude m ASTER GDEM V3, Original Value

Slope [43] Slope ◦ ASTER GDEM V3, Surface Analysis
Tool Extraction

Aspect [43] Aspect ASTER GDEM V3, Surface Analysis
Tool Extraction

VCT [44] Vegetation Cover Type Landsat8 OLI, Random
Forest Classification

NDVI [44] Normalized Difference
Vegetation Index Extraction calculated from Landsat8 OLI

Dis_river [44] Distance To Water Resource m Rivers, Euclidean distance

Anthropogenic
influence factors PD [34] Population Density people/km2 Calculated from land cover type and

population to obtain
NL [34] Nighttime Light Resampling according to NPPVIIRS

Dis_road [45] Distance To Roads m Roads, Euclidean distance
Dis_res [45] Distance To Residential m Residential Locations, Euclidean distance

These data sources and their biological significance are summarized in Table 1. The
environmental data of the 16 Sipsongpanna regions were unified in terms of image size,
range, and spatial reference and converted to *. ASCII format for input into the MaxEnt
3.4.1 model (Figure 3). We obtained a unified and integrated species conservation dataset
covering the study area (Table 1).

2.2.3. Administrative Division Data

Administrative division data were produced based on the standard map with the
review number GS (2019) 1822 downloaded from the standard map service website of the
National Bureau of Surveying, Mapping and Geographic Information for Menghai County,
Jinghong City, and Mengla County in Sipsongpanna Prefecture.

2.3. Data Processing and Parameter Optimization
2.3.1. Optimization of Distribution Data, Correlation Analysis, and Screening of
Environmental Variables

The distribution data were screened to remove duplicate entries based on the spatial
resolution of the environmental data to ensure that only one data point was located in
each raster cell [39,40]. Thus, model overfitting was minimized to improve the predic-
tion quality. After screening, 101 data points were retained (Figure 2) and converted to
a format readable by the MaxEnt software. All environmental variables were fed into
the MaxEnt model, which was run ten times to obtain the contribution rate of each en-
vironmental variable, eliminating those with low contribution rates and retaining only
those with contribution rates greater than 1% [46,47]. Spearman correlation analysis was
performed on all environmental variables. If the absolute value of the correlation coefficient
between two environmental variables was greater than 0.8, a significant correlation existed
between the two variables, and the environmental variable with less influence on the
species distribution was excluded [48,49]. Finally, we selected nine ecological variables
to predict the suitable distribution areas for Asian elephants in Sipsongpanna, including
climate factors (MWMT, MAP, and TD), natural factors (Alt, Aspect, and Dis_river), and
anthropogenic influence factors (PD, Dis_road, and Dis_res). Although we selected several
strongly influential variables, but this does not mean that the excluded environmental
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variables were irrelevant. The reason may be attributed to multicollinearity, which causes
the model to exclude relevant variables. However, the retained environmental variables
were highly representative.

2.3.2. Analysis and Optimization of Habitat Area Variables Using the MaxEnt Model

The MaxEnt principle assumes that the probability model must satisfy certain con-
straints. Without more information, the uncertain parts are equiprobable [50]. The MaxEnt
principle expresses the equiprobability by maximizing the entropy. Equiprobability is
not easy to manipulate, whereas entropy is a numerical indicator that can be optimized.
This method uses the actual species distribution and the environment (bioclimatic and
abioclimatic factors) to fit the probability distribution with the MaxEnt value. It constructs
a constraint with high confidence and establishes a correlation between the environmen-
tal elements and the species distribution to simulate and predict the species’ potential
habitat [51].

These operations are implemented in the MaxEnt software. The two most essential
parameters of MaxEnt are the feature combination (FC) and regularization multiplier
(RM). Optimizing these parameters significantly improves the model’s prediction accu-
racy [46,52,53]. The MaxEnt model can predict species distribution better with a small
sample size. However, the prediction of potential distributions is prone to overfitting,
limiting the transferability of the model to another species. Many studies have created a
new MaxEnt model after the optimization by setting the FC and RM in the training process.
A model with optimized parameters has a better fit and less complexity than a model
with the default parameters, demonstrating the importance of parameter optimization. We
used the Kuenm package and ran the MaxEnt prediction for 1240 models with different
parameter combinations (31 FC settings with 40 combinations of RM values) [52,54,55].
Statistically significant (significant models) models with omission rates of less than 5% were
selected. Then the models with less than two delta Akaike information criterion (AICc)
values were chosen [52,56]. Finally, the combination with the smallest delta AICc value is
used as the optimal parameter.

2.3.3. Delineation and Model Assessment of Current and Future Potentially Suitable Areas
for Asian Elephants

The jackknife method is a highly reliable cross-validation technique for assessing
the bias and variance of models. We used it to analyze the contribution and variable
importance of the environmental variables regarding species distribution. It was applied
in the MaxEnt software by subtracting one environmental sequentially and performing
modeling with the remaining environmental variables. The results are shown in Figure 4.
The regularized training gain and test gain are the training and test sets of the area under
the curve (AUC), respectively. We derived the most important environmental factors
based on the contribution of the environmental variables and the importance value [57].
Ten-fold cross-validation was performed, and the average was used as the prediction
result. The result of the MaxEnt model is the probability of species occurrence, with values
ranging from 0 to 1. We chose the maximum sum of sensitivity and specificity (Max SSS)
to determine the threshold to distinguish suitable and unsuitable areas and binarized the
average suitability (i.e., occurrence probability) of the raster maps to classify the habitat
into non-suitable and suitable areas [55,58]. The suitable areas were classified into areas
of low, medium, and high suitability, according to the site monitoring results. In addition,
we considered the minimum range and the habitat required to sustain the Asian elephant
in the region. These areas should become priority areas for conservation [42,59]. Studies
have shown that the minimum area needed to maintain an Asian elephant home range
is 105 km2 [59,60]. Since there are four Asian elephant home ranges in Sipsongpanna, we
used a minimum area of 420 km2 [61] to determine the areas that should be protected. The
receiver operating characteristic (ROC) curve was used to evaluate the model’s prediction
accuracy, and the AUC value was used as the evaluation index. The AUC evaluation
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criteria were 0.50–0.60 for invalid prediction, 0.60–0.70 for poor prediction, 0.70–0.80 for
fair prediction, 0.80–0.90 for good prediction, and 0.90–1.00 for excellent prediction [62].
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2.4. Habitat Connectivity Analysis

Circuit theory was used to quantify the potential movement paths of Asian elephants
under current and future climate scenarios. The circuit theory model is based on the random
walk theory and treats the landscape as a resistance surface, where habitat patches, popu-
lations, or reserves represent source and target cells and are assigned zero resistance [63].
The magnitude of the currents represents the probability of species dispersal on a given
path [64,65]. High-density currents represent significant movement between two patches.
This strategy can be used to predict random movements of walkers between source and
target areas [65]. In this model, elephants are used as random walkers. A negative expo-
nential conversion function is used to convert the habitat suitability index (described in
Section 2.3.3) to resistance values. Current and future suitable habitats are used as focal
nodes, and the pairwise connectivity between all pairs of focal nodes is calculated [42,66].

3. Results
3.1. Dominant Variables Affecting the Distribution of Asian Elephants in Sipsongpanna

All 1240 models were statistically significant under NAI. We selected six models;
model 1 had the smallest delta AICc value (equal to 0). This result indicated that this model
best represented the actual species distribution [56]. No overfitting occurred, and the model
had the optimum FC of the quadratic features (Q), product features (P), and threshold
features (T). The value of the RM was 1.6. Similarly, all 1240 models were statistically
significant for the simulations with AI. We selected three models. Model 1 had the smallest
delta AICc value (equal to 0), indicating it was the optimal model. The features included
linear features (L), Q, and T, and the RM value was 2.1 [56].
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The parameter-optimized MaxEnt model was used with ten replications to simulate
the suitable area for Asian elephants in Sipsongpanna under current climate conditions and
NAI. The maximum value of the training AUC was 0.909, the minimum value was 0.871,
and the average value was 0.889. The results indicated that the model had high prediction
accuracy and stability. The proportions of high, medium, and low suitability areas for
the 101 Asian elephant distribution sites were 74.58%, 23.98%, and 1.44%, respectively.
Similarly, the same model was used for the simulation under AI. The parameter-optimized
MaxEnt model was used to simulate the suitable area for Asian elephants in Sipsongpanna
under the current climate model with 10 repetitions under AI conditions. The maximum
value of the training AUC was 0.923, the minimum value was 0.901, and the average value
was 0.913. The results indicated that the model had excellent prediction accuracy and high
stability. The proportions of high, medium, and low suitability areas were 75.91%, 23.44%,
and 0.65%, respectively. Since the MaxEnt model showed high accuracy, it was used to
predict the potential distribution of Asian elephants in Sipsongpanna.

Two methods are usually used to evaluate the contribution of environmental factors
to the MaxEnt model. The first is the percentage contribution and variable importance.
We analyzed the contribution of six environmental variables to the distribution of Asian
elephants in Sipsongpanna under NAI with the MaxEnt model. The results showed that
the environmental variables Alt, MAP, and MWMT were the dominant factors affecting
the distribution of Asian elephants in Sipsongpanna, with contributions of 37.1%, 25.5%,
and 22.4%, respectively. The cumulative contribution rate of the three variables was
85%. Under AI, the same dominant factors affected the distribution of Asian elephants in
Sipsongpanna, with cumulative contribution rates of 44.5%, 23.7%, and 14.9%, respectively.
The contribution of AI factors was relatively small, with a cumulative contribution of only
10.3% (Table 2).

Table 2. Cumulative percentage contribution of environmental variables affecting Asian elephant
distribution in Sipsongpanna under NAI and AI.

Type Variable Description Percent
Contribution/%

Cumulative
Percentage/%

Non-anthropogenic
Interference (NAI)

Alt Altitude 37.1 37.1
MAP Mean Annual Precipitation 25.5 62.6

MWMT Mean Warmest Month Temperature 22.4 85

TD Temperature Difference between
MWMT and MCMT 8.8 93.8

Dis_river Distance to Water Resources 3.3 97.1
Aspect Aspect 2.9 100

Anthropogenic
Interference (AI)

Alt Altitude 42.5 42.5
MAP Mean Annual Precipitation 23.7 66.2

MWMT Mean Warmest Month Temperature 14.9 81.1

TD Temperature Difference between
MWMT and MCMT 5.1 86.2

Dis_road Distance to Roads 4.1 90.3
PD Population Density 4 94.3

Aspect Aspect 2.5 96.8
Dis_res Distance to Residential Areas 2.2 99

Dis_river Distance to Water Resources 1 100

Second, we used the jackknife method to analyze the influence of the environmental
variables on the Asian elephant distribution results. Under NAI, the MWMT and Alt had
the largest contribution, with training gains of 0.44 and 0.35, respectively. MAP was a
secondary factor affecting the distribution of Asian elephants in Sipsongpanna, with a
training gain of 0.32. The least influential factors were Aspect and Dis_river, with training
gains of 0.1, consistent with the results of the contribution rate analysis [47] (Figure 4a1–a3).
Under AI, the MWMT and Alt were the most influential factors, with training gains of
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0.45 and 0.43, respectively. MAP was a secondary factor affecting the distribution of Asian
elephants in Sipsongpanna, with a training gain of 0.33. The least influential factors were
TD, PD, and Aspect, with training gains of 0.2. These findings are consistent with the results
of the contribution analysis (Figure 4b1–b3), indicating that the selected environmental
variables are sufficiently effective to fit the current distribution of Asian elephants in
Sipsongpanna [47].

3.2. Response Analysis of the Main Environmental Variables Affecting the Distribution of
Asian Elephants

There was a strong relationship between the distribution of Asian elephants in Sip-
songpanna and the dominant environmental variables. Figure 5 shows the feedback curve
between the dominant environmental variables and the distribution probability obtained
from the MaxEnt model, reflecting the range of values of the environmental variables for
different thresholds. The maximum sum of the specificity and sensitivity of the training
data was 0.29, which was used as the threshold to classify the habitat into non-suitable and
suitable zones. The suitable habitat was divided into areas of low suitability (0.29–0.42),
medium suitability (0.42–0.58), and high suitability (>0.58) [67]. The optimum ranges of
Alt, MWMT, and MAP were, respectively, 669.84–1011.64 m, 1600.77–1747.59 mm, and
24.67–25.64 ◦C under NAI (Figure 5a1–a3) and 694.45–985.66 m, 1664.57–1741.86 mm, and
24.58–25.67 ◦C under AI (Figure 5b1–b3).
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Figure 5. The response curves of the dominant environmental variables affecting the distribution
of Asian elephants in Sipsongpanna. Effects of altitude, mean annual precipitation, and mean
warmest month temperature on the distribution of Asian elephants under NAI (Non-anthropogenic
Interference, (a1–a3)) and under AI (Anthropogenic Interference, (b1–b3)).

3.3. Prediction of Suitable Areas for Asian Elephants in Sipsongpanna under Current
Climatic Conditions

The optimized MaxEnt model was used to predict suitable areas for Asian elephants
under current climate conditions and for NAI and AI. The results are depicted in Figure 6.
Under NAI, potentially suitable areas for Asian elephants in Sipsongpanna covered 9342.86 km2,
accounting for 51.23% of the state area. Areas with low, medium, and high suitability were
4711.43 km2, 2456.77 km2, and 1998.75 km2, with proportions of 25.34%, 11.82%, and 11.61%
of the total area, respectively. Under AI, potentially suitable areas for Asian elephants
covered 9023.41 km2, accounting for 46.35% of the state area. Areas with low, medium, and
high suitability were 4796.32 km2, 2437.83 km2, and 1804.56 km2, accounting for 25.64%,
13.23%, and 14.78%, respectively, of the total area. The total potentially suitable area for
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Asian elephants was 282.54 km2 smaller (2.94% lower) for AI than for NAI, and the decrease
in the area occurred primarily in areas of high suitability. Under current climate conditions,
areas with high suitability were primarily located in the central part of Jinghong city and
the southern part of Mengla county, Sipsongpanna. Areas with medium suitability were
located primarily in the central part of Jinghong city and Mengla county, Sipsongpanna. Ar-
eas with low suitability were located in the southern part of Jinghong city and the western
part of Mengla county, Sipsongpanna.
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3.4. Potentially Suitable Areas for Asian Elephants in Sipsongpanna under Different Future
Climate Scenarios

Figure 7a1–a6 show potentially suitable areas for Asian elephants in Sipsongpanna
under two climate scenarios (RCP45 and RCP85) in 2025, 2055, and 2085 under NAI. The
largest reduction in the suitable area compared to current conditions occurred for the
2025-RCP85 climate scenario (825.66 km2, representing a 7.93% reduction). The remain-
ing scenarios showed an increasing trend in the suitable area. The 2055-RCP85 climate
scenario exhibited the largest increase (3064.25 km2, representing an increase of 28.65%).
The 2025-RCP85 climate scenario showed the largest decrease in areas of high suitability
(81.68% decrease), and the 2085-RCP45 climate scenario exhibited the largest increase in
areas of high suitability (66.54% increase). Areas of medium suitability areas decreased the
most under the 2025-RCP85 climate scenario (42.55% decrease) and increased the most un-
der the 2055-RCP45 climate scenario (93.36% increase). Areas of low suitability increased in
all scenarios, with the largest increase of 36.07% in the 2025-RCP85 climate scenario. Areas
of non-suitability decreased in most scenarios, except for 2025-RCP45 and 2025-RCP85,
with the largest decrease of 36.43% in the 2055-RCP85 climate scenario (Figure 8).

Figure 7b1–b6 show potentially suitable areas for Asian elephants in Sipsongpanna
under two climate scenarios (RCP45 and RCP85) in 2025, 2055, and 2085 under AI. The
suitable areas tended to decrease under most scenarios except for an increase under the
2025-RCP4.5 scenario. The suitable area decreased the least under the 2085-RCP8.5 scenario
(455.41 km2, representing a 4.55% decrease). The largest decrease occurred under the
2085-RCP4.5 scenario (1877.96 km2, 18.56% decrease). Areas with high suitability showed
a decrease, with the largest decrease of 16.37% under the 2085-RCP45 climate scenario.
Areas of medium suitability areas generally decreased, except for an increase of 28.94%
in the 2025-RCP45 climate scenario. The largest decrease of 19.58% was observed in the
2085-RCP45 climate scenario. Areas with low suitability generally increased, except for
2085-RCP45, and the largest increase of 23.05% occurred in the 2025-RCP45 climate scenario.
Areas of no suitability generally decreased, except for 2085-RCP45, with the largest decrease
of 18.14% in the 2025-RCP45 climate scenario (Figure 8).

Areas meeting the future minimum habitat range of Asian elephants are located
in Mengman Town, Mohan Town, Guanlei Town, Mengban Town, Yao District Town-
ship, Yiwu Town, Dadugang Township, and Mengwang Township. The townships that
should be protected are Mengman Town, Mohan Town, Mengla Town, Mengban Township,
Dadugang Township, and Mengwang Township (Figures 6 and 7).

3.5. Potential Migration Corridors of Asian Elephants

Under current and future climatic conditions, the migration corridors of Asian ele-
phants are located in Jinuoshan Township, Menghan Township, Guanlei Township, Menglun
Township, Yaoqu Township, Yiwu Township, Xiangming Township, and Mengban Town-
ship (Figures 6 and 7).



Remote Sens. 2023, 15, 1047 15 of 23Remote Sens. 2023, 15, x FOR PEER REVIEW 16 of 25 
 

 

 
Figure 7. Predicted future suitable areas for Asian elephants in Sipsongpanna. (a1–a6) Future suita-
ble areas for 2025-RCP45, 2055-RCP45, 2085-RCP45, 2025-RCP85, 2055-RCP85, and 2085-RCP85 un-
der NAI (Non-anthropogenic Interference). (b1–b6) Future suitable areas for 2025-RCP45, 2055-
RCP45, 2085-RCP45, 2025-RCP85, 2055-RCP85, and 2085-RCP85 under AI (Anthropogenic Influ-
ence). 
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(d) non-suitability areas).

4. Discussion
4.1. The Importance of Constructing a Basic Dataset for Species Conservation Using Multisource
Remote Sensing Data

Traditional species conservation datasets typically focus on one dimension, such as
only considering the climate influence on habitat suitability [9,21,62], on a single scale, such
as only relying on one scale of remote sensing data [68], or lacking multisource heteroge-
neous remote sensing datasets, failing to integrate the air-sky-ground dimensions [69]. The
rapid development of remote sensing data and products has provided rich data sources for
large-scale habitat research [10–12]. Our study of Asian elephant distribution utilized mul-
tisource data obtained by advanced technologies such as UAVs, infrared cameras, and GPS
to improve accuracy and reduce the amount of fieldwork. The high spatial resolution and
accuracy and open-source remote sensing data products enable the quantification of habitat
suitability evaluation factors. We utilized these remote sensing data and a product-driven
system to evaluate Asian elephant habitat suitability in Sipsongpanna. Land use/land
cover remote sensing data were used to represent the habitat preferences of Asian ele-
phants [44], providing more accurate data to support the habitat suitability evaluation of
Asian elephants in Sipsongpanna [10]. Advances in remote sensing mapping technology
for land use/land cover have provided global-scale land use/land cover products. In
addition, habitat monitoring based on multi-source remote sensing data and products is
superior to using traditional data sources. It improves the efficiency of large-scale habitat
suitability research and has great potential for responding to wildlife emergencies [10]. In
this emergency response to the northern migration of Asian elephants, the relevant depart-
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ments relied primarily on UAV remote sensing data to monitor the dynamic changes of
the elephant herd because the high spatial resolution and near real-time satellite data were
not sufficient to monitor the movement of the Asian elephants [70]. In the future, remote
sensing fusion and other technologies can be integrated to take advantage of multisource
remote sensing data and improve the accuracy of the dataset, and the habitat suitability
evaluation of Asian elephants [71].

4.2. Prediction of Suitable Habitat for Asian Elephants in Sipsongpanna under Current Conditions
Based on the Optimized MaxEnt + ClimateAP Model

We used the Kuenm package for model parameter optimization, performed multi-
ple parameter comparisons, and systematically optimized a complex model, which was
superior to traditional models [52]. The optimized model had the smallest delta AICc
value (equal to 0), was statistically significant, and had an omission rate of less than 5%.
The training AUC >0.9 indicated that the model’s performance and prediction accuracy
were higher than those of the model with the default parameters. The model accurately
predicted the distribution of Asian elephants in Sipsongpanna using various environmen-
tal variables [53]. A comparison of the actual and predicted Asian elephant distribution
showed that the MaxEnt model predicted the potential distribution of Asian elephants
in Sipsongpanna with high accuracy under AI. The current potential habitat range was
larger than the actual one under NAI and AI, and no Asian elephants were predicted in
Menglong town. The likely reason might be that environmental factors, such as interspecific
relationships, food availability, and vegetation type, affected the species distribution at
different spatial and temporal scales [72]. The prediction results of the MaxEnt model under
AI showed that MWMT, MAP, Alt, TD, PD, Aspect, Dis_road, Dis_river, and Dis_res were the
dominant environmental variables affecting the potential distribution of Asian elephants
in Sipsongpanna. The variable contribution and the jackknife test showed that the top
three environmental variables influencing the potential distribution of Asian elephants in
Sipsongpanna were Alt, MAP, and MWMT, similar to the findings of another study on
the distribution of Asian elephants in China [42]. Relevant research results have shown
that the cold-season precipitation, altitude, seasonal standard deviation of temperature,
warmest seasonal precipitation, slope, and monthly mean diurnal temperature difference
were the main factors influencing the distribution of Asian elephants in China [5]. The
standard deviation of the seasonal temperature was the most important variable, followed
by the monthly mean of the diurnal temperature difference and the mean temperature of
the driest quarter. Asian elephants prefer areas at lower elevations and on gentler slopes
because travel is physically demanding for the largest land herbivore [73]. Temperature,
precipitation, and topography were the main primary factors affecting the distribution
of Asian elephants in another study [74]. The majority of Asian elephant habitat in the
study area is located along the mainstreams of rivers, indicating the significant influence of
topography in agreement with the results of many studies [41,42,75]. In summary, using an
optimized model and considering climate effects enabled us to predict the distribution of
Asian elephants in Sipsongpanna accurately under current conditions.

4.3. Prediction of Suitable Habitat for Asian Elephants in Sipsongpanna under Future Conditions

We simulated the distribution of Asian elephants in suitable areas in Sipsongpanna
using the optimized model coupled with a climate model and incorporating future popula-
tion projections. Studies in recent decades have shown that the range of Asian elephants in
southwestern Yunnan has decreased, and they are highly dispersed. The main reason is
human impacts, such as overexploitation [31]. Climate change may exacerbate HEC [76]. In
addition, the expansion of settlements and agricultural land has led to the widespread loss
of elephant habitat, degradation of forage, reduced landscape connectivity, and a significant
decline in elephant populations and range [8]. We used high spatial resolution population
density data to simulate the changes in Asian elephant habitats under future climate change
conditions. Under NAI, the area of the suitable zone generally increased for most climate
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scenarios, except for decreases in the suitable areas in the 2025-RCP45 and 2025-RCP85
climate scenarios. Under AI, the suitable area decreased in all scenarios, except for an
increase under the 2025-RCP4.5 climate scenario. Although the total suitable area showed
an increasing trend under AI, most of the increase occurred in areas of low suitability,
whereas areas of medium and high suitability decreased. After AI occurred, the potential
distribution area declined. The likely reason is that AI, such as roads, settlements, and
farmland, adversely affected the distribution of Asian elephants [31]. If the suitable habitat
decreases, the Asian elephants may not be able to survive in the future, and HEC will
increase unless conservation measures are implemented [38,77–79]. We identified habitat
areas less vulnerable to climate impacts and prioritized them for conservation [34,35]. In
addition, the evaluation of future suitable habitats indicates that it is necessary to prioritize
the protection of areas with the minimum habitat range in the protected areas.

Climate change is expected to alter the potential movement and distribution of Asian
elephants. Therefore, conservation strategies must incorporate ecological and anthro-
pogenic impacts into the design, location, and management of protected areas in addition
to considering climate change [41]. Therefore, we predicted the distribution of suitable
habitats for Asian elephants under current and future climatic conditions. It is necessary
to prioritize the protection of areas with the minimum habitat range. We also delineated
migration corridors between different protected areas. Selecting suitable areas to establish
corridors between isolated habitats is necessary to prevent the isolation of Asian elephant
populations [41]. Corridors increase the connectivity between habitats and reduce human-
elephant conflict [8]. The results suggest that ecological corridors should be established in
Maban, Yaoqu, Guanlei, Yiwu, Xiangming, and Jinniushan towns to ensure the connectivity
between nature reserves and facilitate the migration of Asian elephants. These habitats
are mainly located in low-elevation forest areas and along the mainstreams of rivers. They
are far from human activities and have suitable temperatures. These habitats meet the
requirements of Asian elephants, and the results are similar to previous studies [31,59].
The establishment of ecological corridors is a long-term and ambitious project requiring
large investments. It may face difficulties, but the success of the project will ensure the
long-term survival of the local Asian elephant population and have a profound impact
on the harmonious coexistence between humans and elephants [38,75,80–82]. In short, a
scientific understanding of the effects of climate change and natural and anthropogenic
influences on species distribution and migration is required for conserving biodiversity
and planning nature reserves.

5. Conclusions

We examined the effects of ecological factors related to climate and natural and
anthropogenic influences on the distribution of Asian elephants in Sipsongpanna under
current and future climate conditions and with and with anthropogenic influences. We used
multisource remote sensing data and products, multiyear elephant field tracking data, a
MaxEnt species distribution model, and a climate model. We first predicted the distribution
under current (2017) conditions. The result was validated using the existing Asian elephant
migration trajectories. Subsequently, potentially suitable areas for Asian elephants in
Sipsongpanna were obtained under two climate change scenarios (RCP4.5, RCP8.5) in three
future periods (2025, 2055, and 2085). The changes in potentially suitable areas for Asian
elephants under multiple climate change scenarios for the current and future periods were
analyzed by considering the effects of human activities. The results showed that the optimal
FC of the MaxEnt model was LQT, and the RM = was 2.1 under AI. The optimized MaxEnt
model had a high prediction accuracy with AUC = 0.913. In addition, the jackknife analysis
showed that Alt, MWMT, and MAP were the top three factors affecting the distribution
of Asian elephants under AI, with the ranges of 694.45–985.66 m, 24.58–25.67 ◦C), and
1664.57–1741.86 mm, respectively. Moreover, the proportion of the suitable area for Asian
elephants in Sipsongpanna under current climate conditions and AI was 46.35% of the
total area. Highly suitable areas were located in Jinghong City in central Sipsongpanna



Remote Sens. 2023, 15, 1047 19 of 23

and Mengla County in southeastern Sipsongpanna. The suitable area for Asian elephants
generally showed a decreasing trend from 2017 to the future periods under two climate
change scenarios, except for the 2025-RCP4.5 climate scenario. The suitable area decreased
the least under the 2085-RCP8.5 climate scenario (455.41 km2; 4.55% decrease). The largest
decrease occurred under the 2085-RCP4.5 scenario (1877.96 km2; 18.56% decrease).

Our results can be used to formulate future conservation policies in suitable areas
for Asian elephants. We considered the PD in the future under different climate change
scenarios. We developed a model to evaluate habitat suitability and simulated the potential
distribution, minimum habitat range, and ecological corridors of Asian elephants in the
state of Sipsongpanna under current and future climate conditions. Our quantitative data
can be used to help Asian elephants adapt to climate change and mitigate HEC in the
future. In subsequent studies, we plan to combine long time-series remote sensing data to
investigate the spatial and temporal processes and driving mechanisms of suitable habitats
for Asian elephants to provide scientific support for habitat conservation and the creation
of nature reserves for Asian elephants in China [45].
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Appendix A

Table A1. Summary of remote sensing data and products used in this study.

Name of Remote
Sensing Data Time

Spatial
Resolution and

Accuracy
Source Description

ClimateAP 2017202520552085 30 m/99%
Available online:

https://climateap.net/
(accessed on 28 December 2021)

Coupling several climate models and
land surface process models with

satellite remote sensing data to
simulate surface climate
environment changes.

ASTER GDEM v3 2019 30 m
Available online:

http://www.gscloud.cn/search
(accessed on 22 February 2022)

ASTER GDEM data products are
derived from the Advanced

Spaceborne Thermal Emission and
Reflection Radiometer (ASTER) and
are the only high-resolution global
elevation data currently available.

Land Cover Type 2017 30 m/71%
Available online: http:

//data.ess.tsinghua.edu.cn/
(accessed on 25 February 2022)

Classification based on remote
sensing satellite images.

Landsat8 OLI 2017 30 m
Available online:

http://www.gscloud.cn/search
(accessed on 23 February 2022)

Landsat 8 is the eighth satellite of the
U.S. Landsat program (Landsat).

https://climateap.net/
http://www.gscloud.cn/search
http://data.ess.tsinghua.edu.cn/
http://data.ess.tsinghua.edu.cn/
http://www.gscloud.cn/search
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Table A1. Cont.

Name of Remote
Sensing Data Time

Spatial
Resolution and

Accuracy
Source Description

Roads 2019
Available online:

https://lbs.amap.com/
(accessed on 2 March 2022)

The Gaode Map JS API is a
programming interface for map

applications developed in JavaScript.
It is suitable for mobile applications

and PCs.

Rivers 2019
Available online:

https://lbs.amap.com/
(accessed on 2 March 2022)

The Gaode Map JS API is a
programming interface for map

applications developed in JavaScript.
It is suitable for mobile applications

and PCs.

Residential Locations 2019
Available online: https:

//www.openstreetmap.org/
(accessed on 4 March 2022)

OpenStreetMap is an open-source
map based on satellite imagery. The

data are updated daily and can
be edited.

Night Lights 2017 500 m/69%

Available online:
https://www.ngdc.noaa.gov/

eog/viirs/download_dnb_
composites.html

(accessed on 6 March 2022)

This dataset was derived from the
Visible Infrared Imaging Radiometer
Suite (VIIRS) that obtains nighttime

imagery (Day/Night Band,
DNB band).

Landscan 2017 1000 m/75%
Available online:

https://landscan.ornl.gov/
(accessed on 6 March 2022)

An innovative approach that
combines Geographic Information
System (GIS) and Remote Sensing

(RS) imagery.

Worldpop 2017 1000 m/66%

Available online:
https://www.worldpop.org/

project/categories?id=3
(accessed on 6 March 2022)

Open high-resolution geospatial
datasets on population distribution,

demographics, and dynamics
derived from remote sensing

imagery and
geoinformation technology.

Social Media
Tweet Density 2017

Available online:
http://open.weibo.com/wiki/SDK

(accessed on 8 March 2022)

Weibo Open Platform provides a
convenient cooperation model for
mobile applications, meeting the

needs of diversified mobile terminal
users to quickly log in and share

information anytime and anywhere.
It provides social access to multiple
types of terminals, such as mobile

Apps, health devices, smart homes,
and vehicles.
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