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Abstract: The coordinated development of township and city transportation is expected to reach
new heights in the global sustainable transport plans of emerging economies. However, few studies
have focused on the transport hub features considering marginal administrative division. This study
examines the correlation between township development and hub level by using remote sensing
of nightlight imagery. Systematically corrected satellite images of Global NPP-VIIRS Nighttime
lights were selected as experimental data. Furthermore, the township hub level model and nighttime
light indices were established to demonstrate the correlation characteristics of 6671 townships.
Results show that the development level of road transport for a considerable number of townships is
positively correlated with the hub level. The positively correlated townships show a spatial clustering
distribution. In contrast, several negative correlations and random townships are related to the
radiation of adjacent city growth poles and township special industrial characteristics. Nighttime
light data can compensate for the difficulty in obtaining socioeconomic data below the prefecture
level from a multiscale micro perspective and statistical caliber differences. These findings can be
proven to be valuable to planners and designers of township development and regional transport.

Keywords: township; hub level; road transport; correlation analysis; NPP-VIIRS; nighttime light
indices

1. Introduction

The urbanization pattern of harmony between man and nature and the co-prosperity
of urban and rural areas is a necessary and interesting topic for exploration [1]. In the past
30 years, urban space in China has expanded by almost three times and the urbanization rate
has reached 52.6%. However, spatial urbanization does not completely lead to population
urbanization. Approximately 64% of the total population in China still live in townships [2,3].
At present, new-type urbanization is proposed to build a system that consists of multi-level
metropolitan circles, regional central cities, medium/small cities, and small towns. The first
two are highly valued and developed while township development has gained less focus
and lacks vitality.

Transportation is an important support to increase the competitiveness of townships,
thereby enhancing the agglomeration and radiation effect of pivot areas [4,5]. Simulta-
neously, the siphoning effect from important transportation channels passing through
or gathering in one area can have a strong attraction to talents, commodities, materials,
information, and other production factors [6]. Therefore, an important economic functional
area [7] gradually evolves. From 14 to 16 October 2021, the Second United Nations Global
Sustainable Transport Conference released the China Sustainable Transport Development
Report [8], according to which, by 2035, China is to basically become a “transportation
power” with a developed fast network, a sound trunk network, and an extensive basic
network. One of the highlights is that coordinated development of rural and urban trans-
portation can reach new heights. As such, the premise of the township hub economy is the
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formation of a pivot area, where the location advantage is based on the importance and
convenience of transportation.

As the smallest administrative division in China, townships [9] are highly dependent
on road transport rather than on railways and airlines because of the universality of road
infrastructure. One fact to be aware of is that the rank and the positioning of the township
in China dictate that it is hardly a center or has a distinct hierarchical structure at a level.
To deeply understand the transportation hub economic sustainability of township, we find
it worthy to study the characteristics of township road networks and the correlation of
township development and transportation junctions. Findings can be used to assist in
township development and regional transport planning.

The problem of marginal administrative units in emerging economies (e.g., township,
village, rural area) is a highly pluralistic global phenomenon. In southern Sweden, a case
study shows that the insufficiency of the transport network poses a threat to the possibil-
ities of living in rural areas outside villages [10]. In China, land transport infrastructure
contributes more to economic growth in locations with poor land transport means [11].
Thus, townships with a transportation hub function serve with irreplaceable value as
a link and distribution for passengers and logistics flow. A township hub economy is
thereby the network-wide effect outcome of road transportation on multiple geo-spatial
scales. As marginal administrative units increase, the complexity of the system correlation
also increases.

Therefore, this study examines the correlation between township development and
hub level through a novel perspective. In particular, we investigate the transportation
spatial–economic impact of township regional inequalities in China by using nighttime light
remote sensing. Our contributions to the existing literature are threefold. First, to the best of
our knowledge, few studies to date have attempted to examine the correlation between hub
level and road transport while considering marginal administrative division. This study
aims to fill this gap. Second, we observe the nature of transportation hubs in townships
rather than travel convenience. The asymmetrical effect of the locational pattern of road
accessibility on township regional inequalities thereby potentially provides policy implica-
tions for future transport policy design. Third, compared with traditional measurement
of socioeconomic data, remote sensing imagery of nighttime lights provides more distinct
technical support for the breadth and precision of data access (e.g., statistics and survey
data). This method can make up for the difficulty in obtaining socioeconomic data below
the prefecture level from the multiscale micro perspective and statistical caliber differences.

2. Literature Review
2.1. Relationship between Transportation and Regional Development

Previous literature has mainly focused on the effect of transportation infrastructure
construction and investment on economic development in different countries [12,13]. In
Spain, the direct, indirect, and total effects of roads, railways, ports, and airports are
determined by examining the regional convergence of transport infrastructure for the period
of 1980–2008 [14]. The results indicate that the equalization of infrastructure endowments
among the different Spanish regions promotes transport investments. In Poland, the
general productivity effects of major transport infrastructure investments from 2004 to 2014
show that accessibility improvement is weakly but positively correlated with growth in
regional employment [15]. Across Chinese regions, analogously, the uneven distribution
of transport infrastructure is an important reason behind economic disparities based on
the panel data model from 1998 to 2007 [16]. Land and water transport infrastructures
have stronger and more significant effects than air transport infrastructure. Moreover,
transport investment and mobility have significant positive effects in both the short and
long term [17]. In Shaanxi province, China, an improved super-efficiency slacks-based
measure model with weighting preference is proposed to evaluate the regional transport
sustainability efficiency during the period of 2000–2015 [7].
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For the past few years, the effect of high-speed rail (HSR) and air transport services
in the metropolitan economy has been widely discussed [18,19]. In general, air transport
affects a larger area and a relatively smaller audience than HSR. In Canada, the effects of
air–HSR competition and intermodal services are analyzed based on a survey [20]. Results
show that HSR can have a traffic redistribution effect on airport traffic and the disparity
tends to rise between cities with and without HSR.

Air passenger transport is a necessary part of, but not a sufficient condition for,
generating regional development among European urban regions [21]. In regional Australia,
low-cost international airline services contribute positively to market growth. However,
policy on airport infrastructure investment must take caution because they do not always
translate into employment income [22]. In Italy, the HSR project brings wide economic
benefits, leading to an extra growth of per capita gross domestic product (GDP) of +2.6% in
10 years [23]. In China, the interdependence between the airline industry and provincial
economies shows a spatial variation along the east–west axis [24]. The availability of HSR
services also disperses the tourism economies among cities with the HSR network step by
step [25]. Cities in the southeastern coastal provinces and middle reaches of the Yangtze
River receive more services than those in West China [26].

In general, transportation-based regional inequality is highly apparent. At present,
studies on regional transport focus on either metropolitan areas or emerging modes of trans-
portation but exhibit limited application engagement with spatial–economic heterogeneity
of marginal administrative units.

2.2. Application of Nighttime Light Series Data

In view of the increasingly complex urban problems, traditional remote sensing
monitoring can extract land cover/use type data and analyze the dynamic changes of
urban spatial structure in horizontal or vertical directions [27,28], but are weak in analyzing
large-scale urban systems and their spatial structures. At the same time, traditional remote
sensing data has no effective direct monitoring for urban social–economic characteristics.
One glaring problem is that the estimation accuracy and the result resolution are low [29].
As an optical remote sensing technology, nighttime light remote sensing can detect the
low light level in the evenings and obtain information that cannot be obtained by daytime
remote sensing. The imagery has been proven to be more intuitive to reflect the differences
of human activities at night [30].

At present, nighttime remote sensing series data have been widely used in multi-scale
urban spatial structure analysis, social-economic index estimation, and public security.
Remote sensing images of nighttime light can be used not only to analyze urban elements
and internal spatial structures, urban regions, hierarchical structures of urban systems and
agglomerations [31–33], but also to estimate multi-scale social and economic development
indicators (e.g., population, GDP, electricity consumption, carbon emissions, urban housing
vacancy rate [34–36]). In addition, few studies examine the application of night light
remote sensing images in the comprehensive monitoring of urbanization and urban public
security, including natural disasters, epidemics, festivals, wars, and environmental and
health issues [37,38].

For instance, nighttime light remote sensing is used to evaluate highway traffic pros-
perity. Results show that the national general highway of Shanghai is the most prosperous
at night, reaching 22.34% in 2015 [39]. For urban sprawl in China from 1990 to 2010, the
annual growth rate was 2.45% greater than that of the urban population [40]. The analysis
of daily electricity consumption and nighttime light intensity in India during the Coro-
navirus disease 2019 national lockdown period shows the significant decline of energy
consumption [41], and higher infection rates at the district level are associated with larger
declines in nighttime light intensity. Interestingly, nighttime light satellite imageries are
also used to explore the intensity of urban heat island effect in a case study of London
and Paris in 2011 [42]. In summary, nighttime light remote sensing series data present
ideal accuracy in estimating various social and urban issues at the national, provincial, and
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district levels. Nighttime light remote sensing data is particularly effective in reflecting the
level of comprehensive regional development [43–45]. Nighttime lighting indicators reflect
both the level of development in the physical space and social space of the region.

In summary, these two sections show that nightlight remote sensing data are indeed
an ingenious analytical tool that has not been fully developed in the field of transportation.
This topic is well worth exploring to fill in the gaps in examining the correlation of road
transport hub levels on marginal administrative division.

3. Study Area and Data Description

This study examines the township, a marginal unit in the administrative division of
China, as the research object. Four provinces, namely, Shanxi Province in North China,
Shaanxi Province in northwest China, and Henan and Hunan Provinces in central China,
are selected as the sample areas according to the road transport network and socio-economic
situation at the provincial scale. The sample areas include northern and southern provinces,
as well as inland and coastal areas, which are representative to a certain extent. The total
area of the sample region, which include 51 cities, 494 counties, and 6671 townships, is
676,000 km2. Figure 1a shows the spatial distribution, in which townships are represented
by black blocks. High-precision road network data are obtained to satisfy the need of
calculating the hub index based on the roads between townships. In Figure 1b, all the roads
are marked in black curves, hence appearing as wisps of smoke. Figure 1e shows a close-up
of a typical plot. The road network that is marked in red accurately captures the rural roads
among townships.

The administrative division areal data and administrative central point data adapted
in this study were obtained from the National Geomatics Center of China. The road
network source data were collected from OpenStreetMap and corrected according to the
data provided by the China World Map online mapping service. Satellite images of Global
NPP-VIIRS Nighttime lights [46] are selected as the experimental data to study township
hub level. To improve data comparability and accuracy, the data of nighttime lights are
adjusted to correct the effects of cloud polluted pixels. Furthermore, the effects of VIIR
day/night band radiation on atmosphere, terrain, vegetation, snow, moonlight, and stray
light are rectified [47]. Thankfully, these products have been calibrated over a long period
and verified by ground measurements. Thus, the quality indicators have been greatly
improved and can be effectively used for scientific and applied research. The average
annual product of 2021 (V2) was selected as the dataset, in which stray light, lightning,
biomass burning, gas flares, high energy particle detections, and background noise have
been removed. In Figure 1c, the nighttime lighting data are fairly standard with spatial
resolution of 500 m. This imagery consists of 30 arc-second grids, spanning 106–118◦

longitude and 28–41◦ latitude. For clarity, an enlarged nighttime light view of a typical
small plot is cut out. Compared with the actual administrative division and road transport
network, this plot has a better preliminary matching effect (Figure 1d).

China’s administrative regions are divided into provincial-level, prefecture-level,
county-level, and township administrative regions. Therefore, the city is a second-level
administrative unit that includes a number of three-level county administrative units,
which in turn contains four-level township administrative units. The essential object of
transportation network analysis is the connectivity between nodes. Therefore, converting
these three administrative units into network nodes is necessary when modeling trans-
portation hubs. Our approach is to use the administrative centers of cities, counties, and
townships as study nodes. In addition, the nighttime light distribution data are a set of
areal data. Thus, they are more intuitive in analyzing the development level and transport
hub with township based on an area.



Remote Sens. 2023, 15, 1056 5 of 19Remote Sens. 2023, 15, x FOR PEER REVIEW 5 of 19 
 

 

 
Figure 1. Study area and nightlight remote sensing imagery: (a) Townships in the provinces of 
Shanxi, Shaanxi, Henan, and Hubei in China; (b) Road transport network distribution in 2021; (c) 
Average nighttime light distribution in 2021; (d) Enlarged nighttime light view of a typical small 
plot; (e) Enlarged view of townships and roads in a typical small plot. 

As a hub, a region can have multiple connotations, such as being an economic, cul-
tural, or political hub [48–51]. For example, in China, Shanghai is an economic hub, 
whereas Beijing is a political and cultural hub. However, for townships, China’s five-level 
administrative unit are generally not equipped to be economic, cultural, political, and 
other hubs. Due to the small size of township areas, small populations, sparse and uneven 
population density, and high-density populations are mainly distributed within the 
downtown areas of townships. Multiple factors led to the development of the township 
being highly dependent on the flow of people passing through it, and for the more pe-
ripheral lower-level administrative districts, whether or not they are transportation hubs 
is the main driving factor in determining the flow of people. In summary, the level of 
transportation hubs is likely to be a potential major influencing factor in the development 
of townships. 

Figure 1. Study area and nightlight remote sensing imagery: (a) Townships in the provinces of
Shanxi, Shaanxi, Henan, and Hubei in China; (b) Road transport network distribution in 2021;
(c) Average nighttime light distribution in 2021; (d) Enlarged nighttime light view of a typical small
plot; (e) Enlarged view of townships and roads in a typical small plot.

As a hub, a region can have multiple connotations, such as being an economic, cultural,
or political hub [48–51]. For example, in China, Shanghai is an economic hub, whereas
Beijing is a political and cultural hub. However, for townships, China’s five-level adminis-
trative unit are generally not equipped to be economic, cultural, political, and other hubs.
Due to the small size of township areas, small populations, sparse and uneven population
density, and high-density populations are mainly distributed within the downtown areas
of townships. Multiple factors led to the development of the township being highly de-
pendent on the flow of people passing through it, and for the more peripheral lower-level
administrative districts, whether or not they are transportation hubs is the main driving
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factor in determining the flow of people. In summary, the level of transportation hubs is
likely to be a potential major influencing factor in the development of townships.

4. Methodology
4.1. Research Framework

The objective of this study is to analyze the spatial association characteristics of
township development and transport hub level through the remote sensing of nighttime
light. The research framework is shown in Figure 2. First, the zonal statistics of nighttime
lights in each township administrative region were presented to reflect the development
level of the township under three different perspectives. Second, a road–node network
was established based on distance cost impedance and mode type weighting to calculate
the township hub level. Finally, the Local Geary model for multivariate was adapted to
analyze the corresponding spatial association characteristics.
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4.2. Nighttime Light Imagery and Measuring Indices

In this study, the brightness values statistics of nightlight remote sensing data are used
to reflect the overall development level of the townships, rather than their specific inversion
calculation of GDP and population indicators. Figure 3a shows a part nightlight map of
41.274 million townships in China. In all towns, the distribution patterns of high light
brightness values can be classified into three basic categories, as shown in Figure 3b–d,
respectively. In township A of Figure 3b, areas with high light brightness values are
highly clustered and the whole township forms a single-core development center. In
township B shown in Figure 3c, the areas with high light brightness value are discretized in
different locations and the whole township forms a development trend of discrete clumps.
Meanwhile, in township C shown in Figure 3d, most areas have high light brightness
values. The ranking of the high and low nightlight values in the map was done using the
natural intermittent method, thus achieving the goal of minimal variation within groups
and maximum variation between groups as much as possible.
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To effectively measure the relationship between township development level and
nightlight distribution pattern from multiple angles and directions, we constructed mea-
suring indices of the total development level (TDL), the average development level (ADL),
and high-light development level (HDL) of the township based on the total brightness,
average brightness, and the total high brightness values. In this way, several problems
can be avoided given the imbalanced sizes of the townships and the fact that distribution
characteristics of regional lights within the township are not prominent enough. Measuring
indices values of TDL, ADL, and HDL are extracted by ArcGIS Pro, and the formulas for
calculating their i-th township can be expressed respectively as:

TDLi = ∑j=Ki
j=0 Cij, (1)

ADLi =
1
Si

∑j=Ki
j=0 Cij =

1
Si

TDLi, (2)

HDLi = ∑j=Li
j=0 Cij, (3)

where Cij represents the brightness values of the j-th pixel of the nightlight remote sensing
image of the i-th township, Ki represents the total number of pixels in town i, Si represents
the total area of the i-th township, and Li represents the total area of the i-th township with
a high brightness value meeting the given threshold. The threshold for a high-light night
light is 0.8 in this study.

In this study, the overall development level of the township is reflected by the total
light value, the average light value, and the total light value of the high light area in
the statistical township area. The number of cells with high luminance values plays a
decisive role in all three statistical approaches. The high light value area of the township is
mainly distributed in the downtown area, which shows a clustering distribution. Given
that the dominant factor is the high light value area (downtown area), the three township
development indicators are mainly the development level of the downtown area of the
township, which can also be regarded as the overall development level.
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4.3. Hub Level Model Establishment of Townships

Given the development limitations of townships, road transport mode is more widely
adopted than rail, air, and water transport services. Therefore, the road connectivity
between townships is the main factor physically and in terms of image. In this study, the
hub level of a town is defined as the weighted sum of the total number of times that any two
other townships must pass through and the distance to the township by road. The greater
the weighted value is, the higher the hub level of the township will be. Some of the cities
in the higher classes form economic, cultural, or political centers. However, townships
generally do not. We do not deny that some townships may still assume a central role in
the local economy or even culture to a certain extent. However, this phenomenon is not
evident for most townships.

To determine the connectivity among townships and facilitate the calculation of hub
levels further, we transform the transport network problem into a spatial graph problem
considering connectivity and distance (Figure 4). We assume a set of townships connected
by roads, namely, TSet = {T1, T2, T3, . . . , T9}, as shown in Figure 4a. Apparently, several
towns are connected by only one road, whereas others are connected by two or more roads.
The calculation of the hub level considers not only the number of times each township is
passed but also the actual distance of the road network between townships. Therefore, to
facilitate interpretation, we use the thickness of edges to represent the actual path distance
between township nodes in Figure 4b. For example, township nodes 1 and 9 have two
paths but the actual path distances differ, and thus the thicknesses of the edges between
nodes also vary.
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The following is a brief introduction to calculating the hub level of each township
algorithm logic. First, we select and set a township as the focal node. Then, townships
with direct road connectivity with the focal node are further set as its neighbors. Next, the
number of times that the path between any two neighbors passes through the focal node
is calculated while recording the actual path distance. Finally, the hub level of the focal
township can be calculated by using the weighted method. Figure 4c shows the calculation
results. Clearly, township nodes with the same number of passes may have different traffic
hub levels due to variations in the actual path lengths.

The two neighboring nodes that drive a township to become a hub can be other
townships, cities, or counties. The hub function formed by the city or county and the
township is stronger compared with that formed between two townships. Therefore, this
study also considers the influences of the nearest county seat and prefecture-level city
on each township on the strength of its hub function. Figure 5a shows that the network
structure not only contains multiple township nodes but also includes the adjacent county
seat and prefecture-level city nodes. From each of these townships, the solid blue lines
represent the nearest county, and the red dotted lines represent the nearest city.
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Township hub level with city and country nodes are divided in four patterns according
to the origins and destinations of the paths, as shown in Figure 5b,c. Pattern Type 1 (PT-1)
is identified as a township hub form with two township origins and destinations. For
instance, node 4 is Tk

hub and the shadow path is with node 3-4-5. However, Pattern Type 2
(PT-2) is identified as a township hub form with a township as origin and a county as
destination. By contrast, node 2 is Tk

hub and the shadow path is with node 8-2-D2. Pattern
Type 3 (PT-3) is identified as a township hub form with a township as origin and a city as
destination. Here, node 9 is Tk

hub and the shadow path is with node 5-9-C. Finally, Pattern
Type 4 (PT-4) is identified as a township hub form with a city as origin and a county as
destination. Similarly, node 1 is Tk

hub and the shadow path is with node C-1-D2.
Figure 6 illustrates the calculation logic model of township hub level with an example

of township node 12. Assuming that Ti represents the focal township node ordered as
I, Di and Ci represent the counties and prefecture-level cities closest to Ti, respectively
(Figure 6a). Therefore, the neighbor set (NSet) of T12 can be searched and calculated as
{T4,T7,T8,T10,T11,T13} in Figure 6b. For instance, two paths pass through T12 from T4 to T7.
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If dn
j,i,k represents the distance impedance of the l-th path from Tj to Tk by Ti, then the

distance impedance factor Dj,i,k can be calculated as:

Dj,i,k = ∑n
l=1 dn

i , (4)
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where the larger Dj,i,k is, the greater the contribution to the node Ti as a transport hub. This
means a longer, more extensive path from j to k, covering more potential traffic flow.

If w1, w2, w3, and w4 are used to represent the weights of the four connectivity modes
PT-1, PT-2, PT-3, and PT-4, respectively, as shown in Figure 4c, then the calculation formula
of hub level Hi of focal town Ti is expressed as follows:

Hi = w1·∑l1
i

n√
Dj,i,k

+ w2·∑l2
i

n√
Dj,i,d

+ w3·∑l3
i

n√
Dj,i,c

+ w4· n√
Dd,i,c

, (5)

where l1, l2, and l3 represent the total number of path nodes PT-1, PT-2, and PT-3 of Ti in
the focal township, respectively. PT-4 has only one case for the same focal township and
thus, counting is unnecessary.

4.4. Local Geary Model for Multivariate Spatial Association Analysis

Considering the effects of spatial proximity effect and local autocorrelation, we used
the Local Geary model to explore the spatial correlation between township hub level
and the three types of nighttime light statistics in township units. Anselin proposed
the multivariate extension of Local Geary statistics [52,53], which measures the spatial
autocorrelation of multiple variables at the same location to realize whether they have
consistent spatial significance.

Essentially, multivariate Local Geary statistics calculate the extent to which the aver-
age distance between multiple variable values at one location and at adjacent locations
is larger or smaller than the values under random conditions. Under the condition of
statistical significance, a larger value represents positive spatial autocorrelation, whereas a
smaller value represents negative spatial autocorrelation. In this study, cM

i is defined as the
multivariate Local Geary statistics index, which is assigned the value of the sum of a single
local statistic (the difference between the observed value and the mean) for each variable.
The corresponding expression for k variables is:

cM
i = ∑k

h=0 ∑ wij

(
xhi − xhj

)2
, (6)

where h is the variable index, k is the total number of variables, k = 2, xhi represents the
h-th variable of the i-th region, xhj represents the h-th variable of the j-th neighbor of i, and
wij is the weight between regions i and j. If the rule “two regions have common edges or
common nodes” is adopted, then the wij between regions conforming to the above rule is 1;
otherwise, wij = 0.

5. Results
5.1. Composite Development Indices of Township under Different Statistical Rules

Figure 7 shows the statistical results obtained by the mean, total, and total high
brightness values, which describe the rank distribution of nighttime light brightness values
for all townships. For the convenience of comparison, Figure 7a–c adopt the quintile
clustering method for classification. Clearly, the three statistical results have very significant
spatial differences.

As shown in Figure 7a, spatial differentiation is the most significant in the mean
brightness distribution diagram and townships with high brightness values have significant
spatial agglomeration characteristics. By contrast, the spatial heterogeneity of the sum
of brightness is much weaker in Figure 7b. Notably, the township area is also one of the
factors affecting the total brightness. Under the same development level, the larger the area
of the township, the greater the total brightness value. Figure 7c illustrates that the spatial
differentiation based on the sum of high brightness is between the mean value and the sum
of brightness.



Remote Sens. 2023, 15, 1056 11 of 19

Remote Sens. 2023, 15, x FOR PEER REVIEW 11 of 19 
 

 

spatial differentiation based on the sum of high brightness is between the mean value and 
the sum of brightness.  

In the statistical representation of three kinds of nighttime light data, we found that 
the average value could not reflect the real development level for townships with high 
brightness values and large areas. The sum of brightness values reflects the overall devel-
opment level of townships. However, this statistical method reduces the accuracy of the 
analysis results for townships with similar development levels and large area differences. 
The sum of high brightness values mainly focuses on only the high development area of 
the township and it is easy to ignore other local differences within the township. This 
method is helpful for comparing the differences in development levels between different 
townships. Nevertheless, townships with relatively balanced development without a high 
concentration of nighttime light distribution could not be taken into account. Therefore, 
this study adopts each of these three ways to explore the relationship between township 
hubs since each method has its pros and cons. 

Figure 7d–f show the distribution results of nighttime light values in different prov-
inces under different statistical methods. As shown in Figure 7d, it is illustrated that the 
four provinces have varying dispersion degrees of mean nighttime light distributions. The 
mean nighttime light distribution of Henan Province is the highest degree of dispersion, 
while that of Shaanxi Province is the largest degree of aggregation. Shanxi and Hubei 
provinces have similar mean distributions of nighttime lights, falling between these two 
provinces. By contrast, the sum value of nighttime light brightness has a similar distribu-
tion in the four provinces with relatively discrete characteristics, which is shown in Figure 
7e. To a certain extent, the statistical method of the sum brightness reduces the differences 
in the statistical values of different townships, allowing for relatively stable statistical re-
sults. Figure 7f displays the statistical results of data distribution based on high-light 
brightness value, where the degree of dispersion is higher than the above two nighttime 
light statistical methods. As seen, the high brightness value is very low in most townships. 

 
Figure 7. Spatial distribution of three nighttime light indices: (a) Mean value of nighttime light; (b) 
Sum value of nighttime light; (c) Sum value of nighttime high-lights; (d) Box diagram of mean light 

Figure 7. Spatial distribution of three nighttime light indices: (a) Mean value of nighttime light;
(b) Sum value of nighttime light; (c) Sum value of nighttime high-lights; (d) Box diagram of mean
light brightness value distribution for four provinces; (e) Box diagram of sum light brightness value
distribution for four provinces; (f) Box diagram of sum high-light brightness value distribution for
four provinces.

In the statistical representation of three kinds of nighttime light data, we found that
the average value could not reflect the real development level for townships with high
brightness values and large areas. The sum of brightness values reflects the overall devel-
opment level of townships. However, this statistical method reduces the accuracy of the
analysis results for townships with similar development levels and large area differences.
The sum of high brightness values mainly focuses on only the high development area of
the township and it is easy to ignore other local differences within the township. This
method is helpful for comparing the differences in development levels between different
townships. Nevertheless, townships with relatively balanced development without a high
concentration of nighttime light distribution could not be taken into account. Therefore,
this study adopts each of these three ways to explore the relationship between township
hubs since each method has its pros and cons.

Figure 7d–f show the distribution results of nighttime light values in different provinces
under different statistical methods. As shown in Figure 7d, it is illustrated that the four
provinces have varying dispersion degrees of mean nighttime light distributions. The mean
nighttime light distribution of Henan Province is the highest degree of dispersion, while
that of Shaanxi Province is the largest degree of aggregation. Shanxi and Hubei provinces
have similar mean distributions of nighttime lights, falling between these two provinces.
By contrast, the sum value of nighttime light brightness has a similar distribution in the
four provinces with relatively discrete characteristics, which is shown in Figure 7e. To a
certain extent, the statistical method of the sum brightness reduces the differences in the
statistical values of different townships, allowing for relatively stable statistical results.
Figure 7f displays the statistical results of data distribution based on high-light brightness
value, where the degree of dispersion is higher than the above two nighttime light statistical
methods. As seen, the high brightness value is very low in most townships.
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5.2. Spatial Distribution of Township Hub Level

Figure 8a illustrates the spatial distribution diagram of hub levels of each township.
As seen, five hub levels are divided from low to high. The distribution of townships with
high hub levels presents two modes, namely, clustered and banded. Similarly, townships
with low hub levels also show a certain concentration distribution. On the whole, the
townships with lower hub levels are mainly located in the northwest and southwest of the
study area, while the townships with higher hub levels and concentrated distributions are
mainly located in the central and southwest regions.
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To further understand the spatial distribution pattern of the hub index in each town-
ship, we adopt the local spatial autocorrelation method based on the G-Statistic for analysis.
As seen from the spatial model diagram in Figure 8b, the township hub index has significant
spatial autocorrelation. In the whole study area, Shanxi province has two hot spots of
high significance (99%) and one hot spot of low significance (95% or 90%), while Shaanxi
and Hubei provinces contain two and one hot spots of high significance level, respectively.
The positive townships marked by hot spots in the Henan province are most concentrated
in the north, while negatively correlated townships marked by cold spots are scattered
throughout the study area. On the whole, most areas with high values are circular, which is
because prefecture-level cities have a very large positive effect on the hub index of their
neighboring townships. Most of the regions show a positive or negative correlation pattern
of spatial agglomeration and only a small proportion of townships show randomness.

5.3. Spatial Association Mapping between Township Development and Hub Level

In this section, the multivariate Geary model is used to calculate the spatial association
pattern between two types of variables under different nighttime light statistical methods
for 6671 townships. Figure 9a–c respectively show the spatial correlation modes between
the mean value of nighttime light brightness, the sum value of nighttime light brightness,
and the sum value of high brightness at the township hub level. In this study, the spatial
correlation modes include three types, namely, positive, negative, and random correlations.
From the perspective of univariate spatial autocorrelation, positive correlation means that in
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the area with a high mean brightness aggregation value, the township hub level also shows a
high aggregation value. By contrast, a negative correlation shows a high-value aggregation
of night light brightness, but the township hub level presents a low-value aggregation.
The performance of the random mode is that the light brightness value variable shows
high-value aggregation, while the township hub level shows an insignificant correlation.
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Table 1 shows the statistics of the number and ratio of townships in different modes
under each method of light value. Under the three statistical methods, the proportion
of towns with positive correlation accounts for 44.98%, 31.18%, and 26.17%, respectively.
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Meanwhile, the negative correlation is less than 10% and these correlated townships are
distributed around large cities. The radiation effects of large cities weaken the hub levels of
surrounding towns. One interesting finding is that the larger townships tend to show a
positive correlation pattern, whereas the smaller towns tend to show a random relationship.
If a statistical method for measuring the hub level of the township is selected, the average
brightness of night lights is superior to the sum of night lights and high-lighted night lights.

Table 1. Number and rate of townships of various patterns under different statistical methods.

Statistical Type Positive Correlation Negative Correlation No Significant

Total Rate Total Rate Total Rate

Mean of light value 2978 44.98% 324 4.79% 3468 51.23%
Sum of light value 2111 31.18% 508 7.55% 4151 61.31%

Sum of high light value 1772 26.17% 504 7.44% 4494 66.38%

Based on the characteristics reflected by the nighttime light data, we also found the
transport location characteristics of several marginal administrative units of townships.
The closer the township is to the city and the township with high transport accessibility,
the more apparent the characteristics of integration into the urban economy are shown in
the aspects of production and circulation, thereby showing a positive correlation between
the township development and the hub levels. The farther away from cities and townships
with poor transportation conditions, the weaker the external economic ties and dependence,
and even remote towns remain highly self-sufficient economically. The correlation between
township development and hub level appears to be random or negative.

From the statistical results of the significance level of positive correlation for four
provinces, almost all statistics show that the townships with high confidence levels are less
than the townships with a low confidence level in the overall trend, as shown in Figure 10.
According to the significant characteristics of the positive correlation between a single
statistical indicator of nighttime light and hub levels, except for Shaanxi, the number of
townships with a high significance level of mean statistics in other provinces is more than
the number of townships with other significance levels.
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At the high significance level of 0.001, Shaanxi Province has the largest number
of townships with a positive correlation based on total brightness value, while in the
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confidence interval of 0.01, Shanxi Province has a similar number of townships with a
positive correlation based on mean brightness value and total brightness value. In addition,
in the statistics of Hubei Province, the number of townships with positive correlation based
on the analysis of total light brightness is the least. Overall, in the townships with positive
correlation between nighttime light brightness lighting statistics and hub levels in these
four provinces, the quantitative relationship is similar in the overall trend at different
significance levels, but the individual statistics of Hubei and Shaanxi provinces are different
from the overall trend.

6. Discussion
6.1. Theoretical Contribution

The relationship and influence of transportation on regional economic development
have always been important topics in economics and geography. The theoretical contribu-
tion of this study is to demonstrate and expand the transport location theory of township
marginal administrative units. A mature theory, such as point axis diffusion, has been
developed to drive the economic growth of urban and rural areas [54–56]. However, the
quantification of the level of township hub function and the quantitative interlinking of
economic development and transport function remain to be improved. This study provides
an innovative method and analysis to explain the aforementioned problems.

The hierarchical role of the hub also shows the marginal character of the township. The
townships have a clear regional feature, which is dominated by the production of primary
products. Its economic activities and settlement forms are still dominated by natural
conditions and resources. Thus, the absolute dominance of road transport on township
development is not apparent. Townships that are closely related to transport locations
mainly include industry-oriented and commercial-oriented townships, such as mineral
processing, wood processing, agricultural and sideline food processing, warehousing and
logistics, sightseeing and recreation, and professional markets. Their hub levels are higher
than those of agriculture-oriented townships, such as traditional farming, forestry, and
animal husbandry.

6.2. Potential Applications and Relevance

This study presents practical significance for the hub construction and transport plan-
ning of the marginal administrative unit of townships in China. For instance, several
measures can be proposed accordingly as enhancements for the hub of townships. First, the
construction of roads that extend to all townships must be accelerated, and standardized
and sustainable management mechanisms must be established. Second, the transport
modes in old revolutionary bases, ethnic minority areas, borders, poor areas, and reclaimed
forests require vigorous development. Third, transportation construction projects in deeply
impoverished areas can be tilted to townships and households as much as possible. Further-
more, the development of road transport in resource-rich and poverty-stricken areas with
relatively dense populations must be promoted. Finally, the construction of transportation
in advantageous areas of characteristic agricultural products and rich areas of tourism
resources must be strengthened. Subsequent research can focus on the national scale effects
of township hub level with high density in terms of the difficulty of presentation. With the
development of the “transportation power” plan, more and more small railway stations
can be developed in townships. Thus, the construction of township hub indicators can also
consider the rail transit factor.

6.3. Shortcomings and Future Directions

In this study, we illustrate the rationality of using road transport factors to measure
the hub levels of townships. The hub index of each township is calculated under three path
modes, namely, township–township, township–county, and township–prefecture-level city.
According to the analysis results, the highest positive correlation is 44.98%. In other words,
road transport factors account for nearly half of the role of township hub rating. As known,
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the factors that affect the type of township development in many aspects include the
following: natural factors, such as landform, climate, and natural resources; human factors,
such as population size and folk culture; economic factors, such as location, transportation,
and industrial structure; and political factors, such as policies and regulations [57]. Different
influencing factors cause varying characteristics of township development. Therefore,
undoubtedly, road transport plays an important role in the level of township development.
However, not all townships depend on road transport. For instance, Enshi Tujia and Miao
Autonomous Prefecture in Hubei Province has a mountainous terrain, rich resources, and
self-sufficiency. The nighttime light brightness in this location is high, but its township hub
level regarding road transport is relatively low. Therefore, future research can advance
from univariate to multi-variable index township measurement.

Another key issue is the availability of diverse methods to characterize the develop-
ment level of townships based on nightlight remote sensing data and how to perceive the
relationship among different nightlight indicators and the development level of townships
more correctly as the key to the reasonable construction of regional development indicators.
The complete elimination of non-downtown areas from the nightlight data may also im-
prove the accuracy of regional development indicators. This important topic will be worth
exploring in the future. In addition, further comparative studies are needed to confirm
whether this research framework and the results can be applied to the township regions of
other countries. The aforementioned aspects will be one of our next major research efforts.

7. Conclusions

This study explores the spatial association between township development and the
hub level in terms of road transport. First, the development level of the township is re-
flected from three aspects based on the average brightness, total brightness, and the total
high brightness of nighttime light remote sensing data. These three indicators reflect the
development level of the township from different perspectives. Second, the hub index
of each township is calculated under the three path modes of the township–township,
township–county, and township–prefecture-level city. The variability of transportation
connectivity between cities, counties, and towns create differences in the level of transporta-
tion hubs in various towns. Finally, the correlation between different statistical methods
of township development and its hub level is explored by using the multivariate spatial
correlation model.

The results show that development is positively correlated with the hub level regard-
ing road transport for a considerable number of townships. At the same time, several
negative correlations and random townships are related to the radiation of adjacent city
growth poles and township special industrial characteristics. The positively correlated
townships show a spatial clustering distribution and a zonal distribution along the north–
south direction. The correlation effects of nighttime average brightness are better than
those of the sum of nighttime brightness and nighttime high brightness. The townships
with positive correlation in the three patterns have similar spatial distribution positions.
This study provides an effective analytical method for transportation hub-driven cities or
regional hub hierarchy analysis and provides an analytical framework for the correlation
analysis between marginal cities and transportation hub hierarchy. In addition, this paper
provides an idea for introducing nightlight remote sensing data into the development-level
assessment of marginal cities.
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15. Rokicki, B.; Stępniak, M. Major transport infrastructure investment and regional economic development—An accessibility-based

approach. J. Transp. Geogr. 2018, 72, 36–49. [CrossRef]
16. Li, Y.; Fan, J.; Deng, H. Analysis of Regional Difference and Correlation between Highway Traffic Development and Economic

Development in China. Transportation Research Record: J. Transp. Res. Board 2018, 2672, 12–25. [CrossRef]
17. Aguirre, J.; Mateu, P.; Pantoja, C. Granting airport concessions for regional development: Evidence from Peru. Transp. Policy 2019,

74, 138–152. [CrossRef]
18. Chung, S.; Song, K.H. Regional economic structure and airport-centric development strategy formulation: The case of South

Korea. Sci. Prog. 2021, 104 (Suppl. S3), 368504211021695. [CrossRef]
19. Jia, S.; Zhou, C.; Qin, C. No difference in effect of high-speed rail on regional economic growth based on match effect perspective?

Transp. Res. Part A Policy Pract. 2017, 106, 144–157. [CrossRef]
20. Zhang, A.; Wan, Y.; Yang, H. Impacts of high-speed rail on airlines, airports and regional economies: A survey of recent research.

Transp. Policy 2019, 81, A1–A19. [CrossRef]
21. Van de Vijver, E.; Derudder, B.; Witlox, F. Air Passenger Transport and Regional Development: Cause and Effect in Europe. Traffic

Transp. 2016, 28, 143–154. [CrossRef]
22. Zhang, Y.; Wang, K.; Fu, X. Air transport services in regional Australia: Demand pattern, frequency choice and airport entry.

Transp. Res. Part A Policy Pract. 2017, 103, 472–489. [CrossRef]
23. Cascetta, E.; Carteni, A.; Henke, I.; Pagliara, F. Economic growth, transport accessibility and regional equity impacts of high-speed

railways in Italy: Ten years ex post evaluation and future perspectives. Transp. Res. Part A Policy Pract. 2020, 139, 412–428.
[CrossRef]

24. Wang, Y.; Hao, C.; Liu, D. The spatial and temporal dimensions of the interdependence between the airline industry and the
Chinese economy. J. Transp. Geogr. 2019, 74, 201–210. [CrossRef]

25. Zhou, B.; Wen, Z.; Yang, Y. Agglomerating or dispersing? Spatial effects of high-speed trains on regional tourism economies. Tour.
Manag. 2021, 87, 104392. [CrossRef]

26. Huang, Y.; Zong, H. The spatial distribution and determinants of China’s high-speed train services. Transp. Res. Part A Policy
Pract. 2020, 142, 56–70. [CrossRef]

http://doi.org/10.1007/s11769-017-0911-9
http://doi.org/10.1111/1468-2427.12872
http://doi.org/10.3390/su12176835
http://doi.org/10.1016/j.tranpol.2019.04.015
http://doi.org/10.3390/su10072399
http://doi.org/10.1007/s11442-015-1198-3
http://doi.org/10.1016/j.jclepro.2019.118474
https://sdgs.un.org/sites/default/files/2022-06/GSTC2_Conference_Report.pdf
https://sdgs.un.org/sites/default/files/2022-06/GSTC2_Conference_Report.pdf
http://doi.org/10.3390/ijgi8090389
http://doi.org/10.1016/j.tranpol.2020.12.002
http://doi.org/10.1007/s11116-011-9349-6
http://doi.org/10.1016/j.jtrangeo.2020.102904
http://doi.org/10.3390/su13169052
http://doi.org/10.1111/pirs.12433
http://doi.org/10.1016/j.jtrangeo.2018.08.010
http://doi.org/10.1177/0361198118790373
http://doi.org/10.1016/j.tranpol.2018.12.003
http://doi.org/10.1177/00368504211021695
http://doi.org/10.1016/j.tra.2017.08.011
http://doi.org/10.1016/j.tranpol.2019.06.010
http://doi.org/10.7307/ptt.v28i2.1756
http://doi.org/10.1016/j.tra.2017.05.028
http://doi.org/10.1016/j.tra.2020.07.008
http://doi.org/10.1016/j.jtrangeo.2018.11.020
http://doi.org/10.1016/j.tourman.2021.104392
http://doi.org/10.1016/j.tra.2020.10.009


Remote Sens. 2023, 15, 1056 18 of 19

27. Carlos, A.V.G.G. Soil Resource Assessment and Mapping using Remote Sensing and GI.S. Earth Sci. 2009, 37, 511–525. [CrossRef]
28. Shi, J.; Du, Y.; Du, J.; Jiang, L.; Chai, L.; Mao, K.; Wang, Y. Progresses on microwave remote sensing of land surface parameters.

Sci. China Earth Sci. 2012, 55, 1052–1078. [CrossRef]
29. Comber, A.; Fisher, P.; Brunsdon, C.; Khmag, A. Spatial analysis of remote sensing image classification accuracy. Remote Sens.

Environ. 2012, 127, 237–246. [CrossRef]
30. Zhao, M.; Zhou, Y.; Li, X.; Cao, W.; He, C.; Yu, B.; Li, X.; Elvidge, C.; Cheng, W.; Zhou, C. Applications of Satellite Remote Sensing

of Nighttime Light Observations: Advances, Challenges, and Perspectives. Remote Sens. 2019, 11, 1971. [CrossRef]
31. Liu, Y.; Delahunty, T.; Zhao, N.; Cao, G. These lit areas are undeveloped: Delimiting China’s urban extents from thresholded

nighttime light imagery. Int. J. Appl. Earth Obs. Geoinf. 2016, 50, 39–50. [CrossRef]
32. Wang, C.; Qin, H.; Zhao, K.; Dong, P.; Yang, X.; Zhou, G.; Xi, X. Assessing the Impact of the Built-Up Environment on Nighttime

Lights in China. Remote Sens. 2019, 11, 1712. [CrossRef]
33. Zhao, M.; Cheng, W.; Zhou, C.; Li, M.; Huang, K.; Wang, N. Assessing Spatiotemporal Characteristics of Urbanization Dynamics

in Southeast Asia Using Time Series of DMSP/OLS Nighttime Light Data. Remote Sens. 2018, 10, 47. [CrossRef]
34. Hsu, F.; Zhizhin, M.; Ghosh, T.; Elvidge, C.; Taneja, J. The Annual Cycling of Nighttime Lights in India. Remote Sens. 2021,

13, 1199. [CrossRef]
35. Shi, K.; Shen, J.; Wu, Y.; Liu, S.; Li, L. Carbon dioxide (CO2) emissions from the service industry, traffic, and secondary industry as

revealed by the remotely sensed nighttime light data. Int. J. Digit. Earth 2021, 14, 1514–1527. [CrossRef]
36. Tan, M.; Li, X.; Li, S.; Xin, L.; Wang, X.; Li, Q.; Xiang, W. Modeling population density based on nighttime light images and land

use data in China. Appl. Geogr. 2018, 90, 239–247. [CrossRef]
37. Jiang, W.; He, G.; Long, T.; Wang, C.; Ni, Y.; Ma, R. Assessing Light Pollution in China Based on Nighttime Light Imagery. Remote

Sens. 2017, 9, 135. [CrossRef]
38. Liu, Q.; Sha, D.; Liu, W.; Houser, P.; Zhang, L.; Hou, R.; Yang, C. Spatiotemporal Patterns of COVID-19 Impact on Human

Activities and Environment in Mainland China Using Nighttime Light and Air Quality Data. Remote Sens. 2020, 12, 1576.
[CrossRef]

39. Chang, Y.; Wang, S.; Zhou, Y.; Wang, L.; Wang, F. A Novel Method of Evaluating Highway Traffic Prosperity Based on Nighttime
Light Remote Sensing. Remote Sens. 2019, 12, 102. [CrossRef]

40. Gao, B.; Huang, Q.; He, C.; Sun, Z.; Zhang, D. How does sprawl differ across cities in China? A multi-scale investigation using
nighttime light and census data. Landsc. Urban Plan. 2016, 148, 89–98. [CrossRef]

41. Beyer, R.C.M.; Franco-Bedoya, S.; Galdo, V. Examining the economic impact of COVID-19 in India through daily electricity
consumption and nighttime light intensity. World Dev. 2021, 140, 105287. [CrossRef]

42. Sun, Y.; Wang, S.; Wang, Y. Estimating local-scale urban heat island intensity using nighttime light satellite imageries. Sustain.
Cities Soc. 2020, 57, 102125. [CrossRef]

43. Doll, C.N.; Muller, J.P.; Morley, J.G. Mapping regional economic activity from night-time light satellite imagery. Ecol. Econ. 2006,
57, 75–92. [CrossRef]

44. Levin, N.; Duke, Y. High spatial resolution night-time light images for demographic and socio-economic studies. Remote Sens.
Environ. 2012, 119, 1–10. [CrossRef]

45. Mellander, C.; Lobo, J.; Stolarick, K.; Matheson, Z. Night-time light data: A good proxy measure for economic activity? PLoS ONE
2015, 10, e0139779. [CrossRef]

46. Elvidge, C.D.; Baugh, K.; Zhizhin, M.; Hsu, F.C.; Ghosh, T. VIIRS night-time lights. Int. J. Remote Sens. 2017, 38, 5860–5879.
[CrossRef]

47. Elvidge, C.D.; Zhizhin, M.; Ghosh, T.; Hsu, F.C.; Taneja, J. Annual Time Series of Global VIIRS Nighttime Lights Derived from
Monthly Averages: 2012 to 2019. Remote Sens. 2021, 13, 922. [CrossRef]

48. Giglio, S.; Bertacchini, F.; Bilotta, E.; Pantano, P. Using social media to identify tourism attractiveness in six Italian cities. Tour.
Manag. 2019, 72, 306–312. [CrossRef]

49. Hafez, R.M.; Madney, I. Suez Canal Region as an economic hub in Egypt location analysis for the mass real estate appraisal
process. HBRC J. 2020, 16, 59–75. [CrossRef]

50. Yang, Y.C.; Chen, S.L. Determinants of global logistics hub ports: Comparison of the port development policies of Taiwan, Korea,
and Japan. Transp. Policy 2016, 45, 179–189. [CrossRef]

51. Anderluh, A.; Hemmelmayr, V.C.; Rüdiger, D. Analytic hierarchy process for city hub location selection—The Viennese case.
Transp. Res. Procedia 2020, 46, 77–84. [CrossRef]

52. Anselin, L. A Local Indicator of Multivariate Spatial Association: Extending Geary’s c. Geogr. Anal. 2019, 51, 133–150. [CrossRef]
53. Anselin, L.; Li, X.; Koschinsky, J. GeoDa, From the Desktop to an Ecosystem for Exploring Spatial Data. Geogr. Anal. 2022, 54,

439–466. [CrossRef]
54. Wang, T.; Chen, J.; Pu, Y.; Chen, Z.; Chen, D.; Jia, M. A weighted Euclidean distance method for rural settlements traffic location

evaluation. Proc. SPIE Geoinform. Geospat. Inf. Sci. 2007, 6753, 67530. [CrossRef]
55. Yang, H.; Zhou, J. Optimal traffic counting locations for origin–destination matrix estimation. Transp. Res. Part B Methodol. 1998,

32, 109–126. [CrossRef]

http://doi.org/10.1007/s12524-009-0045-3
http://doi.org/10.1007/s11430-012-4444-x
http://doi.org/10.1016/j.rse.2012.09.005
http://doi.org/10.3390/rs11171971
http://doi.org/10.1016/j.jag.2016.02.011
http://doi.org/10.3390/rs11141712
http://doi.org/10.3390/rs10010047
http://doi.org/10.3390/rs13061199
http://doi.org/10.1080/17538947.2021.1946605
http://doi.org/10.1016/j.apgeog.2017.12.012
http://doi.org/10.3390/rs9020135
http://doi.org/10.3390/rs12101576
http://doi.org/10.3390/rs12010102
http://doi.org/10.1016/j.landurbplan.2015.12.006
http://doi.org/10.1016/j.worlddev.2020.105287
http://doi.org/10.1016/j.scs.2020.102125
http://doi.org/10.1016/j.ecolecon.2005.03.007
http://doi.org/10.1016/j.rse.2011.12.005
http://doi.org/10.1371/journal.pone.0139779
http://doi.org/10.1080/01431161.2017.1342050
http://doi.org/10.3390/rs13050922
http://doi.org/10.1016/j.tourman.2018.12.007
http://doi.org/10.1080/16874048.2020.1734347
http://doi.org/10.1016/j.tranpol.2015.10.005
http://doi.org/10.1016/j.trpro.2020.03.166
http://doi.org/10.1111/gean.12164
http://doi.org/10.1111/gean.12311
http://doi.org/10.1117/12.761351
http://doi.org/10.1016/S0191-2615(97)00016-7


Remote Sens. 2023, 15, 1056 19 of 19

56. Button, K.J.; Gillingwater, D. Reviews: Transport, Location and Spatial Policy. Environ. Plan. A 1984, 16, 551–564. [CrossRef]
57. Locke, C.M.; Rissman, A.R. Factors influencing zoning ordinance adoption in rural and exurban townships. Landsc. Urban Plan.

2015, 134, 167–176. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1068/a160551
http://doi.org/10.1016/j.landurbplan.2014.10.002

	Introduction 
	Literature Review 
	Relationship between Transportation and Regional Development 
	Application of Nighttime Light Series Data 

	Study Area and Data Description 
	Methodology 
	Research Framework 
	Nighttime Light Imagery and Measuring Indices 
	Hub Level Model Establishment of Townships 
	Local Geary Model for Multivariate Spatial Association Analysis 

	Results 
	Composite Development Indices of Township under Different Statistical Rules 
	Spatial Distribution of Township Hub Level 
	Spatial Association Mapping between Township Development and Hub Level 

	Discussion 
	Theoretical Contribution 
	Potential Applications and Relevance 
	Shortcomings and Future Directions 

	Conclusions 
	References

