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Abstract: Single image super-resolution (SISR) is to reconstruct a high-resolution (HR) image from
a corresponding low-resolution (LR) input. It is an effective way to solve the problem that in-
frared remote sensing images are usually suffering low resolution due to hardware limitations.
Most previous learning-based SISR methods just use synthetic HR-LR image pairs (obtained by
bicubic kernels) to learn the mapping from LR images to HR images. However, the underlying
degradation in the real world is often different from the synthetic method, i.e., the real LR images are
obtained through a more complex degradation kernel, which leads to the adaptation problem and
poor SR performance. To handle this problem, we propose a novel closed-loop framework that can
not only make full use of the learning ability of the channel attention module but also introduce the
information of real images as much as possible through a closed-loop structure. Our network includes
two independent generative networks for down-sampling and super-resolution, respectively, and
they are connected to each other to get more information from real images. We make a comprehensive
analysis of the training data, resolution level and imaging spectrum to validate the performance of
our network for infrared remote sensing image super-resolution. Experiments on real infrared remote
sensing images show that our method achieves superior performance in various training strategies of
supervised learning, weakly supervised learning and unsupervised learning. Especially, our peak
signal-to-noise ratio (PSNR) is 0.9 dB better than the second-best unsupervised super-resolution
model on PROBA-V dataset.

Keywords: super-resolution; closed-loop structure; channel attention; infrared remote sensing image;
deep learning

1. Introduction

Infrared remote sensing has strong anti-interference ability and penetration ability
for cloud cover compared with visible remote sensing. Even in a dark environment, it
can obtain available images through infrared radiation radiated by objects. Thus, infrared
remote sensing technology is widely used owing to these advantages. However, due to
hardware limitations in the processing design of infrared detection elements, the spatial
resolution of infrared remote sensing images is usually low, which has a great impact
on the interpretation tasks that rely on high-quality images. Updating infrared remote
sensing hardware is difficult, costly and time-consuming. Therefore, it becomes an ideal
solution to improve the spatial resolution of infrared remote sensing images through super-
resolution reconstruction algorithms [1]. Super-resolution (SR) is to recover the natural
and sharp detailed high-resolution (HR) counterparts from low-resolution (LR) images.
It can not only improve the visual quality of the image itself, but also help to improve
the performance of image classification [2,3], target detection, target tracking [4,5] and
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other tasks [6–9] that are limited by the spatial resolution. Hence, the super-resolution
algorithm can effectively make up for the defects of infrared remote sensing imaging,
and encourage it to play a greater role in application [10]. The SR algorithms can be divided
into multiple images super-resolution (MISR) [11,12] and single image super-resolution
(SISR) [13] according to the number of LR images used. MISR needs multiple images of the
same scene, which is not practicable in the field of infrared remote sensing. SISR requires
only a single image of the target scene to recover the corresponding HR image, which has
wide applicability and practical value [14,15]. Therefore, in this paper, we focus on SISR for
infrared remote sensing.

The research of SR algorithms starts from the methods based on the frequency do-
main [16] and gradually develops into the spatial domains [17,18]. Traditional SR algo-
rithms in spatial domains can be divided into methods based on interpolation [17,18] and
reconstruction [19]. Interpolation-based algorithms, such as nearest, bilinear, bicubic [18],
etc., do not essentially generate missing high-frequency information, but simply weight
the adjacent pixels. Therefore, the blur and aliasing effect in the reconstructed images
are usually obvious. The reconstruction-based methods introduce prior information and
establish a reasonable model to obtain the final HR images through iterative calculation.
The representative methods are iterative back-projection (IBP) [20], maximum a posterior
(MAP) [21], and projections onto convex sets (POCS) [22]. The reconstruction quality is
better than interpolation-based methods, but these reconstruction-based methods have
high computational complexity, slow convergence speed, and poor practicability. The meth-
ods based on sparse representation [23,24] get significant improvement compared with
interpolation-based and reconstruction-based methods, but their modeling capability and
expression ability are limited. Thus, recently, SR methods based on sparse representation
gradually have been replaced by deep learning based methods [25–27].

Most deep-learning-based SR methods rely on paired training data to learn the map-
ping between LR images and HR images. Since the real HR-LR image pairs are difficult to
obtain, they usually use HR images and their corresponding bicubic-degraded LR coun-
terparts. However, the real-world data does not necessarily have the same distribution
as the LR image obtained by a specific degradation method. Therefore, even if the SR
method can obtain good results on artificially synthesized LR images, it is very challenging
to learn a good model for real-world applications [28]. To alleviate this problem caused by
degradation in the real world, we propose a more practical framework, i.e., closed-loop
network. It contains not only a network for super-resolution, but also a network for down-
sampling. These two networks have independent functions, facilitating the use of excellent
super-resolution network structure. Most importantly, connecting these two networks can
make full use of the information of real LR images during the training process to learn the
real causes of degradation, so as to improve the performance of the SR network on real LR
data. We compare and analyze the network training modes with full supervision, weak su-
pervision and non-supervision, respectively. Furthermore, according to the characteristics
of infrared remote sensing images with fixed resolution and multi-band imaging, the res-
olution adaptability and band adaptability are explored and evaluated for the proposed
method. To summarize, the main contributions of this paper can be highlighted as follows.

• We proposed a novel closed-loop framework to better super-resolve infrared remote
sensing LR images in real world. Since our closed-loop network can work with LR
input only, i.e., in unsupervised manner, our method has better practical utility.

• We provided reasonable training suggestions about how to train our network in the
ways of supervised learning, weakly supervised learning and unsupervised learning.

• We experimentally studied the resolution level adaptability and spectrum adaptabil-
ity of our proposed infrared remote sensing image SR method. Such analyses are
especially needed for infrared remote sensing, but usually neglected in natural image
super-resolution.

The remainder of this paper is organized as follows. Section 2 presents an overview of
learning-based SISR methods and their limitations. Section 3 describes details of our closed-



Remote Sens. 2023, 15, 882 3 of 19

loop framework. Sections 4 and 5 show experimental results to validate the proposed
approach and explore the resolution and band adaptability of infrared remote image
super-resolution. Conclusions are given in Section 6.

2. Related Works

Generally, learning-based SISR algorithms can be categorized into three different
groups, i.e., supervised learning, unsupervised learning and weakly supervised learning.
Thus, we summarize related previous works from these three aspects in this section.

2.1. Supervised Learning

Supervised learning methods aim at learning the relationship between the LR domain
and HR domain with an external training set containing HR images and corresponding LR
images. In the past few years, many supervised learning-based methods have succeeded
in SR tasks, including sparse coding [23,24], neighborhood embedding [29] and mapping
functions [30,31].

The supervised learning-based methods get better performance than reconstruction-
based methods with the help of training sets. However, the training data is also the reason
for the shortcomings of this kind of method. Because real HR-LR image pairs are extremely
difficult to obtain. In general, the remote sensing satellites will not set two different
resolutions for the same load. Thus, LR images are generally captured by down-sampling
from HR images with a degradation kernel, which is inconsistent with the degradation of
real LR data. As a result, although the SR model based on supervised learning can achieve
good performance on the down-sampled data, it can not meet expectations when applied
in real LR images [32].

2.2. Unsupervised Learning

Unsupervised learning methods only rely on LR images to perform super-resolution.
In a single image, the repeated appearance of small image patches has been proved to
be a very strong characteristic of natural images [33]. Natural images follow the rule
of perspective projection, where the near scene is large and the distant scene is small.
It has laid the foundation for many unsupervised image enhancement methods, includ-
ing super-resolution [34]. The early unsupervised learning methods are mainly based
on the above characteristic, also known as self-similarity. Huang et al. [35] proposed a
compositional model which can simultaneously handle perspective distortion and affine
transformation to expand the internal patch space. Shocher et al. [36] exploited the internal
recurrence of information inside the test image, and then trained a light convolutional
neural network (CNN) to reconstruct the corresponding HR image. These algorithms work
well for images with multi-scale similar structures. However, due to the far imaging dis-
tance in satellite remote sensing, the influence of the depth of field on imaging is negligible.
Remote sensing images are mostly like the results of parallel projection. Compared with
natural images, remote sensing images have poor self-similarity, so such methods may not
achieve good performance.

Besides, there are other unsupervised methods in the remote sensing community.
Haut et al. [37] proposed a deep generative network that used random noise to gener-
ate HR images. In [37], HR images were updated by minimizing mean square error
(MSE) loss of the down-sampled version of the output HR image and the real LR image.
Sheikholeslami et al. [38] took the LR image directly as input and simplified the network
structure to further improve efficiency. Both methods down-sampled the output image to
solve the problem of lacking ground-truth HR image. However, the fixed down-sampling
function used in these methods may also cause the problem of inconsistent degenerate
kernels, similar to supervised learning methods.
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2.3. Weakly Supervised Learning

CycleGAN (Cycle-consistent Generative Adversarial Network) [39] is a pioneer-
ing work of unpaired training mode for image-to-image translation. Inspired by it,
Yuan et al. [40] firstly proposed CinCGAN (Cycle-in-Cycle Generative Adversarial Net-
work) for image super-resolution. It contains two cycle GAN structures, and discriminate
the domain of generated images with a discriminator instead of matching HR constraints.
Bulat et al. [41] learned the HR-to-LR degradation model from unpaired images, and then
used HR image and the LR image generated by the degradation model to train the SR model.
Wang et al. [42,43] proposed Cycle-CNN, using two cycles in different directions to make
full use of the information of real high and low-resolution data, making it more suitable
for SR task of real remote sensing images. Guo et al. [44] proposed a dual regression net-
work using paired synthetic data and additional unpaired LR data for training. The above
methods are obviously not fully supervised, since no matched HR-LR pairs are used for
supervised training. However, they are not strictly unsupervised either, because there
are HR images in the target domain used in training. In this paper, we prefer to regard
these methods using unpaired training data as weakly supervised learning SR methods.
These weakly supervised learning methods aim to make the SR algorithm more practical on
real LR images by using unpaired HR images at target resolution. They have used various
methods to solve the impact of the artificial down-sampling kernel of supervised learning,
but real LR and HR images are both needed, still facing data acquisition difficulty in remote
sensing applications.

Although the above-mentioned learning-based methods have their own limitations,
single-image super-resolution is indeed an ill-posed problem and hard to solve perfectly.
Therefore, inspired by supervised learning and unpaired training mode, we try to propose
a flexible framework that can generally adapt the training mode in the case of supervised
learning, unsupervised learning and weakly supervised learning. Such an SISR model can
make full use of the mapping constraints of supervised learning, and can also introduce
the characteristics of real images to reduce the negative impact caused by the difference
between the synthetic degradation kernel and the real degradation kernel, so as to get
better SR results for real LR images.

3. Method
3.1. Framework

Our framework contains two networks, one for super-resolution (denoted as S) and
one for down-sampling (denoted as D). Because of the opposite function, connecting
these two networks can form a closed-loop and perform self-supervision without matching
ground truth. As shown in Figure 1, there are two possible basic types of connections.
The forward loop refers to the way that the image passes through the super-resolution
network S first and then the down-sampling network D. Starting from the LR image
LR, the super-resolution network can obtain its HR versionHR and the down-sampling
network takes the HR output as input to get the low-resolution image LR′ of the same
size as the original input LR in the end of the loop. The input and final output can be
constrained by loss functions. The backward loop refers to the opposite process. The HR
imageHR is used as the input of down-sampling network first, then the super-resolution
network performs SR on the obtained LR image LR. As a result, we get a high-resolution
image HR′ which is of the same size as the original input HR. The double loop is the
combination of forward loop and backward loop. It is worth noting that the LR and HR
image in each loop is relative concepts. The super-resolution network S learns how to
reconstruct during training and helps us get final results during testing. The closed-loop
structure adjusts S more suitable to reconstruct LR images in real world by taking the real
images as self-supervision input. Our experimental results in Section 4.1 also demonstrate
the effectiveness of the closed-loop structure in learning the true causes of degradation.
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Figure 1. The cycle structure of our closed-loop framework. Our framework consists of two generative
networks for super-resolution (S) and down-sampling (D), respectively. The left subfigure starting
with the LR image is denoted as a forward loop, the center one starting with the HR image is denoted
as a backward loop, and the right one is a double loop. L f

up and Lb
up are loss functions denoted in

Equations (1) and (2) separately.

We design the structure of the down-sampling network D according to Cycle-CNN [42].
As shown in Figure 2, it first downscales the feature maps using an average-pooling layer,
and the resblock in D is much simpler, including only two convolution layers and a rectified
linear unit (ReLU) [45] layer, which is determined by the difficulty of the task.

Figure 2. The down-sampling network of our closed-loop framework.

The structure of super-resolution network S is similar to RCAN (Residual Channel
Attention Networks) [46], and its function is opposite to D. We adjust the number of
modules in the network according to our SR task. The overview of super-resolution
network S is shown in Figure 3. Specially, we use five residual modules as the main body,
and each residual module contains five stacked blocks with a convolution layer at the
end. Each block contains two convolution layers, a ReLU layer and channel attention
(CA) module [47]. Multiple levels of skip connections are all over the network. Sub-pixel
layer [48] is selected to up-sample feature maps to a larger size. Finally, the output image
is obtained through a convolution layer. It should be noticed that the CA module used in
this paper is to further tap the learning ability of convolutional neural networks. Its overall
structure is shown in the lower right corner of Figure 3. The global pooling layer simplifies
each channel of the previously extracted feature map to a single value, i.e., the average
value of each channel. Then the number of channels is first reduced by a convolution
layer and then restored to the original number by another convolution layer. The sigmoid
activation function maps the value of each channel to the range of [0, 1] as the weight of each
channel feature map. The original feature map multiplies its weight to get the final feature
map with channel attention. Through such a simple process, the channel attention module
further enhances the nonlinear mapping ability of the convolutional neural network.
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Figure 3. The super-resolution network of our closed-loop framework.

3.2. Loss Functions

A network is connected to the task through the loss function. As suggested by [47],
we take mean square error (MSE) as the loss function. In our closed-loop framework in
Figure 1, there are two ways to connect the SR network and down-sampling network,
and we can choose one or both. Therefore, the self-supervised loss without matching
ground truth has the following three forms, i.e.,

L f
up =

1
N

N

∑
i=1

(‖D(S(LR))−LR‖2) (1)

Lb
up =

1
N

N

∑
i=1

(‖S(D(HR))−HR‖2) (2)

Ld
up = λ1L f

up + λ2Lb
up (3)

where N is the batch-size, up indicates the unpaired loss, and f , b and d represent forward
loop, backward loop and double loop, respectively. λ1 and λ2 are the linear combination
weights of L f

up and Lb
up in Ld

up.
These loss functions can make the input and output of the closed-loop tend to be

consistent, but there is not an effective way to ensure the performance of the SR network.
Therefore, we need an additional loss function to constrain the SR network. In order
to ensure that the HR images generated by the SR network maintain a high degree of
consistency in content with the input LR images, HR-LR image pairs are still required.
In general, LR images paired with HR images are obtained by down-sampling HR images
using bicubic kernels, and we denote them as LRBI . Then, the loss of paired data is as

Lp =
1
N

N

∑
i=1

(‖S(LRBI)−HR‖2) (4)

In this way, the paired loss Lp makes the SR network more stable, and the unpaired

losses L f
up and Lb

up make use of real data and the closed-loop structure in order to make the
network more adaptable to real data.

3.3. Datasets for Study

We use two datasets in our research, i.e., PROBA-V dataset and Landsat-8 dataset.

3.3.1. PROBA-V Dataset

The full name of PROBA-V satellite [49] is Project for On-Board Autonomy-Vegetation,
which is mainly used for vegetable monitoring. There are multiple payloads on the satellite
that can be used to obtain images of different resolution levels. The data used in our paper
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comes from the PROBA-V Super-Resolution competition [50] (https://kelvins.esa.int/
proba-v-super-resolution/data/ accessed on 20 November 2019). We can download the
near-infrared (NIR) dataset with 566 different scenes. Each data-point consists of one 100 m
resolution image and several 300 m resolution images from the same scene. The 300 m
resolution data is delivered as 128 × 128 gray-scale images, while the 100 m resolution data
is delivered as 384 × 384 gray-scale images. Different from the original task of multi-image
super-resolution using PROBA-V data, we reorganize the dataset for our single image
super-resolution task by selecting the one with the best quality from the 300 m data as
the LR image in each scene according to the attached quality map. The total 566 scenes
in the PROBA-V dataset are split into 500 scenes for training, 6 scenes for validating and
60 scenes for testing. The specific information of the PROBA-V dataset is shown in Table 1.
It is worth noting that the HR and LR images in PROBA-V dataset are real and matched.

Table 1. The information of PROBA-V dataset used in this paper.

Dataset Spectral Range (µm) Training Set Validation Set Testing Set Image Size Resolution (m)

PROBA-V 0.772–0.902 500 6 60
HR:384 × 384 HR:100

LR:128 × 128 LR:300

3.3.2. Landsat-8 Dataset

The Landsat-8 satellite carries two sensors, namely the Operational Land Imager
(OLI) and the Thermal Infrared Sensor (TIRS). Landsat-8 can provide multiple infrared
spectrum images, which is convenient for us to study the influence of different imaging
bands on the performance of super-resolution. In addition, since the resolution of the
Landsat-8 infrared image is 30m, which is different from the resolution of PROBA-V,
the impact of the resolution of training data can also be explored. To solve the problem of
resolution adaptability, we collect 566 near infrared images from Landsat-8 website [51]
(https://earthexplorer.usgs.gov/ accessed on 20 November 2019), and divide the dataset
according to the same ratio as PROBA-V. As for the issue of spectrum adaptability, we
choose, in total, five bands to construct the dataset separately, including the near-infrared
band (B5), short-wave infrared band 1 (B6), short-wave infrared band 2 (B7), thermal
infrared band 1 (B10) and thermal infrared band 2 (B11). For each band, we collect eight
remote sensing scenes, crop them into 2005 images in the size of 384 × 384, and split
2000 images for training and 5 for validating. Considering the practicability of remote
sensing image super-resolution, we directly choose two complete infrared remote sensing
scenes of each band as a testing set instead of cropped data. Detailed information on the
Landsat-8 dataset used in our paper is shown in Table 2.

Table 2. The information of Landsat-8 dataset used in this paper.

Dataset Spectral Range (µm) Training Set Validation Set Testing Set Image Size Resolution (m)

Landsat-8-NIR 0.845–0.885 500 6 60
HR:384 × 384 HR:30

LR:128 × 128 LR:90

B5 0.845–0.885 2000 5 2 scenes HR:384 × 384 HR:30

B6 1.560–1.660 2000 5 2 scenes HR:384 × 384 HR:30

B7 2.100–2.300 2000 5 2 scenes HR:384 × 384 HR:30

B10 10.60–11.19 2000 5 2 scenes HR:384 × 384 HR:30

B11 11.50–12.51 2000 5 2 scenes HR:384 × 384 HR:30

https://kelvins.esa.int/proba-v-super-resolution/data/
https://kelvins.esa.int/proba-v-super-resolution/data/
https://earthexplorer.usgs.gov/
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3.4. Training Mode

Corresponding to the three different closed-loops in Figure 1 and the three unpaired
losses in Section 3.2, there could be three training modes. The proposed training process of
these three modes is summarized in Algorithm 1. For clear description in a unified form,
we use xp and yp to represent the paired LR data and HR data, respectively. xup is the
input of the forward loop and yup is the input of the backward loop. Our goal is to get
a well-trained super-resolution network S and a down-sampling network D. θS and θD
represent the parameters of these two networks, respectively. Different training modes are
selected by setting the weight parameters of each loss function. In practice, we can select
the training mode first to reduce unnecessary operations.

Algorithm 1 Pseudo-codes of our framework in three training modes.

Require: Infrared remote sensing training images (xpi, ypi), xupi, yupi, i = 1, ..., N,
Goal The well-trained S and D

1: Initialize θS, θD
2: repeat
3: xpi → S→ y

′
pi

4: Lp = MSE(y
′
pi, ypi)

5: xupi → S→ D → x
′
upi

6: L f
up = MSE(x

′
upi, xupi)

7: yupi → D → S→ y
′
upi

8: Lb
up = MSE(y

′
upi, yupi)

9: Ld
up = λ1L f

up + λ2Lb
up

10: Ltotal = ω1Lp + ω2Ld
up

11: Choose training mode:
12: −−forward loop: λ1 = 1, λ2 = 0, ω1 = 1, ω2 = 0.1
13: −−backward loop: λ1 = 0, λ2 = 1, ω1 = 1, ω2 = 0.1
14: −−double loop: λ1 = 1, λ2 = 1, ω1 = 1, ω2 = 2
15: ADAM-optimizer(Ltotal ,variable= (θS, θD))
16: until Reach maximum iteration of minibatch updating
17:
18: function TEST(LR)
19: LR → S→ HR
20: return HR
21: end function

Supervised, weakly supervised and unsupervised data situations could happen in all
three different training modes in Algorithm 1. Table 3 summarizes these possible combi-
nations. The supervised data includes paired HR-LR images donated as HRp and LRp.
Weakly supervised data includes unpaired HR and LR images donated asHRup and LRup,
where HRup are matched with their down-sampling version LRBI . The unsupervised
case only contains LR images donated as LR, which are matched with down-sampled
lower-resolution images LRBILR.

To detailed show how to select the training mode in various data situations, we give
an example experimental setting on real LR images of the PROBA-V dataset. As shown in
Table 4, the training data corresponding to supervised learning, weakly supervised learning,
and unsupervised learning are real paired HR-LR images, unpaired HR-LR images, and LR
images, respectively. Training details are described as follows.

• Supervised learning: The real HR data and LR data in the PROBA-V dataset are rep-
resented byHR100 and LR300, respectively. In order to prove the superiority of our
framework, we also separately train the super-resolution network S for comparison
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in addition to three different training modes. When the super-resolution network is
trained separately, the paired loss Lp in Algorithm 1 is used as the total loss.

• Weakly supervised learning: The real unpaired HR-LR data can be obtained by
shuffling the order of PROBA-V data. In order to distinguish from the data for
supervised learning, the unpaired HR and LR data are represented by HR100up
and LR100up, respectively. For the purpose of calculating paired loss, we need to
down-sample the 100m HR data to obtain the matching LR data LRBI300.

• Unsupervised learning: In most cases, the super-resolution task is carried out with
only LR images. We use the real LR data from the PROBA-V dataset and denote it as
LR300 and down-sample it to get paired data LRBI900.

Table 3. The training data of different training modes at different data situation. (— means not used.)

Data Situation Mode xp yp xup yup

Supervised

Forward loop LRp HRp LRp —

Backward loop LRp HRp — LRp

Double loop LRp HRp LRp HRp

S LRp HRp — —

Weak supervised

Forward loop LRBI HRup LRup —

Backward loop LRBI HRup — HRup

Double loop LRBI HRup LRup HRup

S LRBI HRup — —

Unsupervised

Forward loop LRBILR LR LR —

Backward loop LRBILR LR — LR
Double loop LRBILR LR LRBILR LR

S LRBILR LR — —

Table 4. Correspondence table of training data in different training modes on the PROBA-V dataset.
(— means not used.)

Data Situation Mode xp yp xup yup

Real paired HR-LR data

Forward loop LR300 HR100 LR300 —

Backward loop LR300 HR100 — HR100

Double loop LR300 HR100 LR300 HR100

S LR300 HR100 — —

Real unpaired HR-LR data

Forward loop LRBI300 HR100up LR300up —

Backward loop LRBI300 HR100up — HR100up

Double loop LRBI300 HR100up LR300up HR100up

S LRBI300 HR100up — —

Real LR data

Forward loop LRBI900 LR300 LR300 —

Backward loop LRBI900 LR300 — LR300

Double loop LRBI900 LR300 LRBI900 LR300

S LRBI900 LR300 — —

4. Experimental Results
4.1. Training Mode Selection

We first explore the training mode under different data situations on real LR images of
the PROBA-V dataset as shown in Table 4. We use peak signal-to-noise ratio (PSNR) and
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structural similarity index (SSIM) as evaluation indicators like many other related studies.
We train 12 SR models and test them using real LR images in the testing set of the PROBA-V
dataset. Experimental results are shown in Table 5.

Table 5. Results of different training modes under different data situations on the PROBA-V dataset.
The best results are marked in red.

Data Situation S Forward Loop Backward Loop Double Loop
PSNR(dB)/SSIM PSNR(dB)/SSIM PSNR(dB)/SSIM PSNR(dB)/SSIM

Real paired HR-LR
dataset 40.0677/0.9671 40.3701/0.9675 40.3701/0.9675 40.0874/0.9647

Real unpaired HR-LR
dataset 39.1032/0.9635 39.4057/0.9621 39.9832/0.9645 39.4217/0.9631

Real LR dataset 39.1266/0.9635 40.1415/0.9645 39.6151/0.9645 39.9268/0.9637

First of all, regardless of the data situation, simply training a super-resolution network
S cannot achieve the best performance. It is due to the fact that S only uses the information
of paired data. When the dataset does not contain real HR-LR image pairs, it introduces
too much influence of the down-sampling kernel of the synthetic data on SR model.

When using real paired HR and LR data to train the SR model, the forward loop
and backward loop simultaneously achieve the best results, and the double loop does not
seem to be so effective. When the dataset contains real unpaired HR-LR data, the overall
performance is reduced, but the advantage of the backward loop is comparatively obvious
among the three training modes. It indicates that when the data is not matched, the data
of the target resolution has a greater effect. The double loop mode does not superimpose
the advantages of a forward loop and backward loop, and increases the computation
complexity of the model. This indicates that the double loop mode may be too complicated
for the SR task with the data used in this paper.

It should be noticed that when we perform unsupervised learning, the input of the
forward loop is LR, not the LRBI900 with relatively lower resolution, because the original
intention of the closed-loop structure is to introduce the information of real data. The input
of the backward loop is also LR300, because there is no higher-resolution data in our
dataset. The forward loop and the backward loop achieve the same SSIM performance on
the testing set, while the forward loop achieves better PSNR performance. The reason may
be the training process of the forward loop is more consistent with the testing process.

4.2. Comparison with Learning Based SR Methods

We compare with some state-of-the-art SR methods on the PROBA-V dataset, including
supervised learning, weakly supervised learning and unsupervised learning. The results
are shown in Table 6. In the case of supervised learning, our closed-loop framework
performs PSNR of 40.3701dB, while the SR network S only obtains 40.0677dB, which
has approved the effectiveness of our closed-loop structure. Since the PROBA-V dataset
contains real paired HR-LR data, EDSR [52] and SRFBN [53] also achieve good results
in supervised learning experiments. As for the cases of weakly supervised learning and
unsupervised learning, our method achieves the best PSNR and the second-best SSIM.
The visual comparison of each unsupervised method is shown in Figure 4. It can be shown
in Table 6 that UGSR [37] and EUSR [38] do not always get satisfactory results for infrared
remote sensing images with relatively low pixel values and low contrast. We separately
show some results of UGSR and EUSR in Figure 5. UGSR reconstructs the HR image from
random noise while EUSR does this from LR image directly. EUSR performs relatively
better and sometimes could get good results such as subfigure (h) of Figure 5.
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Table 6. Comparison between our method and other advanced SR algorithms on PROBA-V dataset.
The best results are marked in red.

SR Type Method PSNR(dB) SSIM

Supervised learning

S 40.0677 0.9671

Ours 40.3701 0.9675

RDN [54] 33.5486 0.9187

EDSR [52] 40.5574 0.9675

SRFBN [53] 40.6953 0.9679

Weakly supervised learning

Ours 39.9832 0.9645

Cycle-CNN [42] 39.9691 0.9646

S 39.1031 0.9635

RDN [54] 33.8350 0.9527

EDSR [52] 39.1036 0.9636

SRFBN [53] 39.0796 0.9635

Unsupervised learning

Ours 40.1415 0.9645

IBP [20] 39.1382 0.9643

BDB [33] 37.3865 0.9348

FSR [55] 39.2305 0.9674

GPR [56] 37.5735 0.9631

UGSR [37] 35.4371 0.9255

EUSR [38] 23.6012 0.4987

ZSSR [36] 38.1762 0.9597

MZSR [57] 38.0026 0.8942

dSRVAE [58] 38.3937 0.9486

DASR [59] 39.7955 0.9637

4.3. Ablation Study of Attention Mechanism

To prove the effectiveness of our proposed closed-loop structure, we choose one SR
model with channel attention (CA) module [47] as our S network and compare itself with
closed-loop structure as shown in the supervised learning part of Table 6. In order to
analyze the effect of different attention modules, we compare them with another attention
module named convolutional block attention module (CBAM) [60]. Results in Table 7
show that CBAM has better performance than CA, and achieves the best SR performance
compared with other supervised SR methods. It can be seen that a more powerful attention
module can improve the SR performance, indicating that our closed-loop network has the
potential to get better SR performance by updating the basic modules.

Table 7. Comparison of different attention modules in supervised manner on PROBA-V dataset.
The best results are marked in red.

Method PSNR(dB) SSIM

Ours (CA [47]) 40.3701 0.9675

Ours (CBAM [60]) 41.1102 0.9689

RDN [54] 33.5486 0.9187

EDSR [52] 40.5574 0.9675

SRFBN [53] 40.6953 0.9679
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Figure 4. Visual results of our method and other unsupervised methods (BDB [33], IBP [20], FSR [55],
GPR [56], and ZSSR [36]) on the PROBA-V dataset. Since the pixel value of the infrared HR image
is relatively low as shown in (e), histogram equalization (histequal) has been performed on other
images in this figure for better visualization. Noting that infrared lights are not visible to human eyes,
we show a single channel of infrared remote sensing image in gray-scale. The yellow circle in each
image is the result of a local enlargement. In addition, we ignore the geographical locations in the
figure since SR focuses on image quality improvement. Such visualization setting is also applied in
other figures of this paper.

Figure 5. Visual results of UGSR [37] and EUSR [38] on the PROBA-V dataset. Since the pixel value
of the infrared HR images is relatively low as shown in (a) and (e), histogram equalization (histequal)
has been performed on other images in this figure for better visualization.
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4.4. Resolution Adaptability Analysis

Since remote sensing images have clear resolution levels, it is valuable to study the
SR performance of testing data with different resolution levels from the training data.
Therefore, we conduct a cross-comparison experiment in this subsection by training differ-
ent SR models of ×3 scale and testing LR images with different spatial resolutions. Since
Landsat-8-NIR does not contain real 90 m resolution data, the LR data used in supervised
training is obtained by down-sampling from PROBA-V and Landsat-8 datasets (i.e.,HR100
andHR30), denoted as LRBI300 and LRBI90. We adapt the backward loop mode and
train two models using PROBA-V and Landsat-8-NIR data, respectively, in a supervised
way. As for the unsupervised mode with only LR images, we use the forward loop mode
for training. The lower-resolution data paired with LRBI300 and LRBI90 are further
down-sampled and represented by LRBI900 and LRBI270, respectively. In order to keep
the experimental condition as consistent as possible, we also use down-sampled LR data
during the testing process of all trained models, namely LRBI300test and LRBI90test,
respectively. The experimental results are listed in Table 8. It can be seen that a ×3 SR
model trained for super-resolving the data from 90m to 30m does not perform well for
the task of super-resolving the data from 300 m to 100 m, and vice versa. The situation is
more obvious in unsupervised learning. However, the performance gap on LRBI300test is
relatively smaller than LRBI90test. This may indicate that data with higher resolution is
more sensitive to the resolution of training data.

Table 8. Results of resolution adaptability (PSNR(dB)/SSIM). The best results under each data
situation are marked in red.

Training Data
Testing Data LRBI300test LRBI90test

HR100/LRBI300 47.1727/0.9904 39.5389/0.9769

HR30/LRBI90 47.1168/0.9904 39.9341/0.9793

LRBI300/LRBI900 47.1564/0.9904 39.5677/0.9771

LRBI90/LRBI270 47.0138/0.9902 39.8937/0.9791

4.5. Spectrum Adaptability Analysis

The spectrum is also an important factor affecting SR performance. In this subsection,
we explore whether the SR model trained with a certain band is applicable to other infrared
bands. The Landsat-8 dataset is used since it has multiple infrared spectrum bands with
the same spatial resolution. The 30m data of Landsat-8 is regarded as HR data. LR data for
training is down-sampled from HR data. As for supervised training, we train SR models
with ×2, ×3 and ×4 scales for bands B5, B6, B7, B10 and B11, respectively. Besides, we only
train the unsupervised model on scale ×2, to avoid large-scale down-sampling during the
training process. Experimental results are shown in Tables 9 and 10.

We can see that although they are all infrared remote sensing data with the same
resolution, the difference in the spectrum of the training data will also have a great impact
on the performance, which is more obvious in the PSNR index. In most cases, the SR
model achieves the best results when testing images have the same spectrum as the training
data. Sometimes, an SR model trained by a similar spectrum performs better than the
model trained by its corresponding spectrum, and the gap between them is usually small.
Such gap can be clearly shown in Figure 6, where we use the results obtained by the model
trained by the same spectrum as the performance benchmark for each band and show
the difference of each model with its benchmark. It can be seen that for bands B5, B6,
and B7, the models trained by B5, B6, and B7 usually perform well. The models trained
by B10 and B11 always achieve better SRs of B10 and B11. B5 maintains the rule that the
benchmark result is the best, and the training data cannot be replaced by other spectra.
Figure 7 shows a partial image of B5 testing set. It can be seen that the model trained by
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B10 and B11 has a poor recovery effect on the small lines. Compared with other bands, B10
and B11 have less volatility and better band adaptability. However, when the scale factor is
4, the band adaptability is extremely reduced, and the best performance can be obtained
only when the data matches.

Table 9. Results of spectrum adaptability for supervised learning (PSNR(dB)/SSIM). The best results
of every spectrum are marked in red.

Scale
Train

Test B5 B6 B7 B10 B11

×2

B5 42.5729/0.9759 48.5109/0.9900 50.0885/0.9929 58.3780/0.9987 58.7213/0.9988

B6 42.2653/0.9744 48.5291/0.9900 50.1445/0.9929 58.3357/0.9987 58.7127/0.9988

B7 42.2117/0.9743 48.5502/0.9900 50.2106/0.9929 58.6805/0.9988 59.0529/0.9989

B10 38.7340/0.9443 45.3003/0.9804 47.0148/0.9864 59.6865/0.9990 59.9845/0.9991

B11 38.8092/0.9454 45.4116/0.9809 47.1310/0.9867 59.8778/0.9990 60.1900/0.9991

×3

B5 38.5995/0.9430 44.9772/0.9790 46.6235/0.9852 55.7259/0.9983 56.0587/0.9984

B6 38.3891/0.9403 45.0956/0.9794 46.7962/0.9856 56.1163/0.9985 56.4618/0.9986

B7 38.3776/0.9402 45.0734/0.9793 46.7922/0.9856 56.2103/0.9986 56.5410/0.9987

B10 36.2983/0.9069 42.9761/0.9677 44.6739/0.9772 56.1572/0.9986 56.4653/0.9986

B11 36.2152/0.9058 42.8671/0.9670 44.5453/0.9766 55.5850/0.9984 55.9038/0.9985

×4

B5 36.4659/0.9108 42.9500/0.9680 44.5885/0.9773 52.8712/0.9978 53.1948/0.9979

B6 36.3036/0.9075 42.9999/0.9682 44.6664/0.9775 53.6337/0.9978 53.9671/0.9980

B7 36.2905/0.9072 43.0121/0.9682 44.6960/0.9776 53.6969/0.9979 54.0170/0.9980

B10 35.0405/0.8796 41.6516/0.9575 43.3137/0.9696 54.8017/0.9981 54.0919/0.9982

B11 35.0061/0.8789 41.6026/0.9571 43.2639/0.9694 54.4611/0.9982 54.7579/0.9983

Table 10. Results of spectrum adaptability for unsupervised learning (PSNR(dB)/SSIM). The best
results of every spectrum are marked in red.

Scale
Train

Test B5 B6 B7 B10 B11

×2

B5 42.4992/0.9760 48.3702/0.9899 49.9142/0.9927 55.0392/0.9985 55.3785/0.9986

B6 42.1859/0.9744 48.4360/0.9900 50.0237/0.9929 55.0141/0.9985 55.3801/0.9986

B7 42.1216/0.9741 48.4302/0.9900 50.0325/0.9929 54.9818/0.9985 55.3517/0.9986

B10 40.1325/0.9594 46.6713/0.9855 48.3643/0.9899 54.7714/0.9986 55.0933/0.9987

B11 40.1150/0.9593 46.6681/0.9854 48.3653/0.9863 55.1840/0.9988 55.5098/0.9989
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Figure 6. PSNR performance difference between each band and their benchmark result. The bench-
mark of each band refers to the result obtained by the model trained with the same band.

Figure 7. Visual results of B5 testing set. The titles of subfigures (b–f) represent the training set of
SR models.
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5. Discussions
5.1. Training Mode Selection

Our framework can derive a variety of training modes, and can be trained in super-
vised, weakly supervised or unsupervised ways. Therefore, there should be an optimal
choice corresponding to different data situations. Based on the experimental analysis in
Section 4.1, we can draw the following conclusion. First, when using real paired HR-LR
images to train the SR model, a single loop is sufficient. Second, when there are HR images
in the training set, the backward loop can achieve better SR performance on the real LR
data. We even do not need to consider whether we have the unpaired real LR images,
because they are not needed in the backward mode. The last and most important point is
that when there is only LR training data, i.e., the SR model is trained in an unsupervised
manner, the forward loop mode is the best choice.

5.2. Advantages and Limitations

Our proposed closed-loop framework is designed to super-resolve infrared remote-
sensing LR images in the real world. It can be trained in the ways of supervised learning,
weakly supervised learning and unsupervised learning. Especially, training with LR input
only in an unsupervised manner gives our method better practical utility. However, given
real paired HR-LR data, the supervised methods EDSR [52] and SRFBN [53] may perform
better than ours. However, for more general situations when supervised methods cannot
work, i.e., weakly supervised learning and unsupervised learning, our method has obvious
advantages. It should be noticed that the way to train an unsupervised network by a single
image may be unstable due to relatively low pixel values and low contrast of infrared
remote sensing images, e.g., UGSR [37] and EUSR [38]. Such unstableness of SR results
makes UGSR and EUSR face difficulties in the practice of infrared remote sensing image
super-resolution. While owing to the design of the closed-loops, our framework can achieve
stable and comprehensively optimal SR results.

5.3. Adaptability of Resolution and Spectrum

Remote sensing images and natural images are quite different. Due to the long imaging
distance, the spatial resolution of each part of the remote sensing image tends to be consistent.
However, the spatial resolution in different areas of natural images often differs due to the
different distances between the imaging object and the lens, resulting in blocks of different
resolutions on the same image. Therefore, the super-resolution reconstruction of natural
images does not need to explain and study the specific resolution of the image, but only super-
resolve the input image for a certain up-scaling factor. Since remote sensing images have
clear resolution levels, it is valuable to study the SR performance of testing data with different
resolution levels from the training data. In addition, the spectrum is also an important factor
for infrared remote sensing. Typical satellites with infrared sensors like Landsat-8 usually have
multiple bands of sensing spectrum. Such resolution adaptability and spectrum adaptability
analyses are especially needed for infrared remote sensing, but usually neglected in natural
image super-resolution. According to our experimental study in Sections 4.4 and 4.5, data
with the higher spatial resolution is more sensitive to the resolution of training data, and SR
network for the same up-scaling factor is still recommended to be re-trained with the data of
targeting spatial resolution. Besides, as a summary of the experimental analysis of multiple
infrared bands of Landsat-8 data, the short-wave infrared bands B6 and B7 are relatively
similar in SR performance. We can replace or merge the training set to deal with the lack of
training data. It is the same for B10 and B11.

6. Conclusions

In this paper, we have proposed a novel closed-loop framework for super-resolution
of infrared remote sensing images. It contains two networks and can flexibly implement
multiple closed-loop training modes. Experimental results demonstrate our framework
can achieve good super-resolution performance in supervised, weakly supervised and
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unsupervised situations, and effectively alleviate the impact of synthetic data. In view
of the characteristics of infrared remote sensing images, we have conducted research
on resolution adaptability and band adaptability, and done comprehensive analysis and
discussion. The PSNR result of our method on the PROBA-V dataset is 0.9dB better than
the second-best unsupervised super-resolution model. Our method shows outstanding
advantages in super-resolution reconstruction of real remote sensing images, which means
that our method has great application value in the tasks affected by the spatial resolution
of infrared remote sensing data, such as object detection and recognition. Codes and data
of this paper will be released to the public at https://github.com/haopzhang/CLN4SR
(accessed on 31 January 2023) to accelerate the following related researches.
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