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Abstract: This paper focuses on the problem of joint detection, tracking, and classification (JDTC)
for multiple extended objects (EOs) within a Poisson multi-Bernoulli (MB) mixture (PMBM) filter,
where an EO is described as an ellipse, and the ellipse is modeled by a random matrix. The EOs
are classified according to the size information of the ellipse. Usually, detection, tracking, and
classification are processed step-by-step. However, step-by-step processing ignores the coupling
relationship between detection, tracking, and classification, resulting in information loss. In fact,
detection, tracking, and classification affect each other, and JDTC is expected to be beneficial for
achieving better overall performance. In the multi-target tracking problem based on RFS, the overall
performance of the PMBM filter satisfying the conjugate priors has been verified to be superior to
other filters. Specifically, the PMBM filter propagates multiple MB simultaneously during iterative
updates and model the distribution of hitherto undetected EOs. At present, the PMBM filter is only
applied to multiple extended objects tracking problem. Therefore, we consider using the PMBM filter
to solve the JDTC problem of multiple EOs and further improve JDTC performance. Furthermore,
the closed-form implementation based on the product of a gamma Gaussian inverse Wishart (GGIW)
and class probability mass function (PMF) is proposed. The details of parameters calculation in the
implementation process and the derivation of class PMF are presented in this paper. Simulation
experiments verify that the proposed algorithm, named the JDTC-PMBM-GGIW filter, performs well
in comparison to the existing JDTC strategies for multiple extended objects.

Keywords: joint detection, tracking and classification; random matrix; gamma Gaussian inverse
Wishart; extended objects

1. Introduction

Multiple target tracking is an important technique in many fields [1–15]. Traditionally,
an object can be modeled as a point object if it is detected, and at most one sensor resolution
cell is occupied by the object. In this case, each object gives rise to at most a single measure-
ment per time frame/scan [1–12]. In reference [1], a data association solution suitable for
multiple objects tracking is proposed, which can effectively track pedestrians in thermal
images. To solve the data association problems in thermal images, they create a hybrid data
association function that fuses data-driven scores and feature engineering scores to obtain
a high-quality and adaptable tracking method. However, this approach relies excessively
on a dataset created from thermal images in the process of training data-driven models
to learn features. Due to the multipath propagation effects when tracking low altitude
target, the measured elevation angle of the target degrades seriously. To solve this prob-
lem, Reference [3] proposed a tracking algorithm to alleviate the influence of multipath.
Although this method does not require an elaborate model with physical parameters of
the propagation phenomenology, its robustness still needs to be improved. For the merged
measurement problem in multiple target tracking, Reference [4] proposed a JPDA-based
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Bayesian filter, which provides improved model fidelity and takes into account the possibil-
ity that a measurement is derived from unresolved targets. However, the filter proposed in
Reference [4] needs to deal with combinatorial problems, so the computational complexity
increases rapidly with the number of targets. In recent years, due to rapid advances in
sensor technology, it is becoming commonplace that an object occupies several sensor
resolution cells. Tracking an object that may occupy more than one sensor cell is called
extended objects tracking [5–13,16]. Compared to the traditional point target, the number
of measurements that an EO can produce is uncertain. The measurements of EOs contain
both the kinematic information and the extension information of the EO, such as scale,
shape, direction, etc. In general, an EO measurement is described by the inhomogeneous
Poisson Point Process (PPP) [5,17], i.e., the number of measurements is given by a Poisson
distributed random number, and spatially, measurements are distributed around the EO.
The Poisson distribution is characterized by the measurement rate (MR) of each EO [18].
Several models describing target extensions are exploited, such as the random matrix
model [6,17] and the random hypersurface model [19], and the Gaussian process [20]. The
random matrix model assumes that the measurements modeled by a Gaussian distribution
are distributed around the centroid of the EO. For the EO tracking problem with arbitrary
shapes, modeling EOs with a random hypersurface model or Gaussian process involves
more parameter calculation. Although more accurate and detailed target contours can
be obtained, this is usually at the cost of significantly increasing complexity. Recently, a
mathematically tractable new analytical model was proposed in Reference [21], in which
the EO is represented by its central position, the orientation (heading), and the perimeter
contour. The model is rich enough to capture the backscattering effects of the EO shape, and
the number of contour parameters of an EO is tractable. In order to estimate the kinematic
state and extension of the EO with complex shape more flexibly and easily, Reference [22]
developed an effective extension-deformation model for an EO tracking, in which the object
extension is fully characterized by several deformed control points. The method, based
on the extension-deformation model, needs to obtain the prior distribution information
of the measurement sources by sampling. However, the tracking methods for irregular
shape EO in References [21,22] are only for the scenario of a single EO. Since an EO may be
associated with multiple measurements, the number of data associations in multiple EOs
tracking grows exponentially with the number of EOs and measurements. It makes the
multiple EOs tracking problem more challenging.

So far, multiple extended objects tracking based on the random finite set (RFS) frame-
work has been continuously presented [2]. Mahler derived the measurement update
expression of the probability hypothesis density (PHD) filter, which is used to track the
Poisson modeling EOs [23,24]. Subsequently, an EO-PHD filter describing the target exten-
sion with a random matrix is presented [16,17]. In Reference [16], the method estimating
the shape parameters of ellipse EO based on Kalman filter is integrated into GM-PHD filter,
and the Minimum-Cost Flow (MCF) approach is adopted to label the trajectory of EOs. The
method in Reference [16] can track multiple EOs efficiently and consistently, and improve
the target trajectory estimation in specific scenarios. However, in this method, the ellipse
EO is parameterized to the orientation and semi-axis length, so the measurement informa-
tion received by the sensors cannot be used directly. In the updating process, additional
pseudo-measurements need to be constructed, and the complex linearization processing is
required. In Reference [25], the GM-PHD filter was generalized to track pedestrian groups.
The method in Reference [25] has the ability to estimate the correct number of groups
and accurately represent the size and shape of the groups. However, this method needs
to convert the collected observation data in the frames from image coordinates to world
coordinates in advance. In addition, the low detection probability implied by the image
detection algorithm restricts the tracking performance of GM-PHD filter. Besides, an
EO cardinalized probability hypothesis density (EO-CPHD) filter based EOs tracking is
presented [26]. With gamma Gaussian inverse Wishart (GGIW) implementation, EO-CPHD
can estimate the kinematic state, the extended state, and the Poisson measurement rate,
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simultaneously. Later, the multi-Bernoulli (MB) filter [27,28], labeled multi-Bernoulli (LMB)
and generalized LMB (GLMB) filters based EOs tracking have been proposed [12,14,29,30].

Recently, another type of RFS conjugate priors have been presented in the literature,
i.e., the PMBM model [31,32], which consists of a Poisson process and a multi-Bernoulli
mixture (MBM). The PMBM is a conjugate prior and it divides the target set into a detected
target set and an undetected target set. The MBM considers all possible data association hy-
potheses for the detected targets. The PPP models all targets that have never been detected.
Furthermore, the PMBM has been proven to have efficient computational performance [33].
The PMBM filtering recursions for extended objects tracking have already been explored
in References [32,34]. In References [32,34], for the compared scenarios, the filters based
on the PMBM conjugate prior generally outperform other RFSs-based filters, in terms of
tracking performance and computational cost.

In order to ensure that the RFS-based JDTC algorithm not only satisfies the conjugate
prior, but also improve the overall performance significantly, in this paper, we devote to
generalizing the PMBM filter [32,34] to the JDTC problem with multiple EOs. We first
augment the EO state to include class information, then, using prior size information related
to the target class, PMBM for JDTC (JDTC-PMBM) filter recursion is established and class
PMF of JDTC-PMBM density is derived. In order to implement the proposed JDTC-PMBM
filter analytically and in a computationally feasible way, the product of a gamma Gaussian
inverse Wishart (GGIW) distribution and class probability mass function (PMF) is adopted
to approximately model the probability density of a single EO. The resulting algorithm,
which is referred to as JDTC-PMBM-GGIW filter, can not only estimate the kinematic state,
measurement rate, and extended state of the EOs, but also estimate the class probability of
each EO. Further, the proposed JDTC-PMBM-GGIW method is evaluated in simulations,
where its performance is compared to the existing RFS-based JDTC methods [35,36].

The main contributions of this paper are summarized as follows.

(1) The JDTC-PMBM filter recursion is proposed to perform JDTC of multiple EOs;
(2) The analytical and computationally feasible implementations of the proposed JDTC-

PMBM filter are derived;
(3) The performance of the proposed approach is assessed via simulations.

2. Related Work

Joint detection, tracking, and classification (JDTC) of targets is a fundamental require-
ment of surveillance systems [15,37–45]. Specifically, the joint tracking and classification
algorithm can not only estimate the kinematic characteristics of the target (such as target
position, target extension, target velocity), but also identify the target according to the
classification results, thus improving the tracking accuracy. The JDTC algorithm plays also
an important role in threat assessment [15,38–45]. Usually, detection, tracking, and classifi-
cation are processed step-by-step. However, step-by-step processing ignores the coupling
relationship between detection, tracking, and classification, resulting in information loss.
For EOs, detection, tracking, and classification are complementary. As a result, JDTC may
improve the overall performance [35,46]. In Reference [44], the JDTC algorithms can be
applied to accurately identify fighter aircraft types (such as F4 fighter, F15 fighter, and T38
fighter), providing more accurate information for the command and guidance system, so
as to precisely strike the most threatening fighter aircraft.

The essence of JDTC of multiple ellipse extended objects is to estimate the posterior
probability density of a target that has been classified and the class probability mass
function (PMF) within a Bayesian framework, simultaneously. Therefore, the challenge
of JDTC problem with multiple ellipse extended objects is how to integrate the prior
scale information related to EO classes into the Bayesian framework. In Reference [46],
it is proposed that the scale information related to EO classes is reasonably regarded as
a pseudo-measurement and modeled as Wishart distribution. Through the modeling
method of Reference [46], the JDTC problem of ellipse extended objects is analytically
implemented by the Bayesian iterative updating process using the pseudo measurements
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and the real measurements received by the sensors. Later, Reference [36] extended the
ideas in Reference [46] to solve the JDTC problem of multiple ellipse extended objects. In
Reference [36], the posterior density of multiple objects is modeled as PHD. Nevertheless, as
is well known [2], the PHD filter has a problem of high cardinality variance and decreased
performance with low detection probability and high clutter. In order to make up for
the defects of the JDTC algorithm based on PHD filter (JDTC-GIW-PHD algorithm) [36],
another JDTC algorithm of multiple extended objects based on RFS (JDTC-GIW-MeMBer
algorithm) [35] and the JDTC algorithm of multiple extended objects based on message
passing [41] are proposed successively. In Reference [35], the posterior density of multiple
objects is modeled as a spatial probability density function of the MB parameter. In
Reference [41], the posterior density of multiple objects is approximated by a belief function.
However, neither the JDTC-GIW-PHD algorithm nor the JDTC-GIW-MeMBer algorithm
satisfies the conjugate prior, and the JDTC-GIW-PHD algorithm and JDTC-GIW-MeMBer
algorithm ignore the data association problem between EOs and measurements. In addition,
the JDTC-GIW-MeMBer algorithm only propagates a single MB density.

In recent years, a PMBM density has been derived from the RFS frame. The PMBM
density accurately approximates the EO’s posterior density [31–34]. The PMBM filter not
only satisfies conjugate a priori but also considers the data association between EOs and
measurements. Different from the PHD filter and MeMBer filter, the PMBM filter models
the detected targets through multiple MB mixture densities, so its tracking performance
is significantly better than that of the PHD filter and MeMBe filter. In addition, since
undetected targets are modeled by PPP, the PMBM filter can not only track the detected
targets during occlusions, but also identify the surveillance areas where the undetected
targets may exist [32]. To the best of the authors’ knowledge, the JDTC problem for multiple
EOs has not been explored in a PMBM filter yet.

3. Background
3.1. Dynamic Model

The state of each EO at time k is defined as yk , [ξ>k , Cc
k ]
>, specifically:

- ξk = (γk, xk, Xk), where xk, Xk represent the kinematic and extended states, respec-
tively; γk denotes the Poisson measurement rate of such an EO.

- Cc
k ∈ {C

1
k , C2

k , · · · , Cnc
k } denotes the class state of an EO, nc is the total number of

categories for the EOs.

In this paper, the kinematic state xk at time k is defined as xk = (pk
x, vk

x, pk
y, vk

y)
>, it

contains position and velocity information, and the state space dimension d = 2. Xk is the
extended state of an EO, which is a symmetric positive define (SPD) random matrix.

The dynamic model of kinematic state f (xk|xk−1), extended state transitions in class
state conditions f (Xk|xk−1, Xk−1, Cc

k) [7,46], and measurement rate transfer model [18]
f (γk|γk−1) are described in detail in Reference [41]. In addition, we assume that the EO’s
class does not shift over time [35,36,46], i.e., f (Cc

k |C
c′
k−1) = 1 if Cc

k = Cc′
k−1 and otherwise

f (Cc
k |C

c′
k−1) = 0.

3.2. The Measurement Analysis for JDTC

For the c-th class target, the extended matrix of the EO can be expressed as [36,46]

Xk = (Ec
k)
−1Zp,c

k (Ec
k)
−> (1)

where Zp,c
k ∈ Rd×d is a SPD matrix, which is given by

Zp,c
k = diag(a2

p,c, b2
p,c) (2)
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where ap,c and bp,c are the major axis length and minor axis length of an ellipse, respectively.
Ec

k is a matrix describing the direction of the ellipse, which is given by [36]

Ec
k =

[
cos(θk) − sin(θk)
sin(θk) cos(θk)

]
(3)

where θk is the velocity direction.
The prior size matrix of the c-th class target Zp,c

k is defined as a pseudo measurement.
The pseudo measurement likelihood function is given by Reference [46]

ψZp,c
k
(ξk, Cc

k) =W(Zp,c
k ; δ

p,c
k , Ec

kXk(E
c
k)
>/δ

p,c
k ) (4)

where δ
p,c
k is the corresponding degree of freedom.

Suppose that the real measurement set of the EO is Cc, and measurements in the mea-
surement set are independent of each other. The spatial distribution of clutter measurement
is c(z) with the average number λ. The PPP intensity of clutter κ(z) = λc(z). The detection
probability of an EO is defined as pD(ξk, Cc

k).
The real measurements originated by EOs are modeled as inhomogeneous Poisson

point process (PPP) [5,17,32]. The likelihood function of the EO corresponding to the real
measurements set Cc is given by

ψCc(ξk, Cc
k) = PS(|Cc|; γk(ξk, Cc

k)) · pD(ξk, Cc
k) · e

−γk(ξk ,Cc
k)

× ∏
z∈Cc

γk(ξk, Cc
k)g(z|ξk, Cc

k) (5)

g(z|ξk, Cc
k) = N (z; Hkxk, Rk + ηXk) (6)

where Hk is the observation matrix, γk(ξk, Cc
k) is the Poisson measurement rate, the mea-

surement spatial distribution is g(z|ξk, Cc
k), Rk denotes the covariance of observation noise,

η is a regulation parameter, |Cc| is the cardinality of measurements set Cc, and |Cc| is
assumed to follow a Poisson distribution [5,36].

The missed detection probability is given by

qD(ξk, Cc
k) = 1− pD(ξk, Cc

k) + pD(ξk, Cc
k)e
−γk(ξk ,Cc

k) (7)

where (1− e−γk(ξk ,Cc
k)) is the probability that an EO produces at least a measurement. Define

qD(ξk, Cc
k) as the likelihood function corresponding to the empty measurement set, i.e.,

ψ∅(ξk, Cc
k) = qD(ξk, Cc

k) [32].
In addition, the measurement data satisfy the following assumptions:

1. Clutter is independent of the target-originated measurements and pseudo measure-
ments;

2. The sensor has a linear Gaussian measurement model;
3. The measurements generated by each EO are independent of each other.

4. PMBM Filter for JDTC
4.1. Association Events

The real measurements set Zr,k is given by

Zr,k = {zm}m∈M (8)

For the targets of the j-th predicted global hypothesis, we define the j-th predicted
global hypothesis index space asAj, and A ∈ Aj is an association. The measurements in Zr,k

are associated with an existing target indexed by Ij or a new target, or the measurements are
generated by clutter. For all j, M∩ Ij = ∅. In fact, for the j-th predicted global hypothesis,
a data association A ∈ Aj is a partition of M ∪ Ij into nonempty disjoint subsets C ∈ A,
and the data associations space is described as Aj = P

(
M∪ Ij). For multi-target tracking,
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it is usually assumed that the measurements are independent of each other and that a
measurement originates from at most one target, i.e.,

∣∣C ∩ Ij
∣∣ ≤ 1 for all C ∈ A. If there are

two or more target indices in the partitioned subset, the measurement likelihood is zero. If
there is a target index in the subset C, the target index is defined as iC. In addition, we group
all the measurements in subset C into a measurement set named Cc, i.e., Cc =

⋃
m∈C∩M zm.

4.2. PMBM Density for JDTC

The PMBM model [31–34] consists of a PPP and an MBM, where PPPs model the
clutter, EO measurements, new EO, and undetected EOs, and the MBM is used to model
the detected EO. For JDTC problems, the target state needs to be expanded to include
class information. Thus, the intensity function of a PPP is given by Du(ξk, Cc

k). An
MBM density is a weighted sum of multiple MB densities. The weights are usually
also the probabilities of different global hypotheses. An MBM is defined by parameters{(
W j

k,
{(

rj,i
k , f j,i(ξk, Cc

k)
)}

i∈Ij

)}
j∈J

, where rj,i
k denotes the existence probability of each

Bernoulli, f j,i(·) is the spatial probability density function (PDF), J is an index space of the
MBs in MBM, Ij is an index space of the Bernoullis in the j-th MB,W j

k denotes the weight of
the j-th MB. |J| is the number of MBs of MBM, |Ij| is the number of Bernoulli components
in the j-th MB. In fact, each MB represents a global hypothesis about the detected EOs.

The set of the EOs state is defined as Yk, based on the PMBM model. Yk can be divided
into two disjoint subsets.

Yu
k , Yd

k : Yu
k ∪ Yd

k = Yk, Yu
k ∩ Yd

k = ∅ (9)

where Yu
k and Yd

k represent the set of detected EOs and the set of undetected EOs, respec-
tively. The PMBM density for JDTC density is given by

f (Yk) = ∑
Yu

k]Yd
k=Yk

f u(Yu
k ) ∑

j∈J
W j f j

(
Yd

k

)
(10)

f u(Yu
k ) = e−〈D

u ;1〉 ∏
yk∈Yu

k

Du(yk) (11)

f j
(

Yd
k

)
= ∑
]

i∈Ij Yi
k=Yd

k

∏
i∈Ij

f j,i
B (Yi

k) (12)

where f j,i
B (·) are the Bernoulli set densities, ∑]i∈I Yi = Y denotes a sum over all (possibly

empty) subsets Yi, that are mutually disjoint, and whose union is Y. 〈·, ·〉 denotes the
integral of the product of the two functions over all variables, i.e.,

〈v; h〉 = ∑
Cc

k

∫∫
xk ,Xk

v(xk, Xk, Cc
k)h(xk, Xk, Cc

k)dxkdXk (13)

4.3. JDTC-PMBM Filter Recursion

The JDTC-PMBM density is described by the parameters

Du(yk),
{(
W j

k,
{
(rj,i

k , f j,i(yk))
}

i∈Ij

)}
j∈J

(14)

The JDTC-PMBM filter recursion is presented as follows.

4.3.1. Prediction of JDTC-PMBM Filter

Given a posterior JDTC-PMBM density at time k− 1 with parameters

Du(yk−1),
{(
W j

k−1,
{
(rj,i

k−1, f j,i(yk−1))
}

i∈Ij

)}
j∈J

(15)
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and the state transition model, the predicted JDTC-PMBM density is described by
the parameters

Du
+(yk),

{(
W j

k|k−1,
{
(rj,i

k|k−1, f j,i
+ (yk))

}
i∈Ij

+

)}
j∈J+

(16)

where

Du
+(yk) = Db(yk) + 〈Du(yk); pS(yk) f (yk|yk−1)〉 (17)

rj,i
k|k−1 =

〈
f j,i(yk); pS(yk)

〉
rj,i

k−1 (18)

f j,i
+ (yk) =

〈
f j,i(yk); pS(yk) f (yk|yk−1)

〉〈
f j,i(yk); pS(yk)

〉 (19)

W j
k|k−1 =W j

k−1 (20)

where pS is the probability of survival, the birth EO at time k is assumed to be a PPP, and
the intensity is Db(yk), f (yk|yk−1) is a transition probability density, which is described in
detail in Section 3.1.

4.3.2. Updated Density of JDTC-PMBM Filter

It is assumed that pseudo measurements and real measurements are independent of
each other, given a predicted JDTC-PMBM density with parameters

Du
+(yk),

{(
W j

k|k−1,
{
(rj,i

k|k−1, f j,i
+ (yk))

}
i∈Ij

+

)}
j∈J+

(21)

with the real-measurement set Zr,k, pseudo measurements Zp,c
k at time k, and the mea-

surement model discussed in Sections 2 and 3.1, the updated JDTC-PMBM density is
given by

f (Yk | Zr,k, Zp,c
k ) = ∑

Yu
k]Yd

k=Yk

f u(Yu
k ) ∑

j∈J+
∑

A∈Aj

W j
A,k f j

A

(
Yd

k

)
(22)

f u(Yu
k ) = e−〈D

u ;1〉 ∏
yk∈Yu

k

Du(yk) (23)

f j
A

(
Yd

k

)
= ∑
]C∈AYC

k =Yd
k

∏
C∈A

f j
C

(
YC

k

)
(24)

where the updated PPP intensity is given by

Du(yk) = qD(yk)Du
+(yk) (25)

The weightW j
A,k is given by

W j
A,k =

W j
k|k−1 ∏C∈A LC,k

∑j′∈J ∑A′∈Aj′ W
j′

k|k−1 ∏C′∈A′ LC′ ,k

(26)

LC,k=



κCc +
〈

Du
+(yk); ψCc(yk)ψZp,c

k
(yk)

〉
if C ∩ Ij = ∅, |Cc| = 1〈

Du
+(yk); ψCc(yk)ψZp,c

k
(yk)

〉
if C ∩ Ij = ∅, |Cc| > 1

1− rj,iC
k|k−1 + rj,iC

k|k−1

〈
f j,ic
+ (yk); qD(yk)

〉
if C ∩ Ij 6= ∅, Cc = ∅

rj,iC
k|k−1

〈
f j,iC
+ (yk); ψCc(yk)ψZp,c

k
(yk)

〉
if C ∩ Ij 6= ∅, Cc 6= ∅

(27)
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where Cc is the measurement subset of the real measurements set Zr,k, ψCc(yk) is the real
measurements likelihood function, and the densities f j

C
(
YC

k
)

are the Bernoulli densities
with parameters

rj
C,k =



〈
Du
+(yk);ψCc (yk)ψZ

p,c
k

(yk)

〉
κCc+

〈
Du
+(yk);ψCc (yk)ψZ

p,c
k

(yk)

〉 if C ∩ Ij = ∅, |Cc| = 1

1 if C ∩ Ij = ∅, |Cc| > 1
r

j,iC
k|k−1

〈
f

j,iC
+ (yk);qD(yk)

〉
1−r

j,iC
k|k−1+r

j,iC
k|k−1

〈
f

j,iC
+ (yk);qD(yk)

〉 if C ∩ Ij 6= ∅, Cc = ∅

1 if C ∩ Ij 6= ∅, Cc 6= ∅

(28)

f j
C(yk) =



ψCc (yk)ψZ
p,c
k

(yk)Du
+(yk)〈

Du
+(yk);ψCc (yk)ψZ

p,c
k

(yk)

〉 if C ∩ Ij = ∅, Cc 6= ∅

qD(yk) f
j,iC
+ (yk)〈

f
j,iC
+ (yk)qD(yk)

〉 if C ∩ Ij 6= ∅, Cc = ∅

ψCc (yk)ψZ
p,c
k

(yk) f
j,iC
+ (yk)〈

f
j,iC
+ (yk);ψCc (yk)ψZ

p,c
k

(yk)

〉 if C ∩ Ij 6= ∅, Cc 6= ∅

(29)

4.4. Class Probability Mass Function

We define the measurement set of an EO with state yk as Zk = {Cc, Zp,c
k } at time

k, and Zk = {Z1, . . . , Zk}, then, the class probability mass function (PMF) p(Cc
k

∣∣∣Zk ) can
be obtained, for a PPP with intensity Du(yk), and the class probability mass function is
given by

µc,Cc
Du ,k =

p(Cc
k |Z

k−1)
∫

ψCc(yk)ψZp,c
k
(yk)Du

+(ξk|Cc
k , Zk−1)dξk

nc
∑

c=1
p(Cc

k |Zk−1)
∫

ψCc(yk)ψZp,c
k
(yk)Du

+(ξk|Cc
k , Zk−1)dξk

(30)

for MBM density, the class probability mass function of a detected EO is given by

µc,Cc
j,iC ,k =

p(Cc
k |Z

k−1)
∫

ψCc(yk)ψZp,c
k
(yk) f j,iC

+ (ξk|Cc
k , Zk−1)dξk

nc
∑

c=1
p(Cc

k |Zk−1)
∫

ψCc(yk)ψZp,c
k
(yk) f j,iC

+ (ξk|Cc
k , Zk−1)dξk

(31)

The derivation of the class PMF is described in Appendix A.
In order to improve readability, the processing steps of JDTC-PMBM filter are described

in Figure 1.
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The parameters of JDTC-PMBM density at time k− 1:

Du(yk−1),
{(
W j

k−1,
{
(rj,i

k−1, f j,i(yk−1))
}

i∈Ij

)}
j∈J

Prediction step: Du
+(yk),

{(
W j

k|k−1,
{
(rj,i

k|k−1, f j,i
+ (yk))

}
i∈Ij

+

)}
j∈J+

• Update of PPP intensity of the undetected targets, see Equation (25);

• Update of PPP intensity of the first detected target: corresponds to the case of C ∩ Ij = ∅, |Cc | 6= ∅ in Equations (26)–(29);

• Update of Bernoulli parameters of the detected target: corresponds to the case of C ∩ Ij 6= ∅, |Cc | 6= ∅ in Equations (26)–(29);

• Update of Bernoulli parameters of the missed target: corresponds to the case of C ∩ Ij 6= ∅, |Cc | = ∅ in Equations (26)–(29)

• Compute the class PMF of PPP intensity Du(yk), see Equation (30);

• For MBM density, the class PMF of a detected EO is calculated by Equation (31)

State extraction

Prediction

Update

Class PMF

Figure 1. The schematic figure summarising the processing steps of JDTC-PMBM filter.

5. The Implementation Process of the Proposed JDTC-PMBM Filter

In order to analytically implement the JDTC-PMBM filter proposed in Section 4, the
kinematics state, extended state, and measurement rate of each EO are described as Gaus-
sian distribution, inverse Wishart distribution, and gamma distribution, respectively [18,26].
The analytical implementation for JDTC-PMBM filter is referred to as JDTC-PMBM-GGIW
filter, where all single EO densities in the JDTC-PMBM filter are modeled as the form of the
product of GGIW distribution and class PMF.

5.1. Prediction of JDTC-PMBM-GGIW

We assume that the PPP intensity for undetected EOs at time k− 1 is described as

Du(yk−1) = µc
Du ,k−1

Ju,k−1

∑
j=1

wc,j
u,k−1GAM(γk−1; α

c,j
u,k−1, β

c,j
u,k−1)

×N (xk−1; mc,j
u,k−1, Pc,j

u,k−1)IW(Xk−1; vc,j
u,k−1, Vc,j

u,k−1) (32)

The birth PPP intensity with known parameters at time k− 1 is described as

Db(yk−1) = µc
Db ,k−1

Jb,k−1

∑
j=1

wc,j
b,k−1GAM(γk−1; α

c,j
b,k−1, β

c,j
b,k−1)

×N (xk−1; mc,j
b,k−1, Pc,j

b,k−1)IW(Xk−1; vc,j
b,k−1, Vc,j

b,k−1) (33)

where IW(·; v, V) denotes the inverse Wishart distribution with freedom degree v and
parameter matrix V.
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For the MBs in MBM, the spatial probability density f j,i(yk−1) at time k − 1 is de-
scribed as

f j,i(yk−1) = µc
j,i,k−1GAM(γk−1; αc

j,i,k−1, βc
j,i,k−1)

×N (xk−1; mc
j,i,k−1, Pc

j,i,k−1)IW(Xk−1; vc
j,i,k−1, Vc

j,i,k−1) (34)

We define

GAM(γk; αk, βk)N (xk; mk, Pk)IW(Xk; vk, Vk) = GGIW(ξk; ζk) (35)

where ζk = {αk, βk, mk, Pk, vk, Vk}.
As described in Section 4.3.1, the parameters

Du
+(yk),

{(
W j

k|k−1,
{
(rj,i

k|k−1, f j,i
+ (yk))

}
i∈Ij

+

)}
j∈J+

(36)

of the predicted JDTC-PMBM density can be described as

Du
+(yk) = Db(yk) + µc

Du ,k|k−1

Ju,k−1

∑
n=1

wc,n
u,k|k−1GGIW(ξk; ζc,n

u,k|k−1) (37)

wc,n
u,k|k−1 = wc,n

u,k−1 pS(yk) (38)

µc
Du ,k|k−1 = µc

Du ,k−1 (39)

rj,i
k|k−1 = pS(yk)r

j,i
k−1 (40)

f j,i
+ (yk) = µc

j,i,k|k−1GGIW(ξk; ζc
j,i,k|k−1) (41)

µc
j,i,k|k−1 = µc

j,i,k−1 (42)

W j
k|k−1 =W j

k−1 (43)

The ζc,n
u,k|k−1 in (37) and ζc

j,i,k|k−1 in (41) have similar computational processes. The
relevant parameters are calculated as follows.

αc
k|k−1 =

αc
k−1
τ

, βc
k|k−1 =

βc
k−1
τ

(44)

mc
k|k−1 = (Fk)m

c
k−1 (45)

Pc
k|k−1 = FkPc

k−1(Fk)
> + Qk (46)

vc
k|k−1 =

2δc
k(λ

c
k−1 − 1)(λc

k−1 − 2)

(λc
k−1)

2(λc
k−1 + 1)−1(λc

k−1 + δc
k)

+ 2d + 4 (47)

Vc
k|k−1 =

δc
k(v

c
k|k−1 − 2d− 2)MkVc

k−1(Mk)
>

λc
k−1

(48)

λc
k−1 = vc

k−1 − 2d− 2 (49)

where δc
k is the degree of freedom. The predicted gamma distribution is described by for-

getting factor 1
τ in (44) [18], and 1

τ > 1. The derivation process of Gaussian inverse Wishart
parameters of predicted JDTC-PMBM density is similar to Appendix C of Reference [35].

5.2. Update of JDTC-PMBM-GGIW

As described in Section 4.3.2, the updated JDTC-GGIW-PMBM can be divided into
four parts.

(1) Update of PPP: the undetected targets
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The Du
+(yk) is obtained in the prediction step. The probability of missed detection is

qD(yk), and the updated PPP intensity Du(yk) for the undetected targets is given by

Du
+(yk) = µc

Du ,k|k−1

Ju,k|k−1

∑
n=1

(wc,n
u1 ,k|k−1GGIW(ξk ; ζc,n

u1 ,k|k−1) + wc,n
u2 ,k|k−1GGIW(ξk ; ζc,n

u2 ,k|k−1)) (50)

where

Ju,k|k−1 = Jb,k−1 + Ju,k−1 (51)

wc,n
u1,k|k−1 = (1− pD(yk))w

c,n
u,k|k−1 (52)

wc,n
u2,k|k−1 = pD(yk)

(
βc,n

u,k|k−1

βc,n
u,k|k−1 + 1

)αc,n
u,k|k−1

wc,n
u,k|k−1 (53)

ζc,n
u1,k|k−1 = ζc,n

u,k|k−1 (54)

ζc,n
u2,k|k−1 = {αc,n

u,k|k−1, βc,n
u,k|k−1 + 1, mc,n

u,k|k−1, Pc,n
u,k|k−1, vc,n

u,k|k−1, Vc,n
u,k|k−1} (55)

As described in Reference [18], the bi-modality of the γk estimate in (50) can be reduced
to a single mode by using gamma mixture reduction.

(2) Update of PPP: the first detected target

The target is detected for the first time, and a detection measurement set Cc is gen-
erated. This case corresponds to the case C ∩ Ij = ∅, Cc 6= ∅ in Section 4.3.2. Given the
predicted PPP intensity Du

+(yk) in (37), the existence probability and spatial distribution
are given by

ru
Cc ,k =

 1 if |Cc| > 1
Lu

Cc ,k
κCc+Lu

Cc ,k
if |Cc| = 1 (56)

f u
Cc
(yk) =

ψCc(yk)ψZp,c
k
(yk)Du

+(yk)〈
Du
+(yk); ψCc(yk)ψZp,c

k
(yk)

〉 (57)

= µc,Cc
Du ,k

Ju,k|k−1

∑
n=1

wc,Cc ,n
u,k GGIW(yk; ζc,Cc ,n

u,k ) (58)

where

µc,Cc
Du ,k =

µc
Du ,k|k−1

Ju,k|k−1

∑
n=1

wc,n
u,k|k−1Qc,Cc ,n

k Gc,Cc ,n
k ∆c,Cc ,n

k

nc
∑

c=1
µc

Du ,k|k−1

Ju,k|k−1

∑
n=1

wc,n
u,k|k−1Qc,Cc ,n

k Gc,Cc ,n
k ∆c,Cc ,n

k

(59)

wc,Cc ,n
u,k =

wc,n
u,k|k−1Qc,Cc ,n

k Gc,Cc ,n
k ∆c,Cc ,n

k
Ju,k|k−1

∑
n=1

wc,n
u,k|k−1Qc,Cc ,n

k Gc,Cc ,n
k ∆c,Cc ,n

k

(60)

Lu
Cc ,k =

nc

∑
c=1

µc
Du ,k|k−1

Ju,k|k−1

∑
n=1

wc,n
u,k|k−1Qc,Cc ,n

k Gc,Cc ,n
k ∆c,Cc ,n

k (61)

where ζc,Cc ,n
u,k = {αc,Cc ,n

u,k , βc,Cc ,n
u,k , mc,Cc ,n

u,k , Pc,Cc ,n
u,k , vc,Cc ,n

u,k , Vc,Cc ,n
u,k }, Qc,Cc ,n

k , Gc,Cc ,n
k , ∆c,Cc ,n

k are
computed as in Table 1, and Ju,k|k−1 is the number of GGIW components of Du

+(yk). The
proof of the derivation of the parameters can be found in Appendix B.

(3) Update of Bernoulli: the detected target
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The case C ∩ Ij 6= ∅, Cc 6= ∅ in Section 4.3.2 means that the iC-th EO of the j-th global
hypothesis is detected again at time k, and the measurement set of the detections is Cc.
Given the predicted existence probability rj,iC

k|k−1, and spatial density f j,iC
+ (yk) of the iC-th

Bernoulli of the j-th MB component, the updated existence probability and updated spatial
distribution of the iC-th Bernoulli of the j-th MB component are given by

rj,iC
Cc ,k = 1 (62)

f j,iC
Cc

(yk|Zk) = µc,Cc
j,iC ,kGGIW(yk; ζc,Cc

j,iC ,k) (63)

where

µc,Cc
j,iC ,k =

µc
j,iC ,k|k−1Qc,Cc

k Gc,Cc
k ∆c,Cc

k
nc
∑

c=1
µc

j,iC ,k|k−1Qc,Cc
k Gc,Cc

k ∆c,Cc
k

(64)

ζc,Cc
j,iC ,k = {αc,Cc

j,iC ,k, βc,Cc
j,iC ,k, mc,Cc

j,iC ,k, Pc,Cc
j,iC ,k, vc,Cc

j,iC ,k, Vc,Cc
j,iC ,k}, Qc,Cc

k , Gc,Cc
k , ∆c,Cc

k are computed as in

Table 1. The likelihood Lj,iC
Cc ,k is given by

Lj,iC
Cc ,k = rj,iC

k|k−1

〈
f j,iC
+ (yk); ψCc(yk)ψZp,c

k
(yk)

〉
= rj,iC

k|k−1

nc

∑
c=1

µc
j,iC ,k|k−1Qc,Cc

k Gc,Cc
k ∆c,Cc

k (65)

The proof of the parameters derivation can be found in Appendix B.

(4) Update of Bernoulli: the missed target

The case for an EO that was previously detected but is missed at time k corresponds
to C ∩ Ij 6= ∅, Cc = ∅ in Section 4.3.2. Given the predicted existence probability rj,i

k|k−1,

spatial density f j,i
+ (yk) of the i-th Bernoulli of the j-th MB component, and the empty

measurements set, the updated existence probability is given by

rj,i
∅,k =

rj,i
k|k−1

nc
∑

c=1
µc

j,i,k|k−1qj,i,c
D,k

1− rj,i
k|k−1 + rj,i

k|k−1

nc
∑

c=1
µc

j,i,k|k−1qj,i,c
D,k

(66)

where

qj,i,c
D,k = 1− pD(yk) + pD(yk)

(
βc

j,i,k|k−1

βc
j,i,k|k−1 + 1

)αc
j,i,k|k−1

(67)

the existence probability is given by probability that the EO exists but is not detected,
rj,i

k|k−1qj,i
D,k, or the EO is not existing, 1− rj,i

k|k−1.
The updating spatial density is given by

f j,i
∅ (yk) = µc

j,i,k(w
c
a,j,i,kGGIW(yk; ζc

a,j,i,k) + wc
b,j,i,kGGIW(yk; ζc

b,j,i,k)) (68)
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where

µc
j,i,k = µc

j,i,k|k−1

wc
a,j,i,k = (

nc

∑
c=1

µc
j,i,k|k−1qj,i,c

D,k)
−1(1− pD(yk))

wc
b,j,i,k = (

nc

∑
c=1

µc
j,i,k|k−1qj,i,c

D,k)
−1 pD(yk)

(
βc

j,i,k|k−1

βc
j,i,k|k−1 + 1

)αc
j,i,k|k−1

ζc
a,j,i,k = ζc

j,i,k|k−1

ζc
b,j,i,k = {α

c
j,i,k|k−1, βc

j,i,k|k−1 + 1, mc
j,i,k|k−1, Pc

j,i,k|k−1, vc
j,i,k|k−1, Vc

j,i,k|k−1} (69)

For the detected EO, there are two possible situations that cause the measurement set
to be empty: the EO generates an empty measurement set and the EO is missed. Thus, the
updated spatial density is bi-modal. The gamma mixture reduction method of reducing
bi-modal distribution to an unimodal is described in detail in Reference [18]. The likelihood
Lj,i

∅,k is given by

Lj,i
∅,k = 1− rj,i

k|k−1 + rj,i
k|k−1

nc

∑
c=1

µc
j,i,k|k−1qj,i,c

D,k (70)

Table 1. The GGIW parameters in the implementation process.

αc,Cc
k = αc

k|k−1 + |Cc|, βc,Cc
k = βc

k|k−1 + 1

Sc,Cc
k|k−1 = HkPc

k|k−1(Hk)
> +

BkXk|k−1(Bk)
>

|Cc |

K(c,Cc)
k|k−1 = Pc

k|k−1(Hk)
>(Sc,Cc

k|k−1)
−1

ε
(c,Cc)
k|k−1 = z̄Cc

k − (Hk)mc
k|k−1

mc,Cc
k = mc

k|k−1 + (K(c,Cc)
k|k−1 )ε

(c,Cc)
k|k−1

Pc,Cc
k = Pc

k|k−1 − K(c,Cc)
k|k−1 HkPc

k|k−1

ε
(c,Cc)
k|k−1 = z̄Cc

k − (Hk)mc
k|k−1

vc,Cc
k = vc

k|k−1 + |Cc|+ δ
p,c
k

Vc,Cc
k = Vc

k|k−1 + Nc,Cc
k + (Bk)

−1ZCc
k (Bk)

−>

+δ
p,c
k (Ec

k)
−1Zp,c

k (Ec
k)
−>

Nc,Cc
k = ε

(c,Cc)
k|k−1(ε

(c,Cc)
k|k−1)

>
(Sc,Cc

k|k−1,j)
−1

Xk|k−1

Bk = (Rk + ηXk|k−1)
1/2

(Xk|k−1)
−1/2

z̄Cc
k = 1

|Cc |

|Cc |
∑

j=1
zCc

j

ZCc
k =

|Cc |
∑

j=1
(zCc

j − z̄Cc
k )(zCc

j − z̄Cc
k )
>

Gc,Cc
k =

Γ(αc
k|k−1+|Cc |)(βc

k|k−1)
αc

k|k−1

Γ(αc
k|k−1)(βc

k|k−1+1)
αc

k|k−1+|Cc | |Cc |!

Qc,Cc
k , pD(yk)e

−γk|k−1 (γk|k−1)
|Cc |

∆c,Cc
k =

2
(|Cc |+δ

p,c
k )(1−d)
2 |Zp,c

k |
δ

p,c
k −d−1

2 |δp,c
k |

δ
p,c
k
2

π
(|Cc |d)

2 (|Cc |)
d
2 |Bk ||Cc |−1|Sc,Cc

k|k−1(Xk|k−1)
−1|

1
2

|Vc
k|k−1|

vc
k|k−1−d−1

2

|Vc,Cc
k |

vc
k|k−1+|Cc |+δ

p,c
k −d−1

2

× Γd(
vc

k|k−1+|Cc |+δ
p,c
k −d−1

2 )

Γd(
vc

k|k−1−d−1

2 )Γd(
δ

p,c
k
2 )
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6. Results

In order to verify the effectiveness of the proposed JDTC-PMBM-GGIW algorithm,
this section first introduces the evaluation metrics and simulation scenarios. Then it gives
the simulation performance comparison results between the proposed JDTC-PMBM-GGIW
algorithm and the existing RFS-based JDTC methods [35,36]. The construction of simulation
scenarios is motivated by References [7,15,35,41]. The flow chart of the proposed JDTC-
PMBM-GGIW filter in Section 5 is shown in Figure 2.

The input parameters at time k− 1:

• The PPP intensity for undetected EOs: Du(yk−1) = µc
Du ,k−1

Ju,k−1
∑

j=1
wc,j

u,k−1GAM(γk−1; α
c,j
u,k−1, β

c,j
u,k−1)N (xk−1; mc,j

u,k−1, Pc,j
u,k−1)IW(Xk−1; vc,j

u,k−1, Vc,j
u,k−1);

• The birth PPP intensity: Db(yk−1) = µc
Db ,k−1

Jb,k−1
∑

j=1
wc,j

b,k−1GAM(γk−1; α
c,j
b,k−1, β

c,j
b,k−1)N (xk−1; mc,j

b,k−1, Pc,j
b,k−1)IW(Xk−1; vc,j

b,k−1, Vc,j
b,k−1);

• The existence probability of the i-th Bernoulli item in the j-th MB component: rj,i
k−1;

• The spatial probability density of the i-th Bernoulli item in the j-th MB component:

f j,i(yk−1) = µc
j,i,k−1GAM(γk−1; αc

j,i,k−1, βc
j,i,k−1)N (xk−1; mc

j,i,k−1, Pc
j,i,k−1)IW(Xk−1; vc

j,i,k−1, Vc
j,i,k−1);

• The j-th MB component weight: W j
k−1;

• The index space of the MBs in MBM: Jk−1

Prediction step:
Predicted GGIW parameter calculation and class probability mass function calculation: see Section 5.1

Update step:
• Calculate GGIW parameters and class probability mass function of PPP intensity of the undetected targets: see part (1) of Section 5.2;

• Calculate GGIW parameters and class probability mass function of PPP intensity of the first detected target: see part (2) of Section 5.2;

• Calculate GGIW parameters and class probability mass function of Bernoulli parameters of the detected target: see part (3) of Section 5.2;

• Calculate GGIW parameters and class probability mass function of Bernoulli parameters of the missed target: see part (4) of Section 5.2

The output parameters at time k:

• The PPP intensity for undetected EOs: Du(yk) = µc
Du ,k

Ju,k
∑

j=1
wc,j

u,kGAM(γk ; α
c,j
u,k , β

c,j
u,k)N (xk ; mc,j

u,k , Pc,j
u,k)IW(Xk ; vc,j

u,k , Vc,j
u,k);

• The existence probability of the i-th Bernoulli item in the j-th MB component: rj,i
k ;

• The spatial probability density of the i-th Bernoulli item in the j-th MB component:

f j,i(yk) = µc
j,i,kGAM(γk ; αc

j,i,k , βc
j,i,k)N (xk ; mc

j,i,k , Pc
j,i,k)IW(Xk ; vc

j,i,k , Vc
j,i,k);

• The j-th MB component weight: W j
k ;

• The index space of the MBs in MBM: Jk

State extraction at time k:

• The EO class: c∗ = arg max
c

µc
j,i,k;

• The measurement rate:γ̂c∗
j,i,k =

αc∗
j,i,k

βc∗
j,i,k

;

• The kinematic state: x̂c∗
j,i,k = mc∗

j,i,k;

• The extended state: X̂c∗
j,i,k =

Vc∗
j,i,k

vc∗
j,i,k−2d−2

Input

Output

State extraction

Loop

Figure 2. The flow chart of the proposed JDTC-PMBM-GGIW filter in Section 5.
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6.1. Performance Evaluation Metrics

In this paper, the optimal sub-pattern assignment (OSPA) distance is adopted to
evaluate the tracking performance of the proposed JDTC-PMBM-GGIW filter. The OSPA
distance is described as

d̄(c)p (Y, Ŷ)=(
1
no

(
mo

∑
k=1

(d(c)(yk, ŷπ(k)))
p
+ cp(no−mo)))

1/p

(71)

where

π(k) = arg min
π∈Πno

mo

∑
k=1

(d(c)(yk, ŷj))
p

(72)

d(c)(yk, ŷj) = min(c, d(yk, ŷj)) (73)

where π(k) is an optimal assignment, mo ≤ no, Y = {y1, · · · , ymo} is the real EO state
set, and Ŷ = {ŷ1, · · · , ŷno} is the estimated EO state set, the order p and cut-off c satisfy
1 ≤ p < ∞ and c > 0. If mo > no, d̄(c)p (Y, Ŷ) = d̄(c)p (Ŷ, Y). Πno denotes the all permutations
on {1, 2, . . . , no}.

The true extended objects’ parameters set at time k is {ξ(i)k }
NX,k
i=1 , where

ξ
(i)
k = (γ

(i)
k , x(i)k , X(i)

k ) and NX,k is the true number of objects. The estimated extended

objects’ parameters set is {ξ̂(j)
k }

M′k
j=1, where ξ̂

(i)
k = (γ̂

(i)
k , x̂(i)k , X̂(i)

k ). The OSPA distance be-

tween the set {ξ(i)k }
NX,k
i=1 and the set {ξ̂(j)

k }
M′k
j=1 is computed by (71), where m = Nx,k, n = M′k,

d(c)(yi, ŷπ(i)) is, respectively, defined as

d(cγ)(γ
(i)
k , γ̂

(π(i))
k ) = min(cγ, ‖γ(i)

k − γ̂
(π(i))
k ‖2) (74)

d(cx)(x(i)k , x̂(π(i))
k ) = min(cx, ‖x(i)k − x̂(π(i))

k ‖2) (75)

d(cX)(X(i)
k , X̂(π(i))

k ) = min(cX, ‖X(i)
k − X̂(π(i))

k ‖F) (76)

where ‖ · ‖2 denotes the Euclidean norm, ‖ · ‖F denotes the Frobenius norm.

6.2. Simulation Scenario Setting

The monitoring area is 2000 m × 2000 m. The simulation results are obtained from
500 Monte Carlo simulation experiments. The measurement noise covariance Rn =
diag([1 m2/s2, 1 m2/s2]), and the regulation parameter of the sensor between the covari-
ance Rn and the extended state Xk is set to λn = 1/4. The detection probability Pd = 0.9, the
birth probability of EOs pb = 0.01, and the survival probability of EOs ps

k = 0.9, 1/τ = 0.5,
δc

k = 10.
Similar to References [35,36,46], we assume that the EOs have two categories, and the

size matrix of the first class EOs is described as Zp,1
k = diag(1702 m2, 402 m2), the size

matrix of the second class EOs is Zp,2
k = diag(702 m2, 7.52 m2). The measurement rates

of the first class EOs and the second class EOs are respectively set as 30 and 20. Bernoulli
components with an existence probability less than 0.5 is pruned. For the mixture GGIW
components of PPP intensity, the pruning and merging thresholds are set to Tg = 10−3 and
Tu = 4, respectively. Other parameter settings are the same as in References [35,41].

The kinematics state transition model is linear, and the kinematics state transition
equation of an EO is given by

xk = Fk(xk−1) + vk (77)
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where vk is the process noise following Gaussian distribution with zero mean and co-
variance matrix Q. Thus, the kinematics state transition probability density function is
obtained by

fk|k−1(xk|xk−1 ) = N (xk; Fk−1xk−1, Q) (78)

In principle, the near-constant velocity (NCV) model and near-constant turn (NCT)
model can be used to describe any type of movement, as long as the sampling interval is
sufficiently small. Thus, the dynamic model can be described in detail as follows.

- NCV Model:

Fk =


1 Ts 0 0
0 1 0 0
0 0 1 Ts
0 0 0 1

 (79)

QNCV = qτ1


T3

s /3 T2
s /2 0 0

T2
s /2 Ts 0 0
0 0 T3

s /3 T2
s /2

0 0 T2
s /2 Ts

 (80)

where qτ1 = 0.016.
- NCT Model:

Fk =


1 sin(Tsω)/ω 0 −(1− cos(Tsω))/ω
0 cos(Tsω) 0 − sin(Tsω)
0 (1− cos(Tsω))/ω 1 sin(Tsω)/ω
0 sin(Tsω) 0 cos(Tsω)

 (81)

QNCT = qτ2


T4

s /4 T3
s /2 0 0

T3
s /2 T2

s 0 0
0 0 T4

s /4 T3
s /2

0 0 T3
s /2 T2

s

 (82)

where qτ2 = 0.0016, ω denotes the rotational angular velocity and Ts denotes the
sampling period.

At time k = 0, the initial assumptions of the proposed JDTC-PMBM-GGIW filter are
shown in Table 2. The parameters for the two simulation scenarios are set as follows.

Table 2. The initial assumptions of the proposed JDTC-PMBM-GGIW filter.

• The initial birth PPP intensity at time k = 0 is given by

Db(yk) = µc
Db ,k

Jb,k

∑
j=1

wc,j
b,kGAM(γk ; α

c,j
b,k , β

c,j
b,k−1)N (xk ; mc,j

b,k , Pc,j
b,k)IW(Xk ; vc,j

b,k , Vc,j
b,k)

• The initial PPP intensity for undetected EOs at time k = 0 is described as Du(yk) = Db(yk).
• The initial MBM parameters: I0 = {j0},W

j0
0 = 1, and Ij0

0 = ∅.
• The spatial distribution of clutter c(z) is uniform, c(z) = A−1, where A is volume of the surveillance area.

- In scenario 1, there are five EOs in the surveillance area, The actual trajectory of each
EO is shown in Figure 3a. The trajectory parameters of each EO of scenario 1 are
described in Table 3. The mixture GGIW and class parameters of initial birth PPP
intensity are given by
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µc
Db ,k =0.5, wc,j

b,k = 0.01 (83)

mc,1
b,k =[300 m, 8 m/s, 500 m,−8 m/s]> (84)

mc,2
b,k =[0 m, 8 m/s, 0 m, 8 m/s]> (85)

mc,3
b,k =[800 m, 8 m/s, 800 m,−4 m/s]> (86)

mc,4
b,k =[−200 m,−8 m/s,−250 m, 6 m/s]> (87)

mc,5
b,k =[−250 m, 8 m/s,−250 m, 6 m/s]> (88)

Pc,j
b,k =diag([102 m2, 102 m2/s2, 102 m2, 102 m2/s2]) (89)

α
c,j
b,k =20, β

c,j
b,k = 10, vc,j

b,k = 10, (90)

Vc,j
b,k =diag([1 1]), nc = 2, Jb,k = 4. (91)

where Jb,k denotes the number of birth GGIW components.
- In scenario 2, there are three EOs in the surveillance area, The actual trajectory of

each EO is shown in Figure 3b. The trajectory parameters of each EO of scenario 2
are described in Table 4. The mixture GGIW and class parameters of initial birth PPP
intensity are given by

µc
Db ,k =0.5, wc,j

b,k = 0.01 (92)

mc,1
b,k =[−1300 m, 5 m/s, 500 m,−5 m/s]> (93)

mc,2
b,k =[50 m, 8 m/s, 50 m, 8 m/s]> (94)

mc,3
b,k =[−550 m,−6 m/s,−650 m, 6 m/s]> (95)

Pc,j
b,k =diag([102 m2, 102 m2/s2, 102 m2, 102 m2/s2]) (96)

α
c,j
b,k =20, β

c,j
b,k = 10, vc,j

b,k = 10 (97)

Vc,j
b,k =diag([1 1]), Jb,k = 3, nc = 2. (98)

where Jb,k denotes the number of birth GGIW components.

Table 3. Trajectory parameters of each EO of scenario 1.

Target Model Birth Time Death Time Class

1 NCV 1 s 80 s 1
2 NCV 1 s 80 s 2
3 NCV 1 s 80 s 1
4 NCV 10 s 30 s 1
5 NCV 50 s 70 s 2

Table 4. Trajectory parameters of each EO of scenario 2.

Target Models Model Duration Time Birth Time Death Time Class

1 NCV 1–15 s, 32–50 s, 67–80 s 1 s 80 s 1NCT 16–31 s, 51–66 s

2 NCV 1–15 s, 32–50 s, 67–80 s 1 s 80 s 2NCT 16–31 s, 51–66 s

3 NCV 1–15 s, 32–50 s, 67–80 s 1 s 80 s 1NCT 16–31 s, 51–66 s
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(a) (b)

Figure 3. Simulation scenarios. (a) The first scenario: target 1, yellow ellipse, class 1; target 2, cyan
ellipse, class 2; target 3, blue ellipse, class 1; target 4, green ellipse, class 1; target 5, purple ellipse,
class 2. (b) The second scenario: target 1, yellow ellipse, class 1; target 2, cyan ellipse, class 2; target 3,
blue ellipse, class 1.

6.3. Simulation Results

The programming language used in the simulation experiment is MATLAB. The
framework and flow charts of the simulation experiment of the proposed JDTC-PMBM-
GGIW algorithm are shown in Figures 1 and 2. The simulation experiments were run on a
desktop with CPU i5-44303.00 [GHz] and 16 [GB] RAM memory. The simulation results
are as follows.

6.3.1. Scenario 1

The tracking performance of the proposed JDTC-PMBM-GGIW filter, JDTC-GIW-
MeMBer filter [35] and JDTC-GIW-PHD filter [36] is shown in Figure 4a–c. In the case
that all three methods use prior size information, the OSPA distance of measurement rate,
kinematic states, and extension of the JDTC-PMBM-GGIW filter is smaller than that of
JDTC-GIW-MeMBer filter and JDTC-GIW-PHD filter. This means that the proposed JDTC-
PMBM-GGIW filter outperforms the JDTC-GIW-MeMBer filter and JDTC-GIW-PHD filter.
Figure 4d indicates that the proposed JDTC-PMBM-GGIW filter is unbiased in terms of
cardinality estimation. Figure 5 shows the class PMFs of the proposed JDTC-PMBM-GGIW
filter, JDTC-GIW-MeMBer filter, and JDTC-GIW-PHD filter. The probabilities for the correct
class of each EO estimated by the three methods exceed the decision threshold of 0.5. This
means that these three methods can correctly classify EOs. As seen from Figure 5, the class
probability mass function of the proposed JDTC-PMBM-GGIW method is more robust.
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Figure 4. Tracking performance comparison of three RFS-based multiple extended objects JDTC
algorithms in scenario 1. (a) Kinematic state OSPA distance; (b) Extended state OSPA distance;
(c) Measurement rate OSPA distance; (d) Cardinality estimation of the targets.
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Figure 5. Classification performance comparison of three RFS-based multiple extended objects JDTC
algorithms in scenario 1. (a) The class probability mass function of the correct class for EO 1; (b) The
class probability mass function of the correct class for EO 2; (c) The class probability mass function of
the correct class for EO 3; (d) The class probability mass function of the correct class for EO 4; (e) The
class probability mass function of the correct class for EO 5.

6.3.2. Scenario 2

As can be seen in Figure 6a–c, the OSPA distance of measurement rate, kinematic states,
and extension of the proposed JDTC-PMBM-GGIW filter is still lower overall than that of the
JDTC-GIW-MeMBer filter and JDTC-GIW-PHD filter in the maneuvering scenario. Similar
to the simulation results of scenario 1, Figure 6d indicates that the proposed JDTC-PMBM-
GGIW filter is unbiased in terms of cardinality estimation. The class probability mass
functions of each EO are shown in Figure 7, from which we can see that the probabilities of
the correct class of each EO estimated by the proposed JDTC-PMBM-GGIW filter, JDTC-
GIW- MeMBer filter, and JDTC-GIW-PHD filter exceed the decision threshold 0.5 during
the entire monitoring period, while the class PMFs of the proposed JDTC-PMBM-GGIW
method are more stable. The simulation results mean that the proposed JDTC-PMBM-
GGIW filter is able to detect, track, and classify multiple extended objects simultaneously
with more robust performance.
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Figure 6. Tracking performance comparison of three RFS-based multiple extended objects JDTC
algorithms in scenario 2. (a) Kinematic state OSPA distance; (b) Extended state OSPA distance;
(c) Measurement rate OSPA distance; (d) Cardinality estimation of the targets.
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Figure 7. Classification performance comparison of three RFS-based multiple extended objects JDTC
algorithms in scenario 2. (a) The class probability mass function of the correct class for EO 1; (b) The
class probability mass function of the correct class for EO 2; (c) The class probability mass function of
the correct class for EO 3.
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6.3.3. The Average Execution Time

The average execution time of the three algorithms is reported in Table 5, from which
we can see that the JDTC-GIW-MeMBer filter and JDTC-GIW-PHD filter run faster than the
JDTC-PMBM-GGIW filter.

Table 5. The average execution time.

Algorithm Scenario 1 Scenario 2

JDTC-PMBM-GGIW 16.59 s 8.89 s

JDTC-GIW-MeMBer 4.25 s 2.18 s

JDTC-GIW-PHD 4.01 s 1.94 s

6.3.4. Overall Performance Analysis

In Reference [35], we have analyzed and verified that the overall performance of
the JDTC-GIW-MeMBer filter is better than that of the JDTC-GIW-PHD filter. In the
simulation results of this paper, we can see that the JDTC performance of the proposed
JDTC-PMBM-GGIW filter is obviously better than that of the JDTC-GIW-MeMBer filter.
The reason for this is that the JDTC-GIW-MeMBer filter only propagates a single MB
density, while the JDTC-PMBM-GGIW filter propagates a mixture density of multiple MB.
Maintaining a single MB density propagation results in a larger OSPA distance. In addition,
the JDTC-GIW-MeMBer algorithm does not satisfy the conjugate prior and ignores the
problem of data association between the target and measurement. Therefore, the proposed
JDTC-PMBM-GGIW filter in this paper achieves a good compromise in terms of JDTC
performance and computation cost.

7. Discussion

As seen from the simulation results in Section 6.3, although the JDTC-PMBM filter
has superior tracking and classification performance, the computation execution time is
relatively long. The reason for this is that the number of data associations of the JDTC-
PMBM filter grows dramatically in the update step. In order to further optimize the
performance of the proposed JDTC-PMBM algorithm, in this section, we first analyze the
computational complexity of the JDTC-PMBM algorithm and then discuss how to reduce
the computational complexity.

7.1. Complexity

In this section, we discuss the number of possible data associations of the proposed
JDTC-PMBM filter. Since the EO class directly corresponds to the pseudo-measurement,
the association between the pseudo-measurement and the target class is unique. For the
j-th predicted MB with the Bernoulli index set Ij, the real measurements in Zr,k can be
assigned to |Ij| previously detected EOs or undetected EOs, or are identified as clutter.
Thus, the number of possible associations can be derived by real measurement set partitions
number and possible associations number for each partition. The number of elements in
the partition cell of Zr,k is between 1 and |Zr,k|. The number of possible partitions that
partition the measurement set Zr,k into C nonempty disjoint subsets can be expressed by
the Stirling number of the second kind [47], i.e.,{

|Zr,k|
C

}
=

1
C!

C

∑
j=0

(−1)C−j
(

C
j

)
j|Z

r,k | (99)

The size of the association space Aj is described as

NA
j
(
|Zr,k|,

∣∣∣Ij
∣∣∣) =

|Zr,k |

∑
C=1

{
|Zr,k|

C

}min(C,|Ij |)

∑
T=0

(
C
T

) ∣∣Ij
∣∣!(∣∣Ij

∣∣− T
)
!

(100)
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where the Binomial coefficient
(

C
T

)
= C!

T!(C−T)! . Thus, for a predicted JDTC-PMBM with

the space of global hypothesis J, the number of possible associations is given by

NA = ∑
j∈J

NA
j
(
|Zr,k|,

∣∣∣Ij
∣∣∣) (101)

By recursively analyzing Equation (100), another expression of the total number of
global hypotheses (MBs in the MBM) can be obtained at time k. Specifically, given a series
of real measurement sets from the beginning time to including the time step k, and the
initial MBM is empty, the number of MBs components in the updated JDTC-PMBM density
at time step k can be described as the Bell number whose order n is the sum of the number
of measurements in all received measurement sets, i.e.,

∣∣∣Jk|k

∣∣∣ = B

(
k

∑
t=1

∣∣Zr,t∣∣) = B(| ∪k
t=1 Zr,t|) (102)

where B(n) denotes the Bell number of n:th order.

7.2. Complexity Reduction and State Extraction

According to the analysis in Section 7.1, the number of associations of the proposed
JDTC-PMBM-GGIW algorithm increases rapidly during the iterative update process. In
order to reduce the computation time cost of the proposed JDTC-PMBM-GGIW algorithm,
we need to consider reducing the number of associations and JDTC-PMBM components.

For the reduction of the number of associations, gating [48,49], partitioning [17,50–52],
and assignment using Murty’s algorithm [53] are executed. After performing the three
step procedures, a subset of associations is generated and the number of associations in the
updated JDTC-PMBM-GGIW algorithm is drastically reduced. For the MBs components
reduction in MBM, MBs whose updated weights are lower than the preset threshold will
be pruned from the MBM. In addition, if the upper bound of Kullback–Leibler divergence
(KL-div) of two MBs is smaller than a preset threshold, two MBs can be merged [32,54]. For
the Bernoullis components reduction, if the existence probability of the Bernoulli is lower
than the preset threshold, the Bernoulli component is removed from the MB.

For the PPP intensity expressed as a mixture distribution, the mixture component
is removed if its weight is less than a preset threshold. Additionally, minimizing KL-div
method can also be used to merge two or more similar mixture components.

For the GGIW components reduction, the pruning and merging operations described
in References [17,26,35] are used to reduce the number of GGIW components.

Finally, we choose the largest weight MB in MBM. If the existence probability of
Bernoulli components and class probability simultaneously exceed the threshold, the EO
state extraction based on the maximum a posterior (MAP) criterion is implemented [35].

8. Conclusions

This paper extends the Poisson multi-Bernoulli mixture (PMBM) filter to implement
joint detection, tracking, and classification (JDTC) of multiple extended objects (EOs). More
specifically, for the EOs with elliptic shapes, the update and the prediction equations of
the PMBM filter for JDTC problem are established, and class PMF is derived. Then, the
analytical and closed implementation process based on the product of a gamma-Gaussian-
Inverse-Wishart (GGIW) distribution and class probability mass function (PMF) is derived.
Finally, according to the estimated GGIW parameters, the kinematic state, extended state,
Poisson measurement rate, and the class probability of each EO at each time are extracted.
The effectiveness of the proposed JDTC-PMBM-GGIW algorithm is verified by simulation
experiments in two scenarios. The performance graphs in the simulation results show
that the performance of the proposed JDTC-PMBM-GGIW algorithm is better than that
of the JDTC-GIW-MeMBer algorithm and JDTC-GIW-PHD algorithm in measurement
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rate estimation, kinematic states estimation, extension estimation, and class probability
estimation. In addition, we also discuss the computational complexity and the average
running time of the proposed JDTC-PMBM-GGIW algorithm, and give the corresponding
methods to reduce the computational complexity. In conclusion, the proposed JDTC-
PMBM-GGIW algorithm achieves a good compromise in computational complexity and
JDTC performance.

In the future, the JDTC performance of the JDTC-PMBM algorithm with arbitrary
shape EOs in complex scenes will be further evaluated. Indeed, the proposed JDTC-PMBM
algorithm in this paper can be extended to the JDTC problem of EOs with arbitrary shapes.
In this case, it is needed to construct new pseudo-measurement likelihood functions and
new classification criteria. In addition, we will perform experiments on real-world datasets
to further evaluate the availability, effectiveness, and robustness of the proposed JDTC-
PMBM-GGIW algorithm.
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Abbreviations
Abbreviations Table and Main Symbols Table

Abbreviations Full Name
RFS Random Finite Set
PHD Probability Hypothesis Density
CPHD Cardinalized Probability Hypothesis Density
GIW Gaussian Inverse Wishart
GGIW Gamma Gaussian Inverse Wishart
GLMB Generalized Labeled Multi-Bernoulli
MB Multi-Bernoulli
SPD Symmetric Positive Define
MBM Multi-Bernoulli Mixture
MR Measurement Rate
PPP Poisson Point Process
PMBM Poisson Multi-Bernoulli Mixture
JDTC Joint Detection, Tracking and Classification
PMF Probability Mass Function
EOs Extended Objects
OSPA Optimal Sub-Pattern Assignment
PDF Probability Density Function
Symbols Description
xk Kinematic state
Xk Extended state
γk Poisson measurement rate of an EO
Cc

k Class of an EO
nc The total number of categories for EOs
Xk Generalized Labeled Multi-Bernoulli
Ec

k Direction matrix of an EO
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Zp,c
k Scale matrix of the c-th EO; Pseudo measurement
PS(·) Poisson distribution
W(·) Wishart distribution
N (·) Gaussian distribution
GAM(·) Gamma distribution
IW(·) Inverse Wishart distribution
Cc The real measurement set corresponding to the target
ψCc (·) The likelihood function corresponding to measurement set Cc
ψZp,c

k
(·) The pseudo measurement likelihood function

Zr,k The received real measurement set
Aj The j-th predicted global hypothesis index space
Ij The target index space in the j-th global hypothesis
M The index space of real measurement
Du(·) The intensity function of a PPP
rj,i

k The existence probability of the i-th Bernoulli in the j-th global hypothesis
f j,i(·) The spatial PDF of the i-th Bernoulli in the j-th global hypothesis
W j

k The weight of the j-th MB

Appendix A. Proof of the Class PMF

We define p(Zk|Cc
k , ξk, Zk−1) = ψCc(yk)ψZp,c

k
(yk), then,

p(Cc
k |Z

k−1)
∫

ψCc(yk)ψZp,c
k
(yk) f+(ξk|Cc

k , Zk−1)dξk

nc
∑
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k |Zk−1)
∫

ψCc(yk)ψZp,c
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(yk) f+(ξk|Cc

k , Zk−1)dξk

(A1)

=
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p(Zk|Zk−1)

= p(Cc
k |Z

k) (A2)

Appendix B. Proof of the Update JDTC-PMBM-GGIW Parameters

According to Section 4.3, for a predicted density f+(ξk, Cc
k |Z

k−1), we have the update:

fCc(yk|Zk) =
ψCc(yk)ψZp,c

k
(yk) f+(ξk, Cc

k |Z
k−1)〈

f+(ξk, Cc
k |Zk−1); ψCc(yk)ψZp,c

k
(yk)

〉
=
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k
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∫
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∫
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= fCc(ξk|Cc
k , Zk)p(Cc

k |Z
k) (A4)

where f+(ξk|Cc
k , Zk−1) is the predicted density of the c-th class target.
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Since the measurement rate γk(ξk, Cc
k) in (5) is unknown at time k, it is approximately

replaced by γk|k−1, and γk|k−1 can be obtained in the predicted step. Firstly, the product of
the likelihood function ψCc(yk) and ψZp,c

k
(yk) is given by

ψCc(yk)ψZp,c
k
(yk) = PS(|Cc|; γk|k−1)pD(yk)e

−γk|k−1(γk|k−1)
|Cc |LCc

×N (z̄Cc
k ; (Hk)xk,

Rk + ηXk
|Cc|

)W(Zp,c
k ; δ

p,c
k , Ec

kXk(E
c
k)
>/δ

p,c
k ) (A5)

where

Lk,Cc = (2π)
−(|Cc |−1)d

2 |Rk + ηXk|
−(|Cc |−1)

2 |Cc|
−d
2 etr(−1

2
ZCc

k (Rk + ηXk)
−1) (A6)

z̄Cc
k =

1
|Cc|

|Cc |

∑
j=1

zCc
j (A7)

ZCc
k ,

|Cc |

∑
j=1

(zCc
j − z̄Cc

k )(zCc
j − z̄Cc

k )
>

(A8)

According to the Cholesky Factorization [7], the noise covariance of real measurements
Rk + ηXk in (6) is approximately computed by

(Rk + ηXk) ≈ BkXk(Bk)
> (A9)

where Bk = (Rk + ηXk|k−1)
1/2

(Xk|k−1)
−1/2. Xk|k−1 can be obtained via the prediction

results.
The predicted density of the c-th class EO is described as a GGIW distribution, i.e.,

f+(ξk|Cc
k , Zk−1) = GAM(γk; αc

k|k−1, βc
k|k−1)N (xk; mc

k|k−1, Pc
k|k−1)IW(Xk; vc

k|k−1, Vc
k|k−1) (A10)

Next, we compute the product of f+(ξk|Cc
k , Zk−1) and ψCc(yk)ψZp,c

k
(yk), i.e.,
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We define Qc,Cc
k , pD(yk)e

−γk|k−1(γk|k−1)
|Cc |.

For the γ part update,

PS(|Cc|; γc
k|k−1)GAM(γk; αc

k|k−1, βc
k|k−1)

=
Γ(αc

k|k−1 + |Cc|)(βc
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k ) (A13)

where

αc,Cc
k = αc
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βc,Cc
k = βc

k|k−1 + 1 (A15)
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Since
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Then, the rest of (A11)
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can be described as (A23),
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By combining (A13), (A16), (A23), then (A11) can be obtained as GGIW form, i.e.,

ψCc(yk)ψZp,c
k
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k ) (A29)
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According to Appendix A, the class probability mass function is given by
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k |Z
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Thus, given the predicted spatial density f j,iC
+ (yk) of the iC-th Bernoulli of the j-th MB

component, the updating spatial density f j,iC
Cc

(yk|Zk) is given by
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and the likelihood Lj,iC
Cc ,k is given by
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Similarly, given the predicted PPP intensity,

Du
+(yk) = µc

Du ,k|k−1

Ju,k|k−1

∑
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the updated density for the first detection target is given by
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wc,Cc ,n
u,k =
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k Gc,Cc ,n
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k
Ju,k|k−1

∑
n=1

wc,n
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Lu
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