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Abstract: As one of the critical indicators of the lake ecosystem, the lake surface water temperature
is an important indicator for measuring lake ecological environment. However, there is a complex
nonlinear relationship between lake surface water temperature and climate variables, making it
difficult to accurately predict. Fortunately, satellite remote sensing provides a wealth of data to
support further improvements in prediction accuracy. In this paper, we construct a new deep learning
model for mining the nonlinear dynamics from climate variables to obtain more accurate prediction of
lake surface water temperature. The proposed model consists of the variable correlation information
module and the temporal correlation information module. The variable correlation information
module based on the Self-Attention mechanism extracts key variable features that affect lake surface
water temperature. Then, the features are input into the temporal correlation information module
based on the Gated Recurrent Unit (GRU) model to learn the temporal variation patterns. The
proposed model, called Attention-GRU, is then applied to lake surface water temperature prediction
in Qinghai Lake, the largest inland lake located in the Tibetan Plateau region in China. Compared
with the seven baseline models, the Attention-GRU model achieved the most accurate prediction
results; notably, it significantly outperformed the Air2water model which is the classic model for
lake surface water temperature prediction based on the volume-integrated heat balance equation.
Finally, we analyzed the factors influencing the surface water temperature of Qinghai Lake. There are
different degrees of direct and indirect effects of climatic variables, among which air temperature is
the dominant factor.

Keywords: deep learning; lake surface water temperature prediction; nonlinear dynamics; Attention-GRU

1. Introduction

Lake surface water temperature (LSWT) is one of the important indicators of lake
ecosystems. Some research on global warming reported the LSWT of global lakes shows a
general warming trend, and this trend is expected to continue in the future [1–3]. Warming
surface water temperatures would reduce the ice cover and shorten the lake’s icing period.
The decrease of ice cover and the increase of LSWT would change the mixing regimes
of the lake and further affect the exchange of nutrients and oxygen [4]. In addition,
changes in LSWT would affect lake water quality, according to the previous study [5].
This series of changes will have a serious impact on the lake’s ecological environment,
affect lake biodiversity, and bring ecological and economic impacts to human society.
Therefore, it is crucial to accurately predict future changes in LSWT. However, changes
in LSWT is the result of the interaction of multiple climate variables [6], and complex
nonlinear relationships exist between climate variables and LSWT, which poses difficulties
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for accurate prediction. We established a new deep learning model to mine the nonlinear
dynamics in the prediction of LSWT to achieve more accurate prediction results and applied
the model to the prediction of lake surface water temperature of Qinghai Lake.

Currently, the main statistical-related methods for predicting LSWT can be divided
into three categories: hybrid physical-statistical models, traditional statistical models, and
machine learning models. Firstly, the physically-statistically based Air2water model [7–11],
is a very popular model and has achieved the best results of several studies [12,13]. It
is a simple and accurate model based on the volume-integrated heat balance equation,
and using only air temperature as an input [14]. Secondly, traditional statistics-based
regression models are also frequently used in the prediction of LSWT [15–17]. Thirdly,
machine learning algorithms have flourished in recent years and are also commonly used
to solve water temperature predictions in lakes and rivers [18], such as Random Forests,
M5Tree models [12], and Multi-Layer perceptron (MLP) [12,13,19,20]. To further improve
the accuracy, researchers have combined various machine learning models to form new
frameworks [21], or combining MLP with wavelet variation [13,22,23], which is commonly
used to improve the accuracy of hydrologic time series analysis [24]. In addition, lake
model is the main method to simulate lake water temperature. For example, the Freshwater
Lake model (FLlake) [25] is a commonly used one-dimensional lake model which can
simulate the thermal behavior and vertical temperature structure of lake surface at different
depths. In this model, the lake is divided into a mixed layer and a thermocline layer
according to thermal structure, and the thermocline temperature profile is parameterized
based on self-similarity theory [26]. Recent studies have conducted sensitivity experiments
and calibration on Qinghai Lake to improve the accuracy of lake temperature simulation
by FLlake model [27].

Deep learning shows a stronger ability to handle large data and complex problems than
traditional methods. LSWT prediction is essentially a time series prediction problem. There
are many deep learning models for time series prediction that have been applied to various
domains. The classical model of time series prediction problem in deep learning is Recurrent
Neural Network (RNN) [28], which can capture the pattern of data changes over time well.
However, the RNN has difficulty in learning the long-term dependencies of time series.
Then, the Long Short-Term Memory network (LSTM) model alleviates this problem to some
extent [29]. In the weighted average temperature prediction problem, LSTM achieved better
prediction results than RNN in the experiment [30]. Subsequently, the Gated Recurrent Unit
(GRU) model further improves the LSTM, which achieves similar results with fewer model
parameters [31]. Another structure in deep learning, the Attention mechanism [31,32],
has been the focus of many researchers. In the prediction of ocean surface temperature,
a model incorporating the Attention mechanism in the GRU encoder–decoder structure
was applied [33]. With the development of the Attention mechanism, the Transformer
model was proposed and has become one of the most popular deep learning models,
while the Self-Attention mechanism [34] was also proposed. The GTN [35] model uses the
Self-Attention mechanism to construct a two-tower Transformer model, which effectively
extracts time-related and channel-related features in multivariate time series, respectively.

The Air2water model uses only air temperature as a direct input. However, air temper-
ature is the main factor affecting surface water temperature in lakes, not the only factor [36].
This allows the Air2water model to discard some information that affects the variability of
lake surface water temperature. Fortunately, we have access to many satellite observations
and meteorological station data, through which we can obtain more information on climate
variables. How to construct the model to extract effective features from the data is the
key. Given the superiority of deep learning in extracting effective features from complex
nonlinear relationships compared with traditional statistical methods, we would construct
a new deep learning model for predicting LSWT to obtain more accurate prediction results.
The interaction of climate variables and temporal autocorrelation are the two main aspects
that contribute to the variation of LSWT. It is crucial to effectively extract data features from
both aspects using deep learning models. Inspired by the GTN model [35], the information
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in the multivariate time series is divided into two parts: variable correlation information
and temporal correlation information, and the feature extraction module is constructed
separately. In the variable correlation information module, the Self-attention mechanism is
used to extract the key variable features. In the module of temporal correlation information,
the GRU model is used to capture the changing laws of time series. The two modules are
combined to form the Attention-GRU model. To verify the validity of the model, we apply
the proposed model to a case study of lake surface water temperature prediction in Qinghai
Lake and compare it with seven benchmark models. Qinghai Lake is the largest inland
lake in China, which plays an irreplaceable role in regulating climate and maintaining the
ecological balance in the northwestern part of the Qinghai–Tibet Plateau. The prediction
of lake surface water temperature in Qinghai Lake is of great significance for protecting
ecological environment. However, due to the complex physical processes that are difficult
to describe accurately there is still a space for improvement in the prediction of lake surface
water temperature of Qinghai Lake. We build a deep learning model to make full use of the
large amount of information, explore the non-linear relationships among different climate
variables and try to to improve the prediction by mining the dynamical system behind the
data. Meanwhile, by calculating the partial correlation coefficient, the influencing factors
of the LSWT in Qinghai Lake are discussed in the Section 5.1. The main contributions are
as follows:

(1) A novel deep learning model (Attention-GRU) for surface water temperature predic-
tion is established. The proposed model outperforms the Air2water model in surface
water temperature prediction for Qinghai Lake and achieves the best prediction re-
sults, which indicates that the proposed model can mine the nonlinear dynamics of
the research problem.

(2) We show the results of ten experiments with each deep learning model, indicating
that the results of the proposed model are relatively stable, and through ablation
experiments, we verify the effectiveness of the proposed model structure.

(3) By calculating the partial correlation coefficient, the influencing factors of surface
water temperature in Qinghai Lake were analyzed. Climate variables have direct or
indirect effects on the surface water temperature of Qinghai Lake in different degrees,
and the dominant factor is air temperature.

(4) There are a lot of missing values in the LSWT data of Qinghai Lake, and we used six
common missing value imputation methods to fill in the missing data. By comparing
the filling effects of different missing value imputation methods, the validity of the
proposed model on multiple data sets is verified, and the dependence of deep learning
models on data quality is shown.

The rest of the paper is organized as follows. Section 2 presents the model framework
and describes the theoretical knowledge of the model in detail. We present the application of
the proposed model in Section 3, including the introduction of data sources and description
of the experimental procedure. Section 4 analysis of the experimental results. In Section 5,
we analyze the factors influencing the LSWT; the impact of the missing value imputation
method on the prediction model; the limitations and future work of the proposed model.
Finally, Section 6 summarizes the whole paper.

2. A Novel Deep Learning Model: Attention-GRU
2.1. The Preliminaries

This subsection illustrate two basic methods (i.e., the Self-Attention and the GRU) in
our proposed model.

2.1.1. The Self-Attention

Self-Attention is the core idea of the Transformer model. The Transformer model was
proposed by the Google team and was initially applied to machine translation and achieved
the best results [34]. It can learn the correlation between variables and extract important
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factors. To begin this process, there are three different matrices, namely Query (Q), Key (K),
and Value (V), which are calculated by the following formulas:

Q = X(t)TWQ, (1)

K = X(t)TWK, (2)

and

V = X(t)TWV , (3)

where, X(t) is the input data; WQ, WK and WV are the weight matrices. Then, the product
of Q and K is processed using the Softmax activation function to obtain a score matrix.
Finally, the product of the score matrix and V is calculated as the result of the Self-Attention
mechanism as:

Z = Softmax(
QKT
√

dk
)V, (4)

where, dk is the column numbers of Q and K. You can think of Softmax(QKT/√dk) as the
similarity of Q and K, and divided by

√
dk for normalization.

2.1.2. The GRU

The Gated Recurrent Unit (GRU) model [31] uses a gating mechanism to control the
memory and forgetting of information. At the time t node, the reset gating signal rt and
the update gating signal zt are calculated from the current input st and the hidden state of
the previous node ht−1 as:

rt = σ(Wr[ht−1, st] + br), (5)

and

zt = σ(Wz[ht−1, st] + bz), (6)

where, W and b are weight and bias of gate respectively. σ is the sigmoid function that can
convert the value between 0 and 1. The gating signal can be understood as the filtering
ratio of data information.

After that, use the reset gate signal rt to filter the hidden state of the previous time
node ht−1, and then obtain the reset historical hidden state h′t−1. The current information h′

is calculated by the reset historical hidden state h′t−1 and the current input data st. Finally,
the update gating signal zt is used to selectively forget past information and memorize
current information to obtain the hidden state of the current node ht. The above calculation
process is as follows:

h′t−1 = ht−1 � rt, (7)

h′ = tanh(Wh[h′t−1, st] + bh), (8)

and

ht = zt � ht−1 + (1− zt)� h′, (9)

where � is the Hadamard product, the product of the corresponding positions, and tanh is
the activation function. Repeat the above for all time nodes. The structure diagram of GRU
is shown in the Figure 1.
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Figure 1. The structure of the GRU model. In the figure, xt is the current input, ht−1 is the hidden
state of the previous time node, and ht is the hidden state of the current node. σ is the sigmoid
function. rt is the reset gate signal, and zt is the update gate signal.

2.2. The Proposed Model: Attention-GRU

Lake surface water temperature and related climate variables constitute multivariate
time series data. To more comprehensively extract the features of multivariate time series
and obtain more accurate prediction results, we successively build a variable correlation
information module and a temporal correlation information module in the proposed model
(Attention-GRU). The structure of Attention-GRU is shown in Figure 2.

Figure 2. The structure of the Attention-GRU model. X(t) is the input data, which is composed of the
lake surface water temperature and related climate variables in history. Furthermore, xt−l is the data
with a lag of l days, and st−l is the output after encoding xt−l in the variable correlation information
module. Finally, ho is the initial hidden state of the GRU model, hi is the hidden state of the ith time
node in the first GRU layer, h′i is the hidden state of the ith time node in the second GRU layer, and yt

is the prediction result of the model.

The variable correlation information module encodes variable features, which consists
of a two-layer Transform-Encoder structure. The Transform-Encoder structure is mainly
composed of the Self-Attention layer and the fully connected layer, and the calculation
process is as follows:

Z(t) = Self_Attention(X(t)), (10)
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and

S(t) = Relu(W1Z(t) + b1)W2 + b2, (11)

where Self_ Attention represents the calculation process of the Self-Attention mechanism,
and W and b are the weights and biases. In addition, like the original Transform-Encoder
structure, residual connections are added after the regularization of each layer. The tem-
poral information module consists of two-layer GRU, and the input of this module is the
embedding (S(t)) obtained by the variable correlation information module. The output of
each time node in the first GRU layer is used as the input of the corresponding time node
in the second GRU layer. After splicing the output of the last node of each GRU layer, the
final prediction result yt of the model is obtained through full connection calculation as:

yt = w ·Contact(GRU1, GRU2) + b, (12)

where GRUi is the output of the last node of the ith GRU layer. Contact represents the
splicing operation, and w and b are weights and biases, respectively.

The loss function of the model is the L1-Norm loss function, and the calculation
formula as:

L1 =
1
N

N

∑
i=1
|yi − ŷi|, (13)

where yi is the true value and ŷi is the predicted result of the model. The pseudocode of
the Attention-GRU model is shown in Algorithm 1.

Algorithm 1: Attention-GRU
input :The multivariate time series composed of the lake surface water

temperature and related climate variables in history: X ∈ RN×L×D (N is
the number of samples, L is the length of time series, and D is the
number of variables.)

output :The predicted results: Y

1 Initialization: Weights and biases in the model and the initial state of the GRU;
2 for t← 0 to N do
3 Calculate the encoding S(t) of X(t) based on Equations (10) and (11) ;
4 Calculate the output of each GRU layer based on the Equations (5)–(9) ;
5 Contact the output of the two GRU layers ;
6 Calculated the predicted results through the fully connected layer based on the

Equation (12) ;
7 Calculate the loss function based on Equation (13) ;
8 Back propagation and update parameters in Attention-GRU.

3. Experiments
3.1. Data Sources

As a climate-sensitive area, the air temperature of the Qinghai–Tibet Plateau continues
to rise [37]. The Qinghai–Tibet Plateau is a region with a high density of lake distribution
in China, which is relatively sparsely populated, and the environment is less affected by
human activities. Studies have shown that Qinghai–Tibet Plateau lakes respond to climate
change in several ways, including changes in surface water temperature [38]. The surface
water temperature of Qinghai Lake, which is located on the Qinghai–Tibet Plateau, should
be of concern. Figure 3 shows the geographical location of Qinghai Lake. It is in the
northeastern part of the Qinghai–Tibet Plateau, with a plateau continental climate, about
105 km long and 63 km wide, and the lake surface is 3260 m above sea level. Qinghai Lake
is the largest inland lake in China, with an area of about 4300 km2 and a certain trend of
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expansion in recent years [39]. It is an important water body for maintaining ecological
security in the northeastern part of the Qinghai–Tibet Plateau.

Figure 3. Location of the area studied in this paper. (a): Location of Qinghai Province in China.
(b): Location of Qinghai lake in Qinghai province. The red mark is Qinghai Lake. (c): A satellite map
of Qinghai Lake. The red circles represent the locations of the Guncha meteorological station.

Daily surface water temperature data and related meteorological data of Qinghai Lake
from 2000 to 2020 are selected in this study, and the data will be explained in detail in
the following. Moderate Resolution Imaging Spectroradiometer (MODIS) is an important
instrument used in the US Earth Observing System (EOS) program to observe global
biological and physical processes. MODIS data are derived from satellite observations
and their products are rich in information, providing a variety of features of the land,
ocean, and atmosphere. The data source of LSWT in this paper is MOD11A1 daily surface
temperature product [40], which is the MODIS/Terra LST level 3 synthetic products. The
product has a spatial resolution of 1 km × 1 km and includes daytime LSWT (LSWT_Day)
and nighttime LSWT (LSWT_Night) as well as quality control indexes. After quality control
of data according to the quality control index, the daily LSWT sequence of Qinghai Lake
is obtained by calculating the average temperature in the Qinghai Lake region. Quality
control excludes data points affected by other factors such as clouds, as well as data points
with emissivity error greater than 0.04 and LSWT error greater than 2K. Since Qinghai
Lake has a icing period, the data measured by satellite when the lake freezes will not
be the surface water temperature data of the lake. Therefore, Qinghai Lake in summer
(including July (Jul.), August (Aug.) and September (Sep.)) was selected for study to avoid
the influence of the icing period. Table 1 describes the detailed information of LSWT of
Qinghai Lake.

Relevant meteorological data include daily average air temperature (TEMP), daily
average rainfall (PRCP), daily average wind speed (WDSP), and daily average surface
pressure (SP) from Guncha meteorological stations (GCS). In addition, there are total
cloud cover (TCC), net surface solar radiation (SSR), net surface thermal radiation (STR),
and evapotranspiration (E) from the ERA5 reanalysis data. ERA5 is the fifth generation
atmospheric reanalysis of global climate data from the European Centre for Medium-Range
Weather Forecasts (ECMWF) with a spatial resolution of 0.25◦ × 0.25◦. For details about
the meteorological data, see Table 2.
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Table 1. Data sources and attributes of LSWT.

Name LSWT LSWT_Day LSWT_Night

unit °C °C °C
source 1

2 (LSTW_Day + LSWT_Night) MOD11A1 MOD11A1
Mean (Jul.~Sep.) 13.413 14.829 11.558

Maximum (Jul.~Sep.) 21.903 21.903 17.644
Minimum (Jul.~Sep.) 1.770 0.130 0.005

Standard deviation (Jul.~Sep.) 2.530 2.402 3.416

Table 2. Data sources and attributes of relevant meteorological data.

Name TEMP PRCP WDSP SP TCC SSR STR E

unit °C mm m/s hPa % kJ
/

m2 kJ
/

m2 mm
source GCS GCS GCS GCS ERA5 ERA5 ERA5 ERA5

Mean (Jul.~Sep.) 10.326 3.214 2.909 683.283 0.588 784.025 −322.333 −3.603
Maximum (Jul.~Sep.) 21.111 55.118 7.407 691.100 1.000 1203.787 −101.681 −1.494
Minimum (July~Sep.) 0.889 0.000 0.617 676.600 0.000 178.670 −515.127 −5.963

Standard deviation (Jul.~Sep.) 3.291 5.559 0.816 2.063 0.267 231.458 89.291 0.001

3.2. Imputation of Missing Data

The missing values of the research data are shown in Table 3. It can be found that
the missing values of the data set mainly occur in the LSWT data, with the missing ratio
reaching 34.47%. There are a few missing values in other relevant meteorological data. To
make full use of the known information, the missing values of LSWT_Day and LSWT_Night
of Qinghai Lake were imputed respectively, and then the average value was calculated to
obtain the complete LSWT sequence.

Table 3. The ratio of missing values in data.

Name LSWT TEMP PRCP WDSP SP TCC SSR STR E

Missing ratio 34.47% 0.10% 0.10% 0.16% 0.10% 0.00% 0.00% 0.00% 0.00%

Missing values imputation is often the first task of data analysis. After filling in the
missing values, the dataset will be more complete, which is convenient for the establishment
of subsequent models. At the same time, the quality of imputation often has an impact on
the subsequent model effect. Therefore, it is particularly important to select an appropriate
imputation method according to data characteristics. In this paper, six commonly used
imputation methods for time series are selected to fill missing data, including mean filling,
multivariate regression interpolation, KNN, linear interpolation, cubic spline interpolation,
and TRMF [41] model based on the matrix decomposition method. Taking the surface
water temperature of Qinghai Lake in 2020 as an example, Figure 4 shows the results of
each imputation method.
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Figure 4. The filling effect samples of six missing value imputation methods. The data displayed are
the surface water temperature of Qinghai Lake in the summer of 2020.

3.3. Experiments Settings

In this study, we use seven days of historical information to make a single-step
prediction. When predicting the LSWT at time t (yt), the input data X(t) are the LSWT
and relevant meteorological data of the past seven days (See Appendix B for partial
autocorrelation of Qinghai Lake LSWT). xt−i = (x1

t−i, x2
t−i, · · · , xD

t−i)(i = 1, 2, . . . , 7) is the
feature vector at the time t− i , and D is the number of features. The X(t) is detailed as:

X(t) =


xt−7

xt−6

...

xt−1

 =


x1

t−7, x2
t−7, · · · , xD

t−7

x1
t−6, x2

t−6, · · · , xD
t−6

...
...

...

x1
t−1, x2

t−1, · · · , xD
t−1

. (14)

We select eight benchmark models for comparative experiments. The benchmark
models and selection principles are as follows: (1) The classic model for lake surface water
temperature prediction: Air2water [7–11]; (2) The commonly used neural network in lake
surface water temperature prediction: Multi-Layer perceptron (MLP); (3) Deep learning
models commonly used in time series prediction problems: Recurrent Neural Network
(RNN) [28], Long Short-Term Memory Network (LSTM) [29] and Gated Recurrent Unit
(GRU) [31]; (4) Deep learning models based on Self-Attention mechanism that is a very
popular deep learning algorithm: Transformer model [34] and GTN model [35]. In addition,
GRU and Transformer models can also be used for ablation experiments. The batch size of
all deep learning models is 128, the learning rate is 0.0001, and each model is trained ten
times separately. Adam optimizer [42] is used to optimize the training (See Appendix A for
additional experimental settings). We divide the research dataset into three parts (Table 4):
training set, validation set, and test set. The training set selects the summer data from 2000
to 2014, the validation set selects the summer data from 2015 to 2017, and the remaining
summer data from 2018 to 2020 as the test set.
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Table 4. The partition of the dataset.

Name Year Data Size

training set 2000~2014 1380
validation set 2015~2017 276

test set 2018~2020 276

3.4. Evaluation Metric

The evaluation metrics used in this paper include the root mean square error (MAPE),
the mean absolute percentage error (RMSE), and the Nash–Sutcliffe coefficient of efficiency
(NSE). Their calculation formula is as:

MAPE =
1
N

N

∑
i=1

∣∣∣∣ ŷi−yi
yi

∣∣∣∣, (15)

RMSE =

√√√√ 1
N

N

∑
i=1

(ŷi − yi)2, (16)

and

NSE = 1−

N
∑

i=1
(yi − ŷi)

2

N
∑

i=1
(yi − ȳ)2

, (17)

where, yi is the true value, ŷi is the predicted result of the model, ȳ is the average of
observations, and N is the number of observation samples. The MAPE and RMSE values
are range from [0, 1]. The smaller the index value of MAPE and RMSE, the more accurate
the prediction result. In addition, the value of NSE is range from [−∞, 1]. The closer the
value of NSE is to 1, the more confident the model is. When the value of NSE is close to
0, it means that the results of the model are close to the mean of the observed values; and
when the value is less than 0, the model is less reliable.

4. Results

The experimental results of test sets are shown in Tables 5–7, in which the results
of deep learning models represent the mean (standard deviation) of ten training results.
The bolded numbers represent the best evaluation index values under each missing value
imputation method. Most of the best predictions are the results of the Attention-GRU
model, which illustrates the effectiveness of the proposed model. For each prediction
model, the best predictions are marked with “∗”, which are mostly obtained by linear
interpolation, and a few are produced by cubic spline interpolation. Therefore, the missing
value imputation is better with linear interpolation and cubic spline interpolation, and
subsequent analyses will also focus on the model prediction effects under these two missing
value imputation methods.
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Table 5. The values of the evaluation index MAPE. The values in the table represent the mean
(standard deviation) of the ten experimental results. The best prediction model results for each missing
value imputation method are shown in bold. “∗” represents the best result for the prediction model.

Model Mean Multivariate
Regression KNN Linear

Interpolation
Cubic Spline
Interpolation TRMF

Air2water 0.148
MLP 0.135 (0.004) 0.145 (0.005) 0.146 (0.005) 0.131 (0.004) ∗ 0.132 (0.003) 0.140 (0.004)
RNN 0.136 (0.001) 0.146 (0.004) 0.142 (0.004) 0.132 (0.002) ∗ 0.133 (0.002) 0.141 (0.003)
LSTM 0.141 (0.001) 0.147 (0.003) 0.151 (0.010) 0.136 (0.002) 0.136 (0.001) ∗ 0.144 (0.002)
GRU 0.138 (0.001) 0.145 (0.003) 0.146 (0.007) 0.132 (0.002) 0.132 (0.001) ∗ 0.141 (0.001)

Transformer 0.141 (0.005) 0.152 (0.010) 0.150 (0.009) 0.135 (0.009) ∗ 0.135 (0.009) ∗ 0.146 (0.009)
GTN 0.133 (0.002) 0.139 (0.003) 0.139 (0.005) 0.130 (0.003) 0.129 (0.003) ∗ 0.137 (0.004)

Attention-GRU 0.135 (0.001) 0.141 (0.003) 0.137 (0.003) 0.126 (0.003) ∗ 0.126 (0.003) ∗ 0.137 (0.003)

Table 6. The values of the evaluation index RMSE. The values in the table represent the mean
(standard deviation) of the ten experimental results. The best prediction model results for each missing
value imputation method are shown in bold. “∗” represents the best result for the prediction model.

Model Mean Multivariate
Regression KNN Linear

Interpolation
Cubic Spline
Interpolation TRMF

Air2water 2.102
MLP 2.034 (0.035) 2.279 (0.060) 2.283 (0.075) 1.996 (0.045) ∗ 2.035 (0.046) 2.165 (0.052)
RNN 2.013 (0.012) 2.169 (0.051) 2.111 (0.052) 1.961 (0.014) ∗ 1.977 (0.019) 2.079 (0.028)
LSTM 2.093 (0.018) 2.179 (0.054) 2.252 (0.155) 2.014 (0.021) ∗ 2.018 (0.018) 2.139 (0.042)
GRU 2.052 (0.015) 2.147 (0.044) 2.169 (0.115) 1.968 (0.018) ∗ 1.976 (0.009) 2.088 (0.022)

Transformer 2.095 (0.067) 2.321 (0.125) 2.297 (0.107) 2.055 (0.102) ∗ 2.091 (0.093) 2.199 (0.106)
GTN 1.992 (0.024) 2.120 (0.032) 2.105 (0.062) 1.953 (0.037) ∗ 1.961 (0.028) 2.048 (0.043)

Attention-GRU 2.007 (0.018) 2.109 (0.023) 2.082 (0.039) 1.948 (0.036) ∗ 1.962 (0.022) 2.036 (0.034)

Table 7. The values of the evaluation index NSE. The values in the table represent the mean (standard
deviation) of the ten experimental results. The best prediction model results for each missing value
imputation method are shown in bold. “∗” represents the best result for the prediction model.

Model Mean Multivariate
Regression KNN Linear

Interpolation
Cubic Spline
Interpolation TRMF

Air2water 0.215
MLP 0.236 (0.026) 0.041 (0.051) 0.036 (0.063) 0.264 (0.034) ∗ 0.235 (0.035) 0.134 (0.032)
RNN 0.252 (0.009) 0.131 (0.041) 0.176 (0.041) 0.290 (0.010) ∗ 0.278 (0.014) 0.202 (0.022)
LSTM 0.191 (0.014) 0.123 (0.044) 0.060 (0.133) 0.251 (0.015) ∗ 0.248 (0.013) 0.155 (0.034)
GRU 0.223 (0.011) 0.149 (0.035) 0.129 (0.095) 0.285 (0.013) ∗ 0.279 (0.006) 0.195 (0.017)

Transformer 0.189 (0.053) 0.003 (0.112) 0.024 (0.095) 0.219 (0.081) ∗ 0.191 (0.073) 0.105 (0.089)
GTN 0.267 (0.018) 0.170 (0.025) 0.181 (0.048) 0.296 (0.027) ∗ 0.287 (0.021) 0.225 (0.033)

Attention-GRU 0.256 (0.013) 0.179 (0.018) 0.199 (0.030) 0.299 (0.026) ∗ 0.283 (0.020) 0.235 (0.025)

4.1. Comparison with Air2water

The Air2water model is a commonly used model to predict lake surface water tem-
perature. Comparing with the Air2water model can better illustrate the validity of the
proposed model. By the experimental comparison of the lake surface water temperature
prediction in Qinghai Lake, the Attention-GRU model shows the best prediction, with the
MAPE index of 0.126, the RMSE index of 1.948, and the NSE index of 0.299. However, in
the Air2water model results, the MAPE index value is 0.148, the RMSE index value is 2.102,
and the NSE index value is 0.215. Compared to the Air2water model, the MAPE index of
the Attention-GRU model is improved by 14.86%, the RMSE index is improved by 7.32%,
and the NSE index is improved by 39.07%. Furthermore, as can be seen from Figure 5, in
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addition to the Attention-GRU model, other deep learning models also produced better
results than the Air2water model in most cases.
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Figure 5. The comparison of the deep learning model with Air2water. (a–c) are the results of
evaluation indexes under linear interpolation method, respectively; (d–f) are the results of evaluation
indexes under Cubic spline interpolation method, respectively. The red bar represents the results of
the proposed model, and the gray bars represent the results of other comparative models.

4.2. Comparison with Other Deep Learning Methods

Figure 6 shows the distribution of ten experimental results for each deep learning
model under linear interpolation and Cubic spline interpolation methods (See other missing
value imputation methods results in Appendix C). The averages of MAPE, RMSE and NSE
indicators of Attention-GRU model with linear interpolation are all the best results among
deep learning models. Under cubic spline interpolation, MAPE index of Attention-GRU
model is the optimal value, but RMSE index value and NSE index value are like the GTN
model. To illustrate the role of each module of the Attention-GRU model, we compare the
proposed model with the GRU model and the Transformer model. The average value of
each evaluation index of GRU model with linear interpolation is: MAPE index is 0.132,
RMSE index is 1.968, and NSE index is 0.285. The average value of each evaluation index
of the Transformer model is: MAPE index is 0.135, RMSE index is 2.055, and NSE index is
0.219. Experimental results of the GRU model and the Transformer model are both worse
than the Attention-GRU model. Therefore, the model structure of the Attention-GRU model
is valid. In addition, the application effect of the GTN model in this study is slightly worse
than that of the Attention-GRU model Under linear interpolation. The difference between
the proposed model and the GTN model mainly lies in the combination of modules and
the model used in the learning of time series variation. It can be said that the combination
of the proposed model is more suitable for this study, and the GRU has a stronger ability to
capture the time series variation.
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Figure 6. The box plot of ten experiment results of deep learning models under linear interpolation
and cubic spline interpolation. (a–c) are the results of evaluation indexes under linear interpolation
method, respectively; (d–f) are the results of evaluation indexes under Cubic spline interpolation
method, respectively. In the boxplot, the horizontal lines (from bottom-up) represent the minimum,
first quartile, median, third quartile, and maximum, respectively. The circles represent outliers, and
the red triangle represents the average of the experimental results.

5. Discussion
5.1. Analysis of Influencing Factors of Lake Surface Water Temperature

Analysis of the factors influencing the LSWT is essential. Since the LSWT is the result
of the combined effect of climate variables, the partial correlation coefficient (pcorr) is used
to respond to the magnitude of the effect of each climate variable on the LSWT (Table 8).
At the same time, there are interactions between climate variables, and Figure 7 shows the
partial correlation coefficients between each climate variable. The main factor that directly
affects the LSWT is TEMP (pcorr = 0.515, p-value = 0.000), followed by STR (pcorr = −0.228,
p-value = 0.000), E (pcorr = 0.225, p-value = 0.000), TCC (pcorr = −0.220, p-value = 0.000)
and SP (pcorr = 0.129, p-value = 0.000) which have a weaker correlation with the LSWT.

Table 8. The partial correlation coefficient between climate variables and LSWT of Qinghai Lake
(p-value < 0.05).

Name pcorr CI95% p-Value

TEMP 0.515 [0.47,0.55] 0.000
STR −0.228 [−0.28,−0.18] 0.000

E 0.225 [0.17,0.28] 0.000
TCC −0.220 [−0.27,−0.17] 0.000
SP 0.129 [0.07,0.18] 0.000

The correlation between other climate variables and LSWT is not significant
(p-value > 0.05) but can have an indirect effect on LSWT by influencing other climate
variables. SSR has a very significant correlation with TEMP (pcorr = 0.714, p-value = 0.000)
and STR (pcorr = −0.768, p-value = 0.000). PRCP is correlated with STR (pcorr = 0.201,
p-value = 0.000) and SSR (pcorr = 0.125, p-value = 0.000). WDPS is also correlated with STR
(pcorr = 0.110, p-value = 0.000) and SSR (pcorr = 0.118, p-value = 0.000). There are different
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degrees and forms of influence of each meteorological variable on LSWT. The interactions
between climate variables make the prediction of LSWT more complex.
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Figure 7. The heat map of the partial correlation coefficient between climate variables. *** means that
the p-value is less than 0.05.

5.2. Influence of Imputation Methods on Prediction Results

Figure 8 shows the experimental results of the deep learning model under various
missing value interpolation methods, including mean filling (Mean), multivariate regression
interpolation (MR), KNN, linear interpolation (LI), cubic spline interpolation (CBI), and
TRMF. The experimental results show that the linear interpolation and the cubic spline
interpolation are more effective in filling the missing values. Deep learning models are a
data-driven approach. Data quality plays an important role in the predictive effectiveness
of deep learning models. The quality of the data population determines, to some extent,
the average level of prediction performance. When forecasting with poor quality filler data,
the best model results cannot exceed the worst model results when using good quality filler
data. Therefore, careful missing value imputation is necessary before making predictions.
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Figure 8. Comparison of prediction accuracy using different filling data in the deep learning model.
(a): The comparison of RMSE. (b): The comparison of MAPE. (c): The comparison of NSE.

5.3. Limitations and Future Works

There are still some limitations to our study. First, lakes with different properties
respond differently to climate variables, but the model does not take into account lake
properties that affect lake temperature, such as water level and lake area. In the future, more
indicators will be considered. Secondly, since the proposed model considers the effect of
historical data on LSWT, the absence of historical data will affect the prediction accuracy. It
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is one of the future tasks to improve the missing value processing method and build higher
quality datasets. Third, Flake [25] can model the vertical water temperature distribution
and the energy budget between different depth layers of the lake and also performs well
in the simulation of the LSWT. In contrast to the Flake [25], deep learning models lack
the use of physical mechanisms, which are less interpretable. However, deep learning
models have strong data mining ability and high computational efficiency, especially when
dealing with a large number of complex data problems. Due to the more complete mining
of data information, Attention-GRU has higher prediction accuracy. It is able to learn
about dynamical systems whose physical mechanisms are not well understood, and the
parameterization process in the lake model is avoided. In the future, the model error of
the lake model can be further improved by combining the advantages of the lake model
and the deep learning model. Moreover, as a statistical model, the deep learning model is
more suitable for short-term prediction. Finally, this paper only studies summer surface
water temperature predictions for Qinghai Lake, which will be extended to more lakes in
the future.

6. Conclusions

In this study, we have proposed an Attention-GRU model for LSWT prediction based
on the Self-Attention mechanism and GRU model, and the proposed model successfully
mines nonlinear dynamics from the data to obtain more accurate prediction results. In
the comparative experiments, the Attention-GRU model has achieved the best prediction
results and significantly outperformed the results of the Air2water model. In addition,
other deep learning models also have achieved better prediction results than the Air2water
model, which verifies the effectiveness of the deep learning model in the prediction of
lake surface water temperature. Furthermore, ablation experiments have shown that the
proposed model structure is effective, and it is more suitable for the prediction of lake
surface water temperature from the perspective of prediction effect. The analysis shows
that the various climate variables interact with each other and have direct or indirect effects
on the LSWT of Qinghai Lake. At the same time, LSWT also has a temporal correlation. The
proposed model takes advantage of different modules to learn the information about the
climate variables interaction and time series correlation, which can more sufficiently mine
the effective nonlinear correlation information in the research data. Finally, comparative
experiments of various missing value imputation methods have shown that the quality of
data filling has a large improvement on the prediction result of deep learning models.

Author Contributions: Z.H.: Conceptualization, Methodology, Software, Data Curation, Visualiza-
tion, Writing-Original Draft. W.L.: Conceptualization, Supervision, Resources, Writing-Reviewing
and Editing, Funding acquisition. J.W.: Writing-Reviewing and Editing. S.Z.: Writing-Reviewing
and Editing. S.H.: Conceptualization, Software, Writing-Reviewing and Editing, Resources, Funding
acquisition. All authors have read and agreed to the published version of the manuscript

Funding: This study was supported by the National Key Research and Development Program of
China (No. 2019YFA0607104), the National Natural Sciences Foundation of China (No. 42130113),
and the Natural Science Foundation of Gansu Province of China (No. 21JR7RA535).

Data Availability Statement: Publicly available datasets were analyzed in this study. MOD11A1
data can be found here: https://doi.org/10.5067/MODIS/MOD11A1.006. ERA5 data can be found
here: https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5. Meteorological station
data can be found here: https://www.ncei.noaa.gov/maps/daily.

Acknowledgments: The numerical calculations in this paper are supported by the Supercomputing
Center of Lanzhou University.

Conflicts of Interest: The authors declare that they have no known competing financial interests or
personal relationships that could have appeared to influence the work reported in this paper.

https://doi.org/10.5067/MODIS/MOD11A1.006
https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5
https://www.ncei.noaa.gov/maps/daily


Remote Sens. 2023, 15, 900 16 of 19

Appendix A. Experimental Configuration

The MLP model has a total of three hidden layers, and the number of neurons in the
hidden layer is [1000, 500, 100]. The RNN, LSTM, and GRU models are all double-layer
structures, and the dimension of the hidden layer is 100. Transformer-Enconder modules in
Attention-GRU, Transformer, and GTN models all set a two-layer encoding structure. The
structure of each layer is composed of a single-head Self-Attention mechanism, residual
connection and feedforward layer, and a dropout operation with a random probability
of 0.01 is set. The number of neurons in the feedforward layer is 512. In addition, the
number of neurons in the embedding layer is 256 in the GTN model. In the Attention-GRU
model, the GRU module also sets a two-layer structure, and the hidden layer dimension is
100. The experimental code is written in Python, and the model framework is built using
PyTorch 1.8.1.

Appendix B. Partial Autocorrelation of Qinghai Lake Lswt

As time series data, LSWT series have partial autocorrelation. Figure A1 shows the
partial autocorrelation coefficients of the LSWT series at various time lags. In summary,
there are interactions of climate variables and the correlation of time series in the LSWT
prediction problem of Qinghai Lake.

Figure A1. The partial autocorrelation of LSWT. The blue band represents a 95% confidence interval.

Appendix C. Box Plots of Deep Learning with Other Missing Value Imputation Methods

The quality of the data seriously affects the prediction effect of the deep learning model.
We show the experimental results under other missing value imputation methods below.
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Figure A2. The box plot of ten experiment results of deep learning models under the mean filling.
(a): The results of MAPE. (b): The results of RMSE. (c): The results of NSE.
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Figure A3. The box plot of ten experiment results of deep learning models under the Multivariate
regression. (a): The results of MAPE. (b): The results of RMSE. (c): The results of NSE.
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Figure A4. The box plot of ten experiment results of deep learning models under the KNN. (a): The
results of MAPE. (b): The results of RMSE. (c): The results of NSE.
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Figure A5. The box plot of ten experiment results of deep learning models under the TRMF. (a): The
results of MAPE. (b): The results of RMSE. (c): The results of NSE.
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