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Abstract: Building extraction based on remote sensing images has been widely used in many indus-
tries. However, state-of-the-art methods produce an incomplete segmentation of buildings owing
to unstable multi-scale context aggregation and a lack of consideration of semantic boundaries,
ultimately resulting in large uncertainties in predictions at building boundaries. In this study, effi-
cient fine building extraction methods were explored, which demonstrated that the rational use of
edge features can significantly improve building recognition performance. Herein, a fine building
extraction network based on a multi-scale edge constraint (MEC-Net) was proposed, which integrates
the multi-scale feature fusion advantages of UNet++ and fuses edge features with other learnable
multi-scale features to achieve the effect of prior constraints. Attention was paid to the alleviation of
noise interference in the edge features. At the data level, according to the improvement of copy-paste
according to the characteristics of remote sensing imaging, a data augmentation method for buildings
(build-building) was proposed, which increased the number and diversity of positive samples by sim-
ulating the construction of buildings to increase the generalization of MEC-Net. MEC-Net achieved
91.13%, 81.05% and 74.13% IoU on the WHU, Massachusetts and Inria datasets, and it has a good
inference efficiency. The experimental results show that MEC-Net outperforms the state-of-the-art
methods, demonstrating its superiority. MEC-Net improves the accuracy of building boundaries by
rationally using previous edge features.

Keywords: multi-scale edge constraint; building extraction; remote sensing; deep learning;
build-building

1. Introduction

As individuals spend most of their lives in buildings, these structures are an im-
portant part of basic geographic information elements. Accordingly, their role in urban
planning, real estate management, disaster risk assessment and many other fields cannot
be ignored [1–3]. High-spatial-resolution imagery provides richer spatial details, enabling
accurate buildings extractions. As the external environment of the building is very complex
(e.g., building ancillary facilities and shadow occlusion make feature extraction more diffi-
cult), the contrast between the building and some non-buildings (parking lot, bare ground,
roads, etc.) is low, which can easily interfere with the recognition results [4]. In addition,
the contours, structures and materials of buildings in different regions are significantly
different. Therefore, more work is needed to achieve accurate building extraction.

Traditional building extraction methods from optical remote sensing images can be
roughly divided into image classification and morphological index-based methods [5–10].
The pixel-oriented image classification method uses a single pixel in the image as the
basic unit and independently classifies and extracts the semantic information of each
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pixel in the image. This type of method uses labeled data for model learning. Further,
machine learning algorithms, such as Markov random fields, are widely used [5–7]. Notably,
these machine learning methods only consider the spectral characteristics of a single pixel
point and do not consider other attribute information of related objects. To increase the
neighborhood information, scholars have proposed an object-oriented method that divides
the input image into homogeneous polygon objects and uses each object as an analysis
unit. Although the classification results are better than those of pixel-oriented methods,
their performance often depends on the performance of object segmentation [2,8,9]. The
aforementioned building extraction methods based on image classification often require
rich samples. Some researchers have proposed a building extraction method that does not
require labeled samples (i.e., the building morphological index) [10]. However, they rely
on features that are limited, the classification threshold must be selected manually by trial
and error and serious misclassification will occur [11]. In addition to optical images, SAR
and LiDAR have important application values. SAR data can provide all-day, all-weather
observations and have great potential for building extraction [12]. However, compared to
optical images, SAR images have large geometric distortions, and high-precision building
boundary information is difficult to extract [13]. LiDAR data not only contain high-quality
2D data but also the height of ground objects, which play a role in the task of accurately
extracting buildings [14]. However, the acquisition of lidar data is costly and slow, thereby
causing difficulty on a large scale [15].

With the accumulation of remote sensing data and the continuous improvement of
computer software and hardware computing efficiency, the deep applications in remote
sensing display a vigorous development trend. Convolutional neural networks (CNN)
have powerful image feature extraction abilities, and fully CNN (FCN) is emphasized
in the problem of building extraction. Audebert et al. [16] proposed the transfer of the
application of depth FCN from ordinary images to remote sensing images. A multi-core
convolution layer was introduced, residual correction was used to fuse the heterogeneous
sensor data and a good building extraction result was obtained. Kang et al. [17] proposed
EU-Net, which first designed a denser spatial pyramid pool (SPP), which helps extract more
buildings of different scales. Thereafter, focal loss is used to reverse the negative effect of
false tags on training in order to enable a higher extraction accuracy. Jin et al. [18] proposed
BARNet for precisely localizing building boundaries. A gated attention fine fusion unit
was developed to better handle cross-layer features in skip connections. Wang et al. [19]
designed a new edge-ignoring cross-entropy function for the insufficient context of the
edge pixels in a sample image. The morphological building index and image stitching are
involved in the training process. Guo et al. [15] adaptively improved building prediction by
exploiting the spatial details of low-level features, further improving the effect of building
extraction.

At present, the overall accuracy of building extraction is already high; however,
the accuracy of the building boundary area is poor [20–23]. In this study, we proposed
a multi-scale edge-constrained network (MEC-Net) for the fine extraction of buildings.
Image edge features were added to the feature groups that aggregate features of different
scales for prior feature constraints, and the attention mechanism was used to suppress the
negative effects caused by the edge features of other objects. From the perspective of data,
a data augmentation method (denoted as build-building), specifically for buildings, was
proposed. Build-building achieves instance-level expansion of the number and style of
building instances by simulating the new construction of buildings, thereby improving the
generalization of MEC-Net. The main contributions of this study are as follows:

(1) An MEC-Net based on a multi-scale edge constraint (MEC) module was proposed.
The network effectively integrated features of different scales and added two attention
mechanisms, namely, prior edge constraints and learnable squeeze excitations, to each scale
feature group to improve the segmentation effect on the boundary area of buildings.

(2) A data augmentation method named build-building was designed to simulate the
construction of new buildings. A building object instance was copied from one image and
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pasted onto another image. Before pasting, the styles of the two images must be unified.
Increasing the number of building samples can also enrich the background of buildings of
the same type.

(3) Our proposed MEC-Net achieved state-of-the-art performance on the WHU, Mas-
sachusetts and Inria datasets.

The remainder of this paper is organized as follows: Section 2 describes work related to
MEC-Net; Section 3 describes the proposed MEC-Net; Section 4 describes the experimental
design, including the datasets, experimental details, accuracy evaluation, comparative
experiments and ablation experiments; Section 5 presents the results and analysis of MEC-
Net; and Section 6 contains the conclusions.

2. Related Work
2.1. Multi-Scale Feature Fusion

With the introduction of the FCN [24], Ronneberger et al. [25] designed U-Net with a
better segmentation performance. U-Net belongs to the encoder-decoder structure, and
its name originates from the “U” shape of the entire network. The encoder on the left is
used to extract high-dimensional feature information, which is a process from an image to
a high-semantic-level feature map. A symmetric decoder for precise localization, which is
a process from high-semantic-level feature maps to pixel-level classification score maps,
is located on the right. As shown in Figure 1a, the features corresponding to the decoder
and encoder implement feature fusion through skip connections. The optimal depth of the
U-Net network is unknown a priori; therefore, an architecture search at different depths is
required. Notably, skip connections only perform feature fusion on the same scale feature
of the encoder and decoder, which has limitations.
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To solve these problems, Zhou et al. [26] proposed UNet+ and UNet++. UNet+
integrates U-Nets at different depths to mitigate the negative impact of the network depth
on the results. These U-Net modules share an encoder, learn together and connect two
adjacent nodes in the same horizontal layer with short skip connections, enabling the
transmission of supervisory signals to the shallower decoder by the deeper decoder, as
shown in Figure 1b. Based on UNet+, UNet++ redesigns skip connections to generate
densely connected skip connections. As shown in Figure 1c, each horizontal layer is a
standard DenseNet structure, enabling a densely propagated feature along skip connections,
causing more flexibility in the feature fusion of the decoder.

The multi-scale features of UNet++ are aggregated step-by-step to obtain the final seg-
mentation result, which improves the performance and results in a faster convergence speed,
ultimately leading to its wide application in remote sensing image segmentation [27–29].
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However, these multi-scale features are all automatically learned by the model, lacking
human-controllable prior feature constraints.

2.2. Boundary-Constrained Refined Building Extraction

Accurately identifying building boundaries is critical for many remote sensing appli-
cations. To effectively extract objects with clear boundaries, some researchers have added
boundary information extraction tasks during the performance of semantic segmentation
tasks in the network [20–22]. Building boundary extraction is taken as a separate task to
improve the accuracy of boundary regions in the building extraction task. Guo et al. [4]
added a boundary refinement module to the network to perceive the orientation of each
pixel to the nearest object, thereby refining the building prediction results. Based on these
experimental results, by focusing the model on boundary details, the quality of building
segmentation can be improved. The boundary of the building is highly correlated with
the edge features of the image, and the effective use of this prior knowledge is critical.
Shao et al. [23] inputted the edge information of objects into the network, together with
the image, which improves the accuracy of building change detection. Liao et al. [30]
integrated an additional convolution module to process the edge features and take the
structural features that capture the boundary information of buildings to improve the
accuracy of the segmentation results. However, building edge information is a feature
obtained by operating on the image. The fusion of edge features and features extracted
by the convolutional network is more logical than directly splicing the image with the
input to the network. In addition, there are also some studies on the boundary constraints
of buildings from the perspective of loss functions. You et al. [31] proposed a joint loss
function of building boundary weighted cross-entropy and dice loss to strengthen the con-
straints on building boundaries. Despite the efforts of many scholars, inaccurate boundary
identification is still inevitable.

3. Methodology

The existing building extraction network can already achieve a high overall accuracy;
however, a large error exists in the building boundary area. Improving the extraction
performance of building boundary areas is an urgent problem that must be solved. To solve
this problem, a multi-scale edge constraint network (MEC-Net) was proposed to accurately
extract building footprints. The overall structure of MEC-Net is shown in Figure 2.
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As shown in Figure 2, MEC-Net uses U-Net++ as the basic network and resnet50 as
the backbone. The encoder network extracts building features of different scales, and the
decoder uses multi-scale feature fusion and edge feature constraints to obtain the same
extraction result as the input image size. Section 3.1 discusses the design of an efficient
MEC module that utilizes prior edge features to perform attention constraints on feature
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maps at different scales to refine building boundaries. In addition to prior attention, the
self-attention mechanism scSE was added in MEC, as well as other decoders, as described
in Section 3.2. Overall, a data augmentation method specifically for building extraction
was designed, as shown in Section 3.3. Furthermore, the loss function of MEC-Net was
introduced in Section 3.4.

3.1. Multi-Scale Edge Constraint (MEC)

The features in the deep neural network are automatically learned through human
supervision, and high-dimensional features are difficult to explain and are uncontrollable.
The addition of prior knowledge to a network can improve its learning. In fact, the
convolutional layer used in CNN utilizes prior knowledge: the closer the distance between
the image pixels, the stronger the correlation. The settings of the anchor size and the aspect
ratio in the famous Faster RCNN [32] were also determined a priori.

At present, the accuracy of building boundaries is poor, and building boundaries and
edge features are highly correlated. As a result, an MEC block, which adds prior knowledge
of edge features to the network to optimize the building boundary, was constructed. As
depicted by the green rectangle in Figure 2, the MEC block contains four units, which
fuse semantic features and edge features of different scales to obtain X0,j, j ∈ {1, 2, 3, 4}.
MEC causes the model to be more sensitive to the edges of buildings. The structure of
the j-th unit is shown in Figure 3. The edge features were fused as concatenation with
the low-dimensional features of the current level and the high-dimensional features of the
next level to obtain Fj

C. (bilinear interpolation) with 1 × 1 convolution was used to avoid
the checkerboard pseudo-checker [33]. Subsequently, two 3 × 3 convolutions and ReLU
activations were performed to obtain the contextual information of a larger receptive field.
The edge feature Among these, high-dimensional features must be unified in size before
concatenation. Up-sampling input to MEC-Net includes buildings and other objects. To
ensure that the model is more focused on the edges of buildings, a self-attention mechanism
scSE was added at the end of the unit. The final output OutputjX0,j of the unit can be
described using the following formula:

Fj
C = [E, [Fk

L]
j−1
k=0, Conv1×1(Up(Fj−1

H ))] (1)

X0,j = scSE((ConvReLU3×3)
2
(Fj

C)) (2)

where E represents the edge feature, Fk
L represents the k-th low-dimensional feature, that

is,X0,k in Figure 2, and represents the (j − 1)-th high-dimensional feature, that is, X1,j−1 in
Figure 2.
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The ratio of the feature resolution to the input image was used to quantitatively
describe the feature scale. Accordingly, the first unit in the MEC block in the model fuses
the multi-scale features of [1/2, 1/4], the second unit fuses the multi-scale features of [1/2,
1/4, 1/8], the third unit fuses the multi-scale features of [1/2, 1/4, 1/8, 1/16] and the fourth
unit fuses the multi-scale features of [1/2, 1/4, 1/8, 1/16, 1/32].



Remote Sens. 2023, 15, 927 6 of 20

The edge features in the MEC block are represented by the gradient values obtained by
the Sobel operator and image convolution operation. The Sobel operator [34] is a common
first-order derivative edge detection operator that uses two 3 × 3 matrices to convolve the
original image and obtain the horizontal gradient Ex and vertical gradient Ey, as shown in
Equations (3) and (4). Finally, the edge feature E was obtained by combining the above two
results.

Ex =

−1 0 +1
−2 0 +2
−1 0 +1

 ∗ I (3)

Ey =

−1 −2 −1
0 0 0
+1 +2 +1

 ∗ I (4)

E =
√

Ex2 + Ey2 (5)

3.2. Spatial and Channel Sequeeze & Excitation (scSE)

The attention module is often used for feature screening and optimization to make
the model converge better [35–37]. In addition to adding scSE to the MEC block, scSE was
added in the last part of each decoder unit. scSE is a type of joint attention that combines
spatial and channel attention. Attention allows the model to focus on the information or
features of interest, enabling unimportant information to be ignored and the use of more
useful information to be enhanced.

Hu et al. [35] proposed a new unit called “sequence and excitation” (SE), which sheds
light on image classification by recalibrating channel feature responses. As a result, Roy
et al. [36] introduced three SE modules: cSE, sSE and scSE.

The cSE module assigns importance weights to the feature mapping in the channel
dimension. For a feature with shape (C, W, H), the shape was first converted to (C, 1, 1) via
global average pooling. Thereafter, two 1 × 1 convolution blocks and the Sigmoid function
were used to obtain the vector of shape (C, 1, 1), representing the importance of the channel
features. Finally, it was multiplied by the original feature map in a channel-wise form to
obtain an attention-corrected feature map on the channel.

The sSE module belongs to the spatial attention mechanism, which reassigns the
weights to spatial information and obtains features containing different spatial weight
information. First, a 1 × 1 convolution was used to directly change the shape of the feature
from (C, H, W) to (1, H, W). Thereafter, to obtain a feature representing the importance
of each spatial position, the sigmoid function was used for activation. Finally, it was
multiplied by the original feature to complete the spatial correction.

The scSE module is a parallel combination of cSE and sSE. In particular, after passing
through the sSE and cSE modules, the two results were added to obtain a more accurately
corrected feature map, as shown in Figure 4.
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3.3. Build-Building Data Augmentation

Reasonable data augmentation can improve the accuracy and generalization ability.
For building extraction, Zhang et al. [38] and Guo et al. [15] used the random rotation
and flipping of images, while Jin et al. [18] used random flipping, scaling and Gaussian
smoothing. However, these methods are more general and were not designed for building
extraction. To enable data augmentation methods to play a significant role in building
extraction, a data augmentation method build-building for buildings was proposed, as
shown in Figure 5.
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to mixup [40] and CutMix [41]; however, only the pixels within the object are copied instead
of all pixels in the bounding box (rectangle). Thus, copy-paste can simulate the construction
of buildings in open spaces. On one hand, copy-paste can increase the sampling frequency
of building samples; on the other hand, it can expand the background style of similar
buildings, as shown in Figure 6c.

Owing to different imaging conditions such as illumination and atmosphere, different
remote sensing images reflect the brightness and darkness of gray values, which are
inconsistent. The direct use of copy-paste can cause the augmented results to appear
abrupt, possibly prompting the model to be optimized in the wrong direction. Therefore,
a fast Fourier transform (FFT) was employed to unify the style of the two images before
copy-paste.

First, FFT was performed on the image fcopy(x, y) (width is W and height is H) for the
copy operation and the image fpaste(x, y) as the paste background:

Fcopy(u, v) =
M−1

∑
x=0

N−1

∑
y=0

fcopy(x, y)e
−2π j

M ux+−2π j
N vy (6)

Fpaste(u, v) =
M−1

∑
x=0

N−1

∑
y=0

fpaste(x, y)e
−2π j

M ux+−2π j
N vy (7)

where x and y are image variables, and u and v are frequency variables.
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After the spatial domain is converted to the frequency domain, the places where the
gray value changes sharply correspond to the high frequency, and vice versa corresponds
to the low frequency. Thus, high frequency is mainly a measure of the edge and contour,
and low frequency is a comprehensive measure of the intensity. Only the low frequency
of Fpaste(u, v) must be replaced with Fcopy(u, v) to obtain Fcopy−paste(u, v); thereafter, by
converting it to the spatial domain through the inverse fast Fourier transformation, we can
skillfully achieve style unity:

Fcopy−paste(u, v) =
{

Fcopy(u, v) Fpaste(u, v) is low frequency
Fpaste(u, v) Fpaste(u, v) is high frequency

(8)

fcopy−paste(x, y) =
1

MN

M−1

∑
u=0

N−1

∑
v=0

Fcopy−paste(u, v)e
2π j
M ux+ 2π

N vy (9)

The frequency domain of the 2 × 2 area in the center of the FFT result after spectrum
centralization is the low-frequency domain that must be converted. The results for the
copy-paste after style unification are shown in Figure 6d.

When constructing a building dataset, the top of the building is generally used as
the corresponding ground truth value. If only the pixels corresponding to the top of
the building are copied, the neighborhood features that are very important for building
extraction (such as sloped walls or shadows) are ignored. The expansion operation of the
corresponding mask is used during copying, and then copy-paste is applied to solve it. The
results are shown in Figure 6e.

During the copy-paste operation, situations in which buildings cover other buildings
may arise owing to the overlapping areas of two or more buildings. This occurrence is
impossible in reality and may affect the correct direction of model learning. Therefore, the
overlapping building objects were deleted, and the copy-paste operation was performed;
the results are shown in Figure 6f, where the potential of buildings covering each other is
avoided.
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3.4. Loss Function

The categorical cross entropy (CE) loss Lossce is often used as the loss function for
objects extraction, and its expression is as follows:

Lossce =
1
N ∑N

i=1−∑M
c=1 yi

c log(pi
c) (10)

where N is the number of pixels, M is the number of categories, yi
c is the c-th value in the

one-hot encoding of the actual class at pixel i and pi
c is the predicted value of class c at pixel i.

Owing to the CE function, the model can predict the probability of positive classes
approaching one and the probability of negative classes approaching zero in the process of
network parameter learning and updating; this can lead to over-confidence in the model
when the training data are insufficient to cover all forms of building, resulting in overfitting.
Soft CE loss Losssce involves the performance of label smoothing [42] on the ground truth
and is followed by cross-entropy calculation with the predicted value, which can improve
the generalization to a certain extent. Its expression is as follows:

Losssce =
1
N ∑N

i=1−∑M
c=1

∧
yi

c log(pi
c)

∧
yi

c =

{
1− α, c = target
α/M, c 6= target

(11)

where
∧
yi

c is the ground truth after smoothing, and α is the smoothing coefficient.
The positive and negative samples of the building dataset are generally quite different,

and the dice loss Lossdice [43] can alleviate the class imbalance phenomenon to a certain
extent; however, the training is prone to instability. Therefore, in this study, the joint
function Lossseg of Losssce and Lossdice was adopted as the loss function for this experiment.{

Lossseg = Losssce + Lossdice
Lossdice =

2TP
2TP+FP+FN

(12)

where TP is the pixel area correctly classified as the building, FP is the pixel area wrongly
classified as the building and FN is the pixel area incorrectly classified as the non-building.

4. Experimental Design
4.1. Datasets

We opted to conduct sufficient experiments on three publicly available and commonly
used datasets. The three datasets cover different scopes, scenarios and cities and can
measure the pros and cons of the model from different perspectives. The details are as
follows.

(1) The WHU dataset includes more than 220,000 individual buildings, covering
450 km2 [44]. The original spatial resolution is 0.075 m, and the image resolution is down-
sampled to 0.3 m for the convenience of task training. Notably, the estimated model
accuracy was more convincing with many building examples. The division of the training
set, validation set and test set of the WHU dataset is consistent with the original paper.

(2) The Massachusetts dataset consisted of 151 tiles with a spatial resolution of 1 m [45].
The scenarios not only include cities but also suburbs, which are suitable for evaluating
the robustness of the model for different scenarios. To facilitate the training, we cropped
each tile with a sliding window to obtain a series of 512 × 512 small tiles with a repetition
rate of 0.5. The division of the training set, validation set and test set of the Massachusetts
dataset is consistent with the original paper.

(3) The Inria dataset covers a total area of 810 km2 [46]. The training set included differ-
ent urban settlements. Each city in the training set contained 36 tiles with 5000 × 5000 pixels.
To facilitate the comparison of the results, we adopted the same division basis as the other
study [4]: tiles with serial numbers 1–5 were selected for testing performance, and the
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rest were used for training and validation (tiles with serial numbers 6–10 were used for
validation). In addition, owing to the large number of datasets, the sliding window method,
with a repetition rate of 0.1, was used to crop all tiles and remove the cropping results that
do not contain buildings. Finally, 11,028 training, 1912 verification and 1950 test images
were obtained.

4.2. Implementation Details

All experiments in this study were trained on an Nvidia GeForce RTX 3090 GPU, and
the models were built using pytorch [47]. The batch size was set to 8, and Adam [48],
with weight decay, was used as the optimizer (decay factor = 0.001). The initial learning
rate was set as 0.001. The learning rate was adjusted using cosine annealing, and the
minimum learning rate was set as 0.0001. The training set was randomly augmented with
a probability of 0.5 (including the commonly used image flipping and the build-building
proposed in this study; no build-building was performed in the ablation experiment to
verify whether the build-building was effective). The maximum number of epochs for
model training was 125.

4.3. Evaluation Metrics

In this study, four commonly used accuracy metrics were employed for accuracy
evaluation: precision, recall, F1-score and IoU. Precision refers to the proportion of pixels
classified as buildings that are actually buildings. Recall is a measure of the number of
building pixels that were correctly classified as buildings. F1-score is a composite indicator
of the precision and recall. The IoU is the ratio of the intersection over the union of the
predicted and ground-truth building areas. We calculated the additional IOU of the buffer
area with a radius of two pixels from the building boundary to measure the extraction
effect of the building boundary area. The formula for each indicator is as follows.

Precision =
TP

TP + FP
(13)

Recall =
TP

TP + FN
(14)

F1 = 2× Precision× Recall
Precision + Recall

(15)

IoU =
TP

TP + FN + FP
(16)

4.4. Benchmark Techniques

We adopted the following four SOTA semantic segmentation networks as our ex-
perimental benchmark techniques: PSP-Net [49], Res-U-Net [50], DeeplabV3+ [51] and
HR-Net [52].

PSP-Net performs contextual information aggregation in different regions through
a pyramid pooling module and embeds difficult scene contextual features into a pixel
prediction framework. Res-U-Net combines the advantages of residual learning with U-
Net. Deeplabv3+ uses atrous SPP to obtain multi-scale information and introduces a new
decoder module to further fuse low-level and high-level features. HRNet changes the link
between high and low resolutions from series to parallel, enabling the maintenance of
high-resolution representations throughout the network structure.

MEC-Net was compared with recent building extraction methods, including SiU-
Net [43], JointNet [53], EU-Net [17], DS-Net [54], MAP-Net [55] and CBR-Net [4].

4.5. Ablation Study Design

Adequate ablation studies have been conducted. As shown in Table 1, UNet++ was the
method used in the first ablation study, which was marked as the baseline. In the second
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ablation study, the method involved the addition of edge features in the first horizontal
layer of UNet++, marked as Baseline + E. The method in the third ablation study included
the addition of the MEC block described above to UNet++, which is our MEC-Net, marked
as Baseline + E + A. The fourth ablation study used build-building when training MEC-Net,
labelled Baseline + E + A + B.

Table 1. Composition of the four ablation studies.

Method UNet++ Edge Feature Attention (scSE) Build-Building

Baseline
√

Baseline + E
√ √

Baseline + E + A
√ √ √

Baseline + E + A + B
√ √ √ √

5. Results and Analysis
5.1. Comparison with SOTA Methods

Tables 2–4 show the quantitative evaluation results of MEC-Net. For readability, the
highest-scoring values are in bold. MEC-Net had the highest IoU (91.13%, 74.13% and
81.05%) and f1 (95.36%, 85.15% and 89.53%) on all three datasets, outperforming the other
methods and demonstrating the effectiveness of our method. Compared with the second-
best-performing HR-Net, MEC-Net increased the IoU by 1.27%, 0.68% and 0.57% using the
datasets, respectively. The optimization effect of MEC-Net using the Massachusetts and
Inria datasets was relatively low, mainly due to the less detail provided by the low-spatial
resolution and the smaller discrimination of the building boundary areas. Although the
spatial resolution of the Inria dataset is consistent with that of the WHU dataset, the quality
of its ground truth is poor. The IoU of the building boundary buffer area (with a radius
of two pixels) was calculated and recorded as IoU (boundary) in Tables 2–4. Compared
with the second-highest IoU (boundary), MEC-Net improves the IoU of building boundary
regions by 1.00%, 0.17% and 0.36% using the three datasets, respectively. The extracted
boundary quality of the three datasets improved, indicating that MEC-Net can accurately
describe the building boundaries of different sizes in different regions and has strong
robustness.

Table 2. Quantitative evaluation of MEC-Net using the WHU dataset.

Method Precision (%) Recall (%) F1 (%) IoU (%) IoU (Boundary) (%)

PSP-Net 92.60 93.83 93.21 87.28 58.88
Res-U-Net 94.00 94.86 94.43 89.45 66.00

DeeplabV3+ 94.30 94.50 94.40 89.39 64.93
HRNet 94.67 94.64 94.66 89.86 67.52

MEC-Net(ours) 94.70 96.03 95.36 91.13 68.52

Table 3. Quantitative evaluation of MEC-Net using the Massachusetts dataset.

Method Precision (%) Recall (%) F1 (%) IoU (%) IoU (Boundary) (%)

PSP-Net 77.28 83.97 80.49 67.35 48.54
Res-U-Net 81.74 86.66 84.13 72.61 55.51

DeeplabV3+ 83.49 83.77 83.63 71.87 53.49
HRNet 82.82 86.66 84.69 73.45 56.64

MEC-Net(ours) 83.24 87.14 85.15 74.13 56.81
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Table 4. Quantitative evaluation of MEC-Net using the Inria dataset.

Method Precision (%) Recall (%) F1 (%) IoU (%) IoU (Boundary) (%)

PSP-Net 87.46 88.37 87.91 78.43 47.43
Res-U-Net 88.21 88.64 88.42 79.25 48.52

DeeplabV3+ 87.67 88.23 87.95 78.49 47.39
HRNet 89.31 89.06 89.18 80.48 50.66

MEC-Net(ours) 89.26 89.81 89.53 81.05 51.02

In order to further analyze the advantages of the method proposed in this paper,
Figures 7–9 show some inference examples for each dataset. It can be seen that MEC-
Net can obtain the most complete building extraction results and the most prominent
boundary details. For the small buildings in the first row of Figure 7 and the third row of
Figure 8, Deeplabv3+ and HR-Net caused omissions, while MEC-Net can be well extracted.
The characteristics of the parking lot in the second row of Figure 7 are very similar to
buildings, and other models have been more or less misrepresented, while MEC-Net
effectively distinguishes these two objects. For the super-large building in Figure 7, the
results extracted by Deeplabv3+ are very disordered, and our MEC-Net successfully avoids
this error. For the denser buildings in the second and third rows of Figure 8, MEC-Net
achieves more complete and accurate building extraction results than other models. For the
building corners and surrounding lawns in Figure 9, MEC-Net is also able to distinguish
buildings well. Accurate building localization and boundary extraction will facilitate
downstream tasks such as fine building area measurement and fine building vectorization.
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5.2. Comparison with Recent Methods

Tables 5–7 show the quantitative comparison results of MEC-Net and the methods
described in Section 4.4. Similarly, the highest-scoring values are in bold. Precision, recall
and F1 were not evaluated in the study describing DS-Net. As a result, the horizontal
lines in Table 7 were employed. MEC-Net was found to achieve the best results. The IoU
was 0.04% higher than that of CBR-Net with the WHU dataset, 0.20% higher than that of
EU-Net with the Massachusetts dataset and 0.32% higher than that of DS-Net with the Inria
dataset.
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Table 5. Quantitative comparison of MEC-Net using the WHU dataset.

Method Precision (%) Recall (%) F1 (%) IoU (%)

SiU-Net 90.30 94.50 92.35 85.80
EU-Net 94.98 95.10 95.04 90.56

MAP-Net 95.62 94.81 95.21 90.86
CBR-Net 95.14 95.53 95.34 91.09

Ours 94.70 96.03 95.36 91.13

Table 6. Quantitative comparison of MEC-Net using the Massachusetts dataset.

Method Precision (%) Recall (%) F1 (%) IoU (%)

SiU-Net 68.10 74.60 71.20 55.20
Joint-Net 86.21 81.29 83.68 71.99
EU-Net 86.70 83.40 85.01 73.93

CBR-Net 85.63 83.51 84.56 73.24
Ours 83.24 87.14 85.15 74.13

Table 7. Quantitative comparison of MEC-Net using the Inria dataset.

Method Precision (%) Recall (%) F1 (%) IoU (%)

SiU-Net 71.40 84.60 83.30 71.40
DS-Net - - - 80.73
EU-Net 90.28 88.14 89.20 80.50

CBR-Net 90.22 88.23 89.21 80.53
Ours 89.26 89.81 89.53 81.05

5.3. Ablation Study

Some examples of the ablation study results are shown in Figures 10–12. As depicted
by the red box in the figure, the modules added to the baseline played a positive role to
varying degrees. The quantitative performance results are listed in Table 8. Baseline + E
improved the IoU of Baseline by 0.63%, 0.39% and 0.69% for the three datasets, respectively,
which proves that the multi-scale fusion of edge features is effective. The WHU and Inria
datasets had a higher accuracy, as they have a higher resolution and more distinguishing
edge features. We visualized the edge features of the sample images (the size of the
images was 512 × 512) of the three datasets, as shown in Figure 13. The edge features of
the Massachusetts dataset were identified to be coarser than those of other datasets. The
addition of attention improved the IoU by 0.46%, 0.34% and 0.61%, respectively, proving
the role of the attention strategy of scSE. By assigning weights to the features of different
channels and the features of different spatial locations, the added edge features were
applied more reasonably. Build-building increased the resulting IoU by 0.50%, 0.68% and
0.49%, respectively. The Massachusetts dataset had the most significant optimization effect,
which might be due to this dataset possessing the greatest disparity in the ratio of building
and non-building samples (the ratios are 0.23, 0.15 and 0.24 for the WHU, Massachusetts
and Inria datasets). Build-building can reasonably (not simply repeat) increase the sampling
frequency of building samples during model training; therefore, in theory, the smaller the
ratio of building samples, the greater the effect.
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Table 8. Quantitative comparison of the four ablation studies.

Method
WHU Dataset Massachusetts Dataset Inria Dataset

F1 (%) IoU (%) F1 (%) IoU (%) F1 (%) IoU (%)

Baseline 94.03 89.54 83.82 72.72 88.25 79.26
Baseline + E 94.55 90.17 84.23 73.11 88.68 79.95

Baseline + E + A 94.82 90.63 84.74 73.45 88.96 80.56
Baseline + E + A + B 95.36 91.13 85.15 74.13 89.53 81.05

5.4. Model Complexity

Floating point operations (FLOPs) and inference time are often used to measure model
complexity. We visualized the FLOPs of the MEC-Net model and IoU using three datasets,
as shown in Figure 14. The orange bars represent the IoU with the WHU dataset, the light
green bars represent the IoU with the Massachusetts dataset, the light coral bars represent
the IoU with the Inria dataset and the blue triangles represent the FLOPs. Although PSP-
Net had the lowest FLOPs, its performance was the worst. HR-Net ranked second in terms
of performance but had the highest FLOPs. The inference time for a single image slice
for the models is presented in Table 9. The inference time of MEC-Net was located in the
middle and was slightly more than that of PSP-Net and Res-U-Net. In summary, MEC-Net
had the highest IoU, moderate FLOPs and inference speed, and a good overall performance.
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