Potential Contributors to CME and Optimal Noise Model Analysis in the Chinese Region Based on Different HYDL Models
Abstract
:1. Introduction
2. Data and Methods
2.1. GNSS Vertical Time Series
2.2. Hydrological Loading Time Series
2.3. Noise Model
2.4. Principal Component Analysis
3. Results
3.1. Comparison of Different HYDL Time Series with GNSS
3.2. CME Extraction
3.3. Optimal Noise Model Analysis before and after Different HYDL Correction
4. Discussion
4.1. Potential Hydrological Interpretation of the CME
4.2. Changes in Velocity and Its Uncertainty due to Different HYDL Effects
5. Conclusions
- Both HYDL time series and GNSS vertical time series show an obvious seasonal variation. The value of correlation between the GNSS vertical time series and EOST_HYDL, GFZ_HYDL, and IMLS_HYDL was 0.27~0.74, 0.27~0.75, and 0.25~0.73 with a mean value of 0.6, 0.6, and 0.54; the value of RMS reduction was 2~31%, −10~32%, and 1.5~27% with a mean value of 18.9%, 16.7%, and 16% after removing EOST_HYDL, GFZ_HYDL, and IMLS_HYDL time series from the GNSS, respectively. Compared with GFZ_HYDL and IMLS_HYDL, EOST_HYDL had the most positive effect on seasonal variations in GNSS vertical time series in the Chuandian region.
- The value of CME at most stations was −10~10mm, which displayed significant seasonal variations. There was good agreement between the CME and EOST_HYDL time series. The value of correlation between CME and EOST_HYDL was 0.63~0.8, the value of RMS reduction was 18.9~40.3% with a mean value of 31.8% after removing EOST_HYDL time series from the CME, indicating that the HYDL effect is one of the principal factors causing the CME in the Chuandian region.
- The optimal noise models before HYDL correction were WN + FN, WN + PL, and WN + GGM, while the optimal noise models were WN + FN and WN + PL after corrected by HYDL. The absolute value of velocity difference was 0.11~0.55, 0.02~0.35, and 0.01~0.29 mm/a before and after EOST_HYDL, GFZ_HYDL, and IMLS_HYDL correction, the absolute value of velocity uncertainty difference was 0~0.23, 0~0.28, and 0~0.26 mm/a, respectively. Thus, the influence of HYDL on the estimation of velocity and its uncertainty from GNSS vertical time series in the Chuandian region cannot be ignored.
- In this study, we used five common models to analyze the noise characteristics of 39 GNSS stations in the Chuandian region. However, the stochastic noise model of characteristics in the GNSS time series is very complex. Therefore, in the future we will use additional noise models to investigate the noise characteristics of GNSS vertical time series. Although the HYDL time series provided by EOST, GFZ, and IMLS were used to research the noise characteristics of the GNSS vertical time series, the HYDL time series used in this paper could not detect the effect of groundwater. Therefore, in the future we will use the GRACE model to investigate the effect of groundwater on GNSS vertical time series.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviation
ATML | atmospheric loading |
AIC | Akaike information criterion |
BIC | Bayesian information criterion |
BPPL | band-pass power-law noise |
CME | common mode error |
CMONOC | crustal movement observation network of China |
EOST | School and Observatory of Earth Sciences |
FN | flicker noise |
FOGM | first-order Gauss–Markov noise |
GGM | Gauss–Markov noise |
GFZ | German Research Center for Geosciences |
GNSS | global navigation satellite system |
GEOSFPIT | global Earth observing system forward processing instrumental team |
HYDL | hydrological loading |
IMLS | International Mass Loading Service |
IQR | interquartile range |
LSF | least squares fitting |
LSDM | land surface discharge model |
LLN | load Love numbers |
NTOL | nontidal ocean loading |
PL | power law noise |
PCA | principal component analysis |
RW | random walk noise |
RMS | root mean squares |
RegEM | regularized expectation maximization methods |
WN | white noise |
References
- Cheng, P.; Cheng, Y.; Wang, X.; Xu, Y. Update China geodetic coordinate frame considering plate motion. Satell. Navig. 2021, 2, 2. [Google Scholar] [CrossRef]
- Richter, A.; Ivins, E.; Lange, H.; Mendoza, L.; Schröder, L.; Hormaechea, J.L.; Casassa, G.; Marderwald, E.; Fritsche, M.; Perdomo, R. Crustal deformation across the Southern Patagonian Icefield observed by GNSS. Earth Planet. Sci. Lett. 2016, 452, 206–215. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, P.-Z.; Freymueller, J.T.; Bilham, R.; Larson, K.M.; Lai, X.a.; You, X.; Niu, Z.; Wu, J.; Li, Y. Present-day crustal deformation in China constrained by global positioning system measurements. Science 2001, 294, 574–577. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Zhao, B.; Wang, Q.; Yang, S. Noise analysis of continuous GPS coordinate time series for CMONOC. Adv. Space Res. 2012, 49, 943–956. [Google Scholar] [CrossRef]
- Huisman, L.; Teunissen, P.; Hu, C. GNSS precise point positioning in regional reference frames using real-time broadcast corrections. J. Appl. Geod. 2012, 6, 15–23. [Google Scholar] [CrossRef]
- Legrand, J.; Bergeot, N.; Bruyninx, C.; Wöppelmann, G.; Bouin, M.-N.; Altamimi, Z. Impact of regional reference frame definition on geodynamic interpretations. J. Geodyn. 2010, 49, 116–122. [Google Scholar] [CrossRef]
- Lyu, M.; Chen, K.; Xue, C.; Zang, N.; Zhang, W.; Wei, G. Overall subshear but locally supershear rupture of the 2021 Mw 7.4 Maduo earthquake from high-rate GNSS waveforms and three-dimensional InSAR deformation. Tectonophysics 2022, 839, 229542. [Google Scholar] [CrossRef]
- Chen, K.; Avouac, J.-P.; Aati, S.; Milliner, C.; Zheng, F.; Shi, C. Cascading and pulse-like ruptures during the 2019 Ridgecrest earthquakes in the Eastern California Shear Zone. Nat. Commun. 2020, 11, 22. [Google Scholar] [CrossRef] [PubMed]
- Ruhl, C.; Melgar, D.; Grapenthin, R.; Allen, R. The value of real-time GNSS to earthquake early warning. Geophys. Res. Lett. 2017, 44, 8311–8319. [Google Scholar] [CrossRef]
- Chen, K.; Ge, M.; Babeyko, A.; Li, X.; Diao, F.; Tu, R. Retrieving real-time co-seismic displacements using GPS/GLONASS: A preliminary report from the September 2015 M w 8.3 Illapel earthquake in Chile. Geophys. J. Int. 2016, 206, 941–953. [Google Scholar] [CrossRef]
- Metivier, L.; Collilieux, X.; Lercier, D.; Altamimi, Z.; Beauducel, F. Global coseismic deformations, GNSS time series analysis, and earthquake scaling laws. J. Geophys. Res. Solid Earth 2014, 119, 9095–9109. [Google Scholar] [CrossRef]
- Huang, L.; Mo, Z.; Xie, S.; Liu, L.; Chen, J.; Kang, C.; Wang, S. Spatiotemporal characteristics of GNSS-derived precipitable water vapor during heavy rainfall events in Guilin, China. Satell. Navig. 2021, 2, 13. [Google Scholar] [CrossRef]
- Jiang, Z.; Hsu, Y.-J.; Yuan, L.; Cheng, S.; Feng, W.; Tang, M.; Yang, X. Insights into hydrological drought characteristics using GNSS-inferred large-scale terrestrial water storage deficits. Earth Planet. Sci. Lett. 2022, 578, 117294. [Google Scholar] [CrossRef]
- White, A.M.; Gardner, W.P.; Borsa, A.A.; Argus, D.F.; Martens, H.R. A review of GNSS/GPS in hydrogeodesy: Hydrologic loading applications and their implications for water resource research. Water Resour. Res. 2022, 58, e2022WR032078. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Ma, X.; Yao, W.; Liu, Y.; Du, Z.; Yang, P.; Yao, Y. Improved drought monitoring index using GNSS-derived precipitable water vapor over the loess plateau area. Sensors 2019, 19, 5566. [Google Scholar] [CrossRef]
- Liu, B.; Dai, W.; Liu, N. Extracting seasonal deformations of the Nepal Himalaya region from vertical GPS position time series using Independent Component Analysis. Adv. Space Res. 2017, 60, 2910–2917. [Google Scholar] [CrossRef]
- Yan, J.; Dong, D.; Bürgmann, R.; Materna, K.; Tan, W.; Peng, Y.; Chen, J. Separation of sources of seasonal uplift in China using independent component analysis of GNSS time series. J. Geophys. Res. Solid Earth 2019, 124, 11951–11971. [Google Scholar] [CrossRef]
- Li, W.; Li, Z.; Jiang, W.; Chen, Q.; Zhu, G.; Wang, J. A New Spatial Filtering Algorithm for Noisy and Missing GNSS Position Time Series Using Weighted Expectation Maximization Principal Component Analysis: A Case Study for Regional GNSS Network in Xinjiang Province. Remote Sens. 2022, 14, 1295. [Google Scholar] [CrossRef]
- Wang, H.; Li, W.; Shu, C.; Shum, C.; Li, F.; Zhang, S.; Zhang, Z. Assessment of spatiotemporal filtering methods towards optimising crustal movement observation network of China (CMONOC) GNSS data processing at different spatial scales. All Earth 2022, 34, 107–119. [Google Scholar] [CrossRef]
- Zhou, W.; Ding, K.; Liu, P.; Lan, G.; Ming, Z. Spatiotemporal Filtering for Continuous GPS Coordinate Time Series in Mainland China by Using Independent Component Analysis. Remote Sens. 2022, 14, 2904. [Google Scholar] [CrossRef]
- Jiang, W.; Li, Z.; van Dam, T.; Ding, W. Comparative analysis of different environmental loading methods and their impacts on the GPS height time series. J. Geod. 2013, 87, 687–703. [Google Scholar] [CrossRef]
- Liu, B.; Ma, X.; Xing, X.; Tan, J.; Peng, W.; Zhang, L. Quantitative Evaluation of Environmental Loading Products and Thermal Expansion Effect for Correcting GNSS Vertical Coordinate Time Series in Taiwan. Remote Sens. 2022, 14, 4480. [Google Scholar] [CrossRef]
- Yuan, P.; Li, Z.; Jiang, W.; Ma, Y.; Chen, W.; Sneeuw, N. Influences of environmental loading corrections on the nonlinear variations and velocity uncertainties for the reprocessed global positioning system height time series of the crustal movement observation network of China. Remote Sens. 2018, 10, 958. [Google Scholar] [CrossRef]
- Mao, A.; Harrison, C.G.; Dixon, T.H. Noise in GPS coordinate time series. J. Geophys. Res. Solid Earth 1999, 104, 2797–2816. [Google Scholar] [CrossRef]
- Langbein, J. Noise in GPS displacement measurements from Southern California and Southern Nevada. J. Geophys. Res. Solid Earth 2008, 113. [Google Scholar] [CrossRef]
- Williams, S.D.; Bock, Y.; Fang, P.; Jamason, P.; Nikolaidis, R.M.; Prawirodirdjo, L.; Miller, M.; Johnson, D.J. Error analysis of continuous GPS position time series. J. Geophys. Res. Solid Earth 2004, 10. [Google Scholar] [CrossRef]
- He, X.; Bos, M.; Montillet, J.; Fernandes, R. Investigation of the noise properties at low frequencies in long GNSS time series. J. Geod. 2019, 93, 1271–1282. [Google Scholar] [CrossRef]
- Zhang, J.; Bock, Y.; Johnson, H.; Fang, P.; Williams, S.; Genrich, J.; Wdowinski, S.; Behr, J. Southern California Permanent GPS Geodetic Array: Error analysis of daily position estimates and site velocities. J. Geophys. Res. Solid Earth 1997, 102, 18035–18055. [Google Scholar] [CrossRef]
- Li, Z.; Cao, L.; Jiang, S. Comprehensive analysis of Mass Loading Effects on GPS Station Coordinate Time Series Using Different Hydrological Loading Models. IEEE Access 2021. [Google Scholar] [CrossRef]
- He, Y.; Nie, G.; Wu, S.; Li, H. Analysis and discussion on the optimal noise model of global GNSS long-term coordinate series considering hydrological loading. Remote Sens. 2021, 13, 431. [Google Scholar] [CrossRef]
- Li, Z.; Jiang, W.; Liu, H.; Qu, X. Noise model establishment and analysis of IGS reference station coordinate time series inside China. Acta Geod. Cartogr. Sin. 2012, 41, 496–503. [Google Scholar]
- Liang, S.; Gan, W.; Shen, C.; Xiao, G.; Liu, J.; Chen, W.; Ding, X.; Zhou, D. Three-dimensional velocity field of present-day crustal motion of the Tibetan Plateau derived from GPS measurements. J. Geophys. Res. Solid Earth 2013, 118, 5722–5732. [Google Scholar] [CrossRef]
- Zhang, K.; Wang, Y.; Gan, W.; Liang, S. Impacts of Local Effects and Surface Loads on the Common Mode Error Filtering in Continuous GPS Measurements in the Northwest of Yunnan Province, China. Sensors 2020, 20, 5408. [Google Scholar] [CrossRef]
- Tan, W.; Chen, J.; Dong, D.; Qu, W.; Xu, X. Analysis of the Potential Contributors to Common Mode Error in Chuandian Region of China. Remote Sens. 2020, 12, 751. [Google Scholar] [CrossRef]
- Hu, S.; Chen, K.; Zhu, H.; Xue, C.; Wang, T.; Yang, Z.; Zhao, Q. A Comprehensive Analysis of Environmental Loading Effects on Vertical GPS Time Series in Yunnan, Southwest China. Remote Sens. 2022, 14, 2741. [Google Scholar] [CrossRef]
- Hao, M.; Freymueller, J.T.; Wang, Q.; Cui, D.; Qin, S. Vertical crustal movement around the southeastern Tibetan Plateau constrained by GPS and GRACE data. Earth Planet. Sci. Lett. 2016, 437, 1–8. [Google Scholar] [CrossRef]
- Sheng, C.-Z.; Gan, W.-J.; Liang, S.-M.; Chen, W.-T.; Xiao, G.-R. Identification and elimination of non-tectonic crustal deformation caused by land water from GPS time series in the western Yunnan province based on GRACE observations. Chin. J. Geophys. 2014, 57, 42–52. [Google Scholar]
- Zhan, W.; Li, F.; Hao, W.; Yan, J. Regional characteristics and influencing factors of seasonal vertical crustal motions in Yunnan, China. Geophys. J. Int. 2017, 210, 1295–1304. [Google Scholar] [CrossRef]
- Li, C.; Huang, S.; Chen, Q.; Dam, T.v.; Fok, H.S.; Zhao, Q.; Wu, W.; Wang, X. Quantitative evaluation of environmental loading induced displacement products for correcting GNSS time series in CMONOC. Remote Sens. 2020, 12, 594. [Google Scholar] [CrossRef]
- Wu, S.; Nie, G.; Meng, X.; Liu, J.; He, Y.; Xue, C.; Li, H. Comparative Analysis of the Effect of the Loading Series from GFZ and EOST on Long-Term GPS Height Time Series. Remote Sens. 2020, 12, 2822. [Google Scholar] [CrossRef]
- Andrei, C.-O.; Lahtinen, S.; Nordman, M.; Näränen, J.; Koivula, H.; Poutanen, M.; Hyyppä, J. GPS time series analysis from aboa the finnish antarctic research station. Remote Sens. 2018, 10, 1937. [Google Scholar] [CrossRef]
- Hu, S.; Wang, T.; Guan, Y.; Yang, Z. Analyzing the seasonal fluctuation and vertical deformation in Yunnan province based on GPS measurement and hydrological loading model. Chin. J. Geophys. -Chin. Ed. 2021, 64, 2613–2630. [Google Scholar]
- Michel, A.; Santamaría-Gómez, A.; Boy, J.-P.; Perosanz, F.; Loyer, S. Analysis of GNSS Displacements in Europe and Their Comparison with Hydrological Loading Models. Remote Sens. 2021, 13, 4523. [Google Scholar] [CrossRef]
- Zhao, B.; Huang, Y.; Zhang, C.; Wang, W.; Tan, K.; Du, R. Crustal deformation on the Chinese mainland during 1998–2014 based on GPS data. Geod. Geodyn. 2015, 6, 7–15. [Google Scholar] [CrossRef]
- Lyard, F.; Lefevre, F.; Letellier, T.; Francis, O. Modelling the global ocean tides: Modern insights from FES2004. Ocean Dyn. 2006, 56, 394–415. [Google Scholar] [CrossRef]
- McCarthy, D.D.; Petit, G. IERS Conventions (2003); IERS Technical Note No. 32; Publisher of the Federal Agency for Cartography and Geodesy: Frankfurt am Main, Germany, 2004. [Google Scholar]
- Schneider, T. Analysis of incomplete climate data: Estimation of mean values and covariance matrices and imputation of missing values. J. Clim. 2001, 14, 853–871. [Google Scholar] [CrossRef]
- Li, F.; Li, W.; Zhang, S.; Lei, J.; Zhang, Q.; Yuan, L. Spatiotemporal filtering for regional GNSS network in Antarctic Peninsula using independent component analysis. Chin. J. Geophys. 2019, 62, 3279–3295. [Google Scholar]
- Li, W.; Li, F.; Zhang, S.; Lei, J.; Zhang, Q.; Yuan, L. Spatiotemporal filtering and noise analysis for regional GNSS network in Antarctica using independent component analysis. Remote Sens. 2019, 11, 386. [Google Scholar] [CrossRef]
- Gegout, P.; Boy, J.-P.; Hinderer, J.; Ferhat, G. Modeling and observation of loading contribution to time-variable GPS sites positions. Int. Assoc. Geod. Symp. 2010, 135, 651–659. [Google Scholar]
- Dill, R.; Dobslaw, H. Numerical simulations of global-scale high-resolution hydrological crustal deformations. J. Geophys. Res. Solid Earth 2013, 118, 5008–5017. [Google Scholar] [CrossRef]
- Petrov, L. The international mass loading service. Int. Assoc. Geod. Symp. 2017, 146, 79–83. [Google Scholar]
- Berrisford, P.; Dee, D.; Fielding, K.; Fuentes, M.; Kallberg, P.; Kobayashi, S.; Uppala, S. The ERA-interim archive. ERA Rep. Ser. 2009. [Google Scholar]
- Dill, R. Hydrological Model LSDM for Operational Earth Rotation and Gravity Field Variations. In Scientific Technical Report STR; GFZ: Potsdam, Germany, 2008. [Google Scholar]
- Suarez, M.J.; Rienecker, M.; Todling, R.; Bacmeister, J.; Takacs, L.; Liu, H.; Gu, W.; Sienkiewicz, M.; Koster, R.; Gelaro, R. The GEOS-5 Data Assimilation System-Documentation of Versions 5.0.1, 5.1.0, and 5.2.0; NASA Technical Report Series on Global Modeling and Assimilation, NASA/T-2008-104606, 27; NASA Goddard Space Flight Center: Greenbelt, MA, USA, 2008. [Google Scholar]
- Bevis, M.; Brown, A. Trajectory models and reference frames for crustal motion geodesy. J. Geod. 2014, 88, 283–311. [Google Scholar] [CrossRef]
- Bos, M.; Fernandes, R.; Williams, S.; Bastos, L. Fast error analysis of continuous GNSS observations with missing data. J. Geod. 2013, 87, 351–360. [Google Scholar] [CrossRef]
- Akaike, H. A new look at the statistical model identification. IEEE Trans. Autom. Control. 1974, 19, 716–723. [Google Scholar] [CrossRef]
- Schwarz, G. Estimating the dimension of a model. Ann. Stat. 1978, 6, 461–464. [Google Scholar] [CrossRef]
- Dong, D.; Fang, P.; Bock, Y.; Webb, F.; Prawirodirdjo, L.; Kedar, S.; Jamason, P. Spatiotemporal filtering using principal component analysis and Karhunen-Loeve expansion approaches for regional GPS network analysis. J. Geophys. Res. Solid Earth 2006, 111. [Google Scholar] [CrossRef]
- Ray, J.; Altamimi, Z.; Collilieux, X.; van Dam, T.J.G.s. Anomalous harmonics in the spectra of GPS position estimates. GPS Solut. 2008, 12, 55–64. [Google Scholar] [CrossRef]
- Wdowinski, S.; Bock, Y.; Zhang, J.; Fang, P.; Genrich, J. Southern California permanent GPS geodetic array: Spatial filtering of daily positions for estimating coseismic and postseismic displacements induced by the 1992 Landers earthquake. J. Geophys. Res. Solid Earth 1997, 102, 18057–18070. [Google Scholar] [CrossRef]
- Li, W.; Shen, Y.; Li, B. Weighted spatiotemporal filtering using principal component analysis for analyzing regional GNSS position time series. Acta Geod. Geophys. 2015, 50, 419–436. [Google Scholar] [CrossRef]
- Shen, Y.; Li, W.; Xu, G.; Li, B. Spatiotemporal filtering of regional GNSS network’s position time series with missing data using principle component analysis. J. Geod. 2014, 88, 1–12. [Google Scholar] [CrossRef]
- He, X.; Yu, K.; Montillet, J.-P.; Xiong, C.; Lu, T.; Zhou, S.; Ma, X.; Cui, H.; Ming, F. GNSS-TS-NRS: An Open-source MATLAB-Based GNSS time series noise reduction software. Remote Sens. 2020, 12, 3532. [Google Scholar] [CrossRef]
- Wu, S.; Nie, G.; Liu, J.; Xue, C.; Wang, J.; Li, H.; Peng, F. Analysis of deterministic and stochastic models of GPS stations in the crustal movement observation network of China. Adv. Space Res. 2019, 64, 335–351. [Google Scholar] [CrossRef]
Stations | Before HYDL Correction | After EOST_HYDL Correction | After GFZ_HYDL Correction | After IMLS_HYDL Correction |
---|---|---|---|---|
KMIN | WN + PL | WN + PL | WN + PL | WN + PL |
SCDF | WN + FN | WN + PL | WN + PL | WN + PL |
SCGZ | WN + PL | WN + PL | WN + PL | WN + PL |
SCJL | WN + FN | WN + FN | WN + FN | WN + FN |
SCLH | WN + FN | WN + PL | WN + PL | WN + PL |
SCMB | WN + FN | WN + FN | WN + FN | WN + FN |
SCML | WN + FN | WN + FN | WN + FN | WN + FN |
SCMN | WN + FN | WN + PL | WN + PL | WN + PL |
SCNN | WN + FN | WN + FN | WN + FN | WN + FN |
SCPZ | WN + FN | WN + PL | WN + FN | WN + PL |
SCSM | WN + PL | WN + PL | WN + PL | WN + PL |
SCXC | WN + FN | WN + FN | WN + FN | WN + FN |
SCXD | WN + FN | WN + FN | WN + FN | WN + FN |
SCXJ | WN + FN | WN + PL | WN + PL | WN + PL |
SCYX | WN + FN | WN + PL | WN + FN | WN + PL |
SCYY | WN + FN | WN + FN | WN + FN | WN + FN |
XIAG | WN + FN | WN + FN | WN + FN | WN + FN |
YNCX | WN + FN | WN + FN | WN + FN | WN + FN |
YNDC | WN + FN | WN + FN | WN + FN | WN + FN |
YNHZ | WN + FN | WN + FN | WN + FN | WN + FN |
YNJD | WN + FN | WN + FN | WN + FN | WN + FN |
YNJP | WN + FN | WN + FN | WN + FN | WN + FN |
YNLA | WN + GGM | WN + FN | WN + FN | WN + FN |
YNLC | WN + FN | WN + FN | WN + FN | WN + FN |
YNLJ | WN + FN | WN + FN | WN + FN | WN + FN |
YNMJ | WN + FN | WN + FN | WN + FN | WN + FN |
YNML | WN + FN | WN + FN | WN + FN | WN + FN |
YNMZ | WN + FN | WN + FN | WN + FN | WN + FN |
YNRL | WN + FN | WN + FN | WN + FN | WN + FN |
YNSD | WN + FN | WN + FN | WN + PL | WN + PL |
YNSM | WN + FN | WN + FN | WN + FN | WN + FN |
YNTH | WN + FN | WN + PL | WN + FN | WN + PL |
YNWS | WN + FN | WN + FN | WN + FN | WN + FN |
YNXP | WN + FN | WN + PL | WN + PL | WN + PL |
YNYA | WN + FN | WN + FN | WN + FN | WN + FN |
YNYL | WN + FN | WN + FN | WN + FN | WN + FN |
YNYM | WN + PL | WN + PL | WN + PL | WN + PL |
YNYS | WN + FN | WN + PL | WN + FN | WN + PL |
YNZD | WN + FN | WN + PL | WN + FN | WN + PL |
Stations | Correlation | RMS Reduction (%) | Stations | Correlation | RMS Reduction (%) | Stations | Correlation | RMS Reduction (%) |
---|---|---|---|---|---|---|---|---|
KMIN | 0.79 | 38.05 | SCXJ | 0.63 | 19.68 | YNML | 0.77 | 33.82 |
SCDF | 0.64 | 18.90 | SCYX | 0.71 | 27.90 | YNMZ | 0.73 | 31.96 |
SCGZ | 0.64 | 20.06 | SCYY | 0.78 | 36.92 | YNRL | 0.72 | 29.86 |
SCJL | 0.71 | 27.11 | XIAG | 0.79 | 37.94 | YNSD | 0.74 | 32.63 |
SCLH | 0.63 | 20.21 | YNCX | 0.80 | 40.26 | YNSM | 0.77 | 35.85 |
SCMB | 0.70 | 28.06 | YNDC | 0.78 | 36.93 | YNTH | 0.78 | 35.00 |
SCML | 0.76 | 29.36 | YNHZ | 0.77 | 22.28 | YNWS | 0.71 | 24.08 |
SCMN | 0.73 | 31.24 | YNJD | 0.79 | 38.58 | YNXP | 0.80 | 35.20 |
SCNN | 0.77 | 32.90 | YNJP | 0.70 | 28.96 | YNYA | 0.80 | 39.25 |
SCPZ | 0.79 | 37.71 | YNLA | 0.76 | 32.13 | YNYL | 0.74 | 30.95 |
SCSM | 0.69 | 26.80 | YNLC | 0.77 | 36.17 | YNYM | 0.79 | 39.14 |
SCXC | 0.72 | 30.99 | YNLJ | 0.77 | 36.04 | YNYS | 0.79 | 37.86 |
SCXD | 0.73 | 31.68 | YNMJ | 0.77 | 36.61 | YNZD | 0.74 | 32.46 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, S.; Chen, K.; Zhu, H.; Wang, T.; Zhao, Q.; Yang, Z. Potential Contributors to CME and Optimal Noise Model Analysis in the Chinese Region Based on Different HYDL Models. Remote Sens. 2023, 15, 945. https://doi.org/10.3390/rs15040945
Hu S, Chen K, Zhu H, Wang T, Zhao Q, Yang Z. Potential Contributors to CME and Optimal Noise Model Analysis in the Chinese Region Based on Different HYDL Models. Remote Sensing. 2023; 15(4):945. https://doi.org/10.3390/rs15040945
Chicago/Turabian StyleHu, Shunqiang, Kejie Chen, Hai Zhu, Tan Wang, Qian Zhao, and Zhenyu Yang. 2023. "Potential Contributors to CME and Optimal Noise Model Analysis in the Chinese Region Based on Different HYDL Models" Remote Sensing 15, no. 4: 945. https://doi.org/10.3390/rs15040945
APA StyleHu, S., Chen, K., Zhu, H., Wang, T., Zhao, Q., & Yang, Z. (2023). Potential Contributors to CME and Optimal Noise Model Analysis in the Chinese Region Based on Different HYDL Models. Remote Sensing, 15(4), 945. https://doi.org/10.3390/rs15040945