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Abstract: Deep learning has achieved great success in remote sensing image change detection
(CD). However, most methods focus only on the changed regions of images and cannot accurately
identify their detailed semantic categories. In addition, most CD methods using convolutional
neural networks (CNN) have difficulty capturing sufficient global information from images. To
address the above issues, we propose a novel symmetric multi-task network (SMNet) that integrates
global and local information for semantic change detection (SCD) in this paper. Specifically, we
employ a hybrid unit consisting of pre-activated residual blocks (PR) and transformation blocks
(TB) to construct the (PRTB) backbone, which obtains more abundant semantic features with local
and global information from bi-temporal images. To accurately capture fine-grained changes, the
multi-content fusion module (MCFM) is introduced, which effectively enhances change features
by distinguishing foreground and background information in complex scenes. In the meantime,
the multi-task prediction branches are adopted, and the multi-task loss function is used to jointly
supervise model training to improve the performance of the network. Extensive experimental
results on the challenging SECOND and Landsat-SCD datasets, demonstrate that our SMNet obtains
71.95% and 85.65% at mean Intersection over Union (mIoU), respectively. In addition, the proposed
SMNet achieves 20.29% and 51.14% at Separated Kappa coefficient (Sek) on the SECOND and
Landsat-SCD datasets, respectively. All of the above proves the effectiveness and superiority of the
proposed method.

Keywords: remote sensing images; semantic change detection; deep learning

1. Introduction

Accurate access to dynamics and change information on the land surface is important
for understanding and studying the natural environment, human activities, and their
correlations [1,2]. With the rapid development of remote sensing sensors, it is possible to
obtain massive high-resolution remote sensing images, which further provides reliable
data sources for studying CD. Remote sensing image CD is used to identify the differences
between two images, which are located at the same position but are obtained at different
times. Therefore, remote sensing image CD is of great signification in many fields including
urban planning, ecosystem assessment, and natural resource management [3–5].

Over the years, deep learning has been successfully applied to image classification [6,7],
object detection [8,9], and semantic segmentation [10,11], which contributes new ideas
and methods for remote sensing image CD. A simple and commonly used method is
stacking the bi-temporal images and then feeding them into a CNN to extract change
information [12–14]. However, this method does not make full use of the information
from the bi-temporal images. Therefore, more researchers adopted an architecture with
two parallel CNN and some effective techniques (e.g., multi-scale feature fusion methods,
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attention mechanism, deep supervision) to improve the performance of the architecture.
For example, Zhang et al. [15] proposed a CD framework with a hierarchical fusion strategy
and introduced the dynamic convolutional module for adaptive learning, to improve results
integrity. Fang et al. [16] used a Siamese network based on U-Net++ to extract bi-temporal
images’ features and adopted an integrated channel attention module (CAM) for deep
supervision. Ling et al. [17] proposed an integrated residual attention multi-scale Siamese
network, which effectively obtains multi-scale semantic information to alleviate the lack of
unpredictable change details and global semantic information. Chen et al. [18] designed a
dual-attention mechanism to capture more discriminative features than compared methods,
which improves CD accuracy. Peng et al. [19] proposed a difference-enhancement dense-
attention CNN, which uses upsampling attention and difference-enhancement units to,
respectively, extract and select change information. Guo et al. [20] proposed CosimNet
for scene CD using thresholded contrastive loss to learn more discriminative metrics.
Zhu et al. [21] adopted a global hierarchical mechanism to enhance unbalanced samples
and improve SCD accuracy. Although CNN significantly improves CD accuracy for remote
sensing images with its powerful feature extraction capabilities, the existing methods still
suffer from the following problems. First, the CNN’s receptive field is much smaller than
the theoretical maximum, which makes it difficult to establish long-range dependencies in
space and time. Hence, the global and contextual information of remote sensing images is
often ignored by the CNN. Second, the CNN’s methods of dealing with changed region
boundaries are unsatisfactory. Last but not least, most algorithms for CD can predict
whether image pixels have changed, but they cannot detect their semantic categories on
the bi-temporal images.

To overcome the difficulty faced by CNN in handling bi-temporal features and to better
leverage its feature extraction powers for SCD, we propose a method based on CNN and
Transformer called symmetric multi-task network (SMNet) that not only locates changed
areas but also identifies the type of change. First, to extract the local and global information
from bi-temporal remote sensing images, a hybrid PRTB backbone composed of PR and
TB is built [22], which extracts different hierarchical features. Then, a novel multi-content
fusion module (MCFM) [23] is used to strengthen the change-related features obtained by
subtracting the extracted corresponding hierarchical features. Finally, we use the multi-task
prediction branches (i.e., two semantic and one change branches) to obtain SCD results.
To improve overall network performance, the multi-task loss function is jointly used to
supervise training. Extensive experiments on the SECOND and Landsat-SCD dataset
demonstrate that our proposed method obtains better accuracy than compared methods.
The main contributions of this research are as follows:

(1) We propose a novel multi-task model (SMNet) for remote sensing image SCD,
which reduces confusion between semantic and change information. To sufficiently capture
the local and global information from the bi-temporal images, we exploit the multi-scale
feature extraction encoder that integrates the PR and TB to obtain more abundant semantic
information. For enhancing the extraction of change-related features in complex scenes, the
MCFM is introduced to mitigates false detection of fine-grained changes.

(2) Extensive experiments on two public datasets demonstrate the effectiveness of the
proposed SMNet. The proposed method outperforms compared methods, yielding the
highest SeK of 20.29% and 50.14%, respectively.

The rest of this paper is organized as follows. Related works are reviewed in Section 2. A
detailed description of the proposed method is provided in Section 3. The experimental data,
evaluation indicators, and training details are given in Section 4. The experimental results and
discussion are reported in Section 5, and the conclusions are provided in Section 6.

2. Related Work
2.1. Binary Change Detection

Numerous scholars have conducted extensive research on BCD. To suppress back-
ground noise in remote sensing images, Chen et al. [24] designed a feature constraint CD



Remote Sens. 2023, 15, 949 3 of 19

network that uses a self-supervised learning strategy to constrain feature extraction and
feature fusion. Zhi et al. [25] proposed a novel neural network with a spatial-spectral
attention mechanism and multi-scale dilation convolution modules, effectively alleviating
the pseudo-changes caused by solar height and soil moisture in land cover CD for remote
sensing images. To address the problems of feature diversity and scale-change flexibility,
Lei et al. [26] employed scale-adaptive attention to establish relationships between feature
maps and convolution kernel scales, utilizing a multi-layer perceptron (MLP) that fuses
low-level details and high-level semantics to improve feature discrimination. Wei et al. [27]
designed a location guidance module that accurately identifies changed regions. To handle
the varying resolutions of bi-temporal images, a super-resolution module containing a
generator and discriminator [28] is introduced to directly learn super-resolution features.
Meanwhile, a stacked attention module is used to capture the more useful channel and
spatial information, which effectively improved the accuracy of multi-resolution remote
sensing image CD. The challenges of CD for remote sensing images are a small number of
datasets and a huge work of data labeling. To alleviate the challenges, a semi-supervised
convolutional network based on a generative adversarial network [29] is proposed, which
uses two discriminators to enforce the feature distribution consistency of segmentation
maps and entropy maps between the labeled and unlabeled data, to achieve high-precision
CD on a small number of labeled datasets.

2.2. Semantic Change Detection

Despite the great success of BCD, it is difficult to meet the needs of practical produc-
tion applications due to the lack of semantic information. Therefore, some scholars have
researched SCD. To address a coarse boundary, Tsutsui et al. [30] developed a multi-task
SCD method based on U-Net, which improves the accuracy of boundary predictions by
simultaneously performing CD and semantic segmentation through a shared feature ex-
traction network. A convolutional network for large-scale SCD [31] utilizes the multi-scale
atrous convolution unit to enlarge the receptive field as well as capturing multi-scale
information. Additionally, an attention mechanism and deep supervision strategy are
further introduced to improve network performance. To overcome scale variation and class
imbalance problems, a dual-task constrained deep Siamese convolutional network [32]
is proposed, which introduces a dual-attention module to obtain discriminant features
and results in a good performance on the WHU dataset. The temporal correlation of
bi-temporal images is worth considering. To this end, an end-to-end network that com-
bines CNN and recurrent neural network [33] is proposed to extract spatial and temporal
information and directly applies changed labels for model training. A multi-task learning
framework [34] is constructed, which uses a fully convolutional long short-term memory
to capture the temporal relationship among spatial feature vectors and to boost the overall
performance. Daudt et al. [35] applied multi-task learning to extract temporal correlations
and feature-categorized information to improve SCD performance. To extract asymmetric
change information from multi-temporal images, an asymmetric Siamese network [36] is
designed to extract depth features through the asymmetric gating unit, which effectively
distinguished changed features in complex scenes. Zheng et al. [37] constructed a multitask
encoder–converter–decoder network with a reduced number of encoder branches and
explored the relationships between semantic change and time symmetry.

3. Methodology
3.1. Overview

The network architecture of the proposed SMNet is shown in Figure 1. SMNet adopts
an encoder–decoder structure, which is mainly composed of three parts: a multi-scale
feature extraction encoder, multi-content fusion enhancement, and the multi-task prediction
decoder. First, the feature extraction encoder contains two symmetric branches composed
of the PR and TB, which are used to extract semantic features at different levels from
bi-temporal images (T1 and T2). Two paired sets of feature maps, [E1

T1, E2
T1, E3

T1, E4
T1,
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E5
T1] and [E1

T2, E2
T2, E3

T2, E4
T2, E5

T2], are obtained from the feature extraction encoder.
Then, five difference feature maps [D1, D2, D3, D4, D5] at each scale (Ei

T1, Ei
T2; i = 1, 2, 3,

4, 5) are generated for change analysis. To improve the ability of our network to capture
useful information from complex scenes, we introduce the MCFM to aggregate foreground,
background, and global features. The enhanced change features [F1, F2, F3, F4, F5] are then
generated by multi-scale feature enhancement composed of MCFM. Finally, the multi-task
prediction decoder is used to make synchronous predictions on semantic and enhanced
change features, which generate two semantic maps (S1, S2) and a binary change map (B).
Further, semantic change maps (P1, P2) are generated by masking S1 and S2 with B.
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Figure 1. The architecture of the proposed SMNet. 
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Figure 1. The architecture of the proposed SMNet.

3.2. Multi-Scale Feature Extraction Encoder

The remote sensing image SCD faces the challenge that pure CNN poorly captures
global contextual information. The transformer compensates for this shortcoming by
exploiting multi-head self-attention (MHSA) to establish a strong global dependency. This
enables the receptive field to flexibly learn more powerful features. With the addition
of the transformer, both local and global features can be extracted to facilitate semantic
understanding. The PRTB backbone is thus constructed to extract multi-scale semantic
features at different spatial levels.

Figure 2 illustrates the detailed structure of the PRTB. Compared with the residual
blocks of ResNet, the PR block (see Figure 2a) sees the activation functions (batch normal-
ization (BN) and rectified linear unit (ReLU)) as “pre-activation” of the weight layers. The
PR block makes the information able to be directly transmitted from one layer to another, in
both forward and backward passes [38], which makes SMNet easier to train and improves
its generalizability. The input feature, Xl−1, in the l − 1 layer is first fed to BN and ReLU
layers. Then, 3 × 3 convolutional layers are used to capture the local information. Then, Xl
in the l layer is generated by the PR block. The TB structure is illustrated in Figure 2b. The
MHSA module is used to extract global information, and layer normalization (LN), MLP,
and residual connection modules are introduced to improve representability. Finally, Xl is
transformed into Xl+1 through the n-layer TB. The computing formula is as follows:

Xl = BRC(BRC(Xl−1)) + Xl−1, (1)

−
Xl = MHSA(LN(Xl)) + Xl , (2)
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Xl+1 = MLP(LN(
−
Xl)) +

−
Xl , (3)

where Xi is the features extracted from the i-th layer after the images are input to the net-
work, and BRC(·) indicates that the feature map passes through BN, ReLU, and

3 × 3 convolutional layers.
−
Xl is the output of the MHSA module. As shown in the

left part of Figure 1, the feature extraction encoder consists of five stages. After the first
stage, the characteristic resolution of the images remains unchanged, while the channel
dimension is increased to 32. At the following stage, the feature resolution is halved,
while the channel dimension is doubled. For example, input images T1 and T2 are both
256 × 256 × 3, and the sizes of the semantic feature maps, Ei

T1 and Ei
T2 (i = 1, 2, 3, 4, 5),

in the five stages are 256 × 256 × 32, 128 × 128 × 64, 64 × 64 × 128, 32 × 32 × 256, and
16 × 16 × 512, respectively.
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3.3. Multi-Content Fusion Enhancement

Problems of false alarm, missed detection, and the loss of details are common in SCD
methods and are usually caused by the insufficient ability of the model to extract foreground
(region-of-interest) information. Therefore, we introduce the MCFM to handle feature
extraction in the foreground and background, as well as globally. While capturing the
foreground information, background and global information are supplemented to improve
the discrimination of foreground features and obtain more effective edges. As shown in
the middle part of Figure 1, we generate difference feature map Di with correspondent
semantic feature maps (Ei

T1, Ei
T2) for change analysis. Then, Di is enhanced by the MCFM

to obtain the enhanced feature, Fi. The specific process is as follows:

Di = Ei
T1 − Ei

T2, (4)
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Fi = MCFM(Di), (5)

where i = 1, 2, 3, 4, 5. The specific MCFM architecture is illustrated in Figure 3.

Remote Sens. 2023, 15, x FOR PEER REVIEW 6 of 19 
 

 

𝑭 = 𝑀𝐶𝐹𝑀(𝑫), (5)

where i = 1, 2, 3, 4, 5. The specific MCFM architecture is illustrated in Figure 3. 

FCG
M

P
FC S

CA

G
M

P
1 ×

1 S

SA
RA 3×

3

G
A

P
1 ×

1

G
M

P
1 ×

1 S

SA

3×
3U

3 ×
3

GMP/GAP Global Max/Average Pooling

CA/SA/RA Channel/Spatial/Reverse Attention

FC Fully Connected Layer

U Upsampling

S Sigmoid/ Concat/Multiplication

iFiD

G

B

G Global Content F Foreground Content

3×
3F

B Background Content

 
Figure 3. Multi-content fusion module. 

3.3.1. Foreground and Background Branches 
First, the difference feature, Di ∈ ℝ×ு×ௐℝ×ு×ௐ (C, H, and W are the channel di-

mension, height, and width of the feature), is fed into the CA to reduce redundant infor-
mation. The specific formula is as follows: 𝑓 = 𝐶𝐴(𝑫) ⊕ 𝑫, (6)

where fca denotes the CA features, and ⊕ indicates concatenation in the channel dimen-
sion. 

Then, to embed the CA information, we obtain the spatial attention (SA) feature, fsa, 
through the SA. This is computed as 𝑓௦ = 𝑆𝐴(𝑓), (7)

where fsa denotes the SA features. 
On the one hand, fsa is used as an input to the foreground information alongside the 

CA feature. On the other hand, fsa enters the background branch. Because fsa indicates high-
level features that omit spatial details, it leads to the lack of edge features in the continuous 
convolution process. Therefore, in the background branch, we introduce reverse attention 
to mine valid edge information. This process is written as follows: 𝑓 = 𝑓௦ ⊗ 𝑓, (8)𝑓 = (1 − 𝑓௦)⊗ 𝑓, (9)

where ffore denotes foreground features, and fback denotes background features. ⨂ represents 
element-wise multiplication. 

3.3.2. Global Branch 
The foreground and background branches pay more attention to the local features of 

images; thus, we add a global branch to obtain more global features. Specifically, we apply 
global average pooling (GAP) on Di to integrate the global information and reduce redun-
dant parameters. It also utilizes a 1 × 1 convolution for feature smoothing. Then, we re-
construct the global feature to the same size as the difference, Di, by bilinear interpolation 

Figure 3. Multi-content fusion module.

3.3.1. Foreground and Background Branches

First, the difference feature, Di∈ RC×H×WRC×H×W (C, H, and W are the channel
dimension, height, and width of the feature), is fed into the CA to reduce redundant
information. The specific formula is as follows:

fca = CA(Di)⊕Di, (6)

where fca denotes the CA features, and ⊕ indicates concatenation in the channel dimension.
Then, to embed the CA information, we obtain the spatial attention (SA) feature, fsa,

through the SA. This is computed as

fsa = SA( fca), (7)

where fsa denotes the SA features.
On the one hand, fsa is used as an input to the foreground information alongside the

CA feature. On the other hand, fsa enters the background branch. Because fsa indicates high-
level features that omit spatial details, it leads to the lack of edge features in the continuous
convolution process. Therefore, in the background branch, we introduce reverse attention
to mine valid edge information. This process is written as follows:

f f ore = fsa ⊗ fca, (8)

fback = (1− fsa)⊗ fca, (9)

where ffore denotes foreground features, and fback denotes background features. ⊗ represents
element-wise multiplication.

3.3.2. Global Branch

The foreground and background branches pay more attention to the local features
of images; thus, we add a global branch to obtain more global features. Specifically, we
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apply global average pooling (GAP) on Di to integrate the global information and reduce
redundant parameters. It also utilizes a 1 × 1 convolution for feature smoothing. Then, we
reconstruct the global feature to the same size as the difference, Di, by bilinear interpolation
upsampling. This rough operation loses detailed information, but the reconstructed features
reflect the overall characteristics of original features. Next, the reconstructed features are
fed into the SA and residually multiplied with Di to obtain the final global feature, fglobal.
The entire process is formulated as follows:

fglobal = [SA(up(Conv1×1(GAP(Di))))]⊗Di, (10)

where Conv1×1(·) is the 1 × 1 convolution layer, and up(·) is the upsampling operation.

3.3.3. Feature Fusion

We obtain three kinds of features (i.e., ffore, fback, and fglobal) and further reshape them
using a 3× 3 convolution layer. Then, we aggregate the reshaped features by concatenating
along the channel dimension. We also apply a skip connection to retain the original features
and generate the output features of Fi ∈ RC×H×W . The entire process is written as follows:

Fi =
[
Conv3×3

(
Conv3×3

(
f f ore

)
⊕ Conv3×3( fback)⊕ Conv3×3

(
fglobal

))]
⊕Di, (11)

where Conv3×3(·) is 3 × 3 convolutional layer.

3.4. Multi-Task Prediction Decoder

The single-task methods use two decoders to directly generate two semantic change
maps, which cause confusion between the change and semantic information. This normally
reduces CD detection accuracy. Therefore, we design the decoder with multi-task prediction
branches that include two semantic decoders for predicting the semantic maps of bi-
temporal images and a change decoder for predicting binary change maps, as shown on the
right side of Figure 1. Each of the three decoders contains four stages that receive features
from the previous stages, and the semantic decoders integrate semantic feature maps Ei

T1
and Ei

T2 (i = 1, 2, 3, 4, 5). The change decoder integrates the multi-scale enhanced features
Fi (i = 2, 3, 4, 5) through skip connections. Each stage consists of a bilinear upsampling
layer and a 3 × 3 convolutional layer. At each stage of the decoder, the channel dimension
is halved, while the feature resolution is doubled until the original image resolution is
restored. For example, input images T1 and T2 are both 256 × 256 × 3, and the feature
maps in the decoder are 32 × 32 × 256, 64 × 64 × 128, 128 × 128 × 64, and 256 × 256 × 32.
Then, two semantic maps (S1 and S2) and a BCD map (B) are generated by the classification
layer. Finally, P1 and P2 are obtained by masking S1 and S2 with B. The calculations are
as follows:

P1, P2 = B · (S1, S2), (12)

Si
T1 = up(Conv3×3(Ei−1

T1 )) + Ei
T1, (13)

Si
T2 = up(Conv3×3(Ei−1

T2 )) + Ei
T2, (14)

Bi = up(Conv3×3(Fi−1)) + Fi, (15)

where Si
T1 and Si

T2 represent the feature maps of each stage of the two semantic decoders;
Bi represents the feature map of each stage of the change decoder, i = 2, 3, 4, 5.

Only the change loss is used to train multi-task prediction; hence, semantic information
is lacking for training supervision, which negatively affects network performance. We use
the multi-task loss function (Lmul), including the semantic losses, Lsem1 and Lsem2, and
binary change loss, Lc, to jointly guide model training. The calculation is as follows:

Lmul = α(Lsem1 + Lsem2) + (1− α)Lc, (16)
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where α is used to adjust the effect of different loss functions for the network. The semantic
losses, Lsem1 and Lsem2, are the multi-class cross-entropy loss between the semantic seg-
mentation results, S1 and S2, and the ground truth (GT) semantic change maps, L1 and L2.
The no-change class (index “0”) is excluded from the loss calculation. The calculation of
Lsem on each pixel is as follows:

Lsem = − 1
N ∑N

i=1 yi log(pi), (17)

where N is the number of semantic classes, and yi and pi denote the GT label and the
predicted probability of the i-th class, respectively.

A severe class imbalance problem occurs with BCD, in which the number of unchanged
pixels is much larger than the number of changed pixels. To alleviate this, binary change
loss Lc combines binary cross-entropy and dice loss to jointly supervise the BCD. The
formula is as follows:

Lc = −(yb log(ŷb) + (1− yb) log(1− ŷb)) + 1− 2× yb × so f tmax(ŷb)

yb + so f tmax(ŷb)
, (18)

where yb is the GT label, which is obtained by replacing non-zero labels with “1” as a
change label. ŷb is the predicted probability of binary change.

4. Experimental Data and Evaluation Indices
4.1. Datasets

The SECOND [36] is a high-resolution dataset collected by several aerial platforms
and sensors for remote sensing image SCD. Among the 4662 pairs of temporal images,
2968 are openly available, covering several cities (e.g., Hangzhou, Chengdu, and Shanghai).
Each pair of data provides original images and corresponding semantic change labels. Each
image has a fixed size of 512× 512 pixels with the spatial resolution varying from 0.3 to 5 m.
The dataset holds six land-cover classes, including non-vegetated ground surface, tree, low
vegetation, water, building, and playground, and involves 30 common change categories.
Figure 4 presents sample images from the SECOND. As can be seen, no-changed pixels
account for more than 80% of the total, whereas the 30 change categories only take up small
proportions, which poses a huge imbalance challenge to the SCD method.

The Landsat-SCD dataset [39] is made up of Landsat images collected between 1990
and 2020. The observation area is Tumshuk, Xinjiang, China. The dataset consists of 8468
pairs of images, each having a fixed size of 416 × 416 pixels with a resolution of 30 m.
The dataset relates a no-change class and four land-cover classes, including farmland,
desert, buildings, and water. Figure 5 shows sample images from the Landsat-SCD dataset.
The dataset contains many complex detection scenes, where the buildings are small and
scattered. Changed pixels account for about 19% of the total, which provides a realistic
evaluation dataset for SCD methods.

4.2. Evaluation Metrics

In this paper, four evaluation metrics are utilized to assess the performance of different
methods, including overall accuracy (OA), mean Intersection over Union (mIoU), separated
Kappa (κ) coefficient (SeK), and a comprehensive score (Score). OA reflects the proportion
of correctly classified samples to all samples, defined as follows:

OA =
TP + TN

TP + FN + FP + TN
(19)

where TP, TN, FP, and FN represent the numbers of true positives, true negatives, false
positives, and false negatives, respectively.
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Owing to the obvious imbalance of positive and negative samples, the OA calculation
can easily be dominated by negative samples; hence, it will fail to provide a reasonable
perspective of full-task accuracy. Thus, we turn to mIoU and SeK. The former is used to
evaluate SCD results from the BCD perspective, and the latter takes the SCD perspective.
mIoU is the mean value of the IoU of no-change pixels (IoU1) and changed pixels (IoU2):

IoU1 =
TN

TN + FP + FN
, (20)

IoU2 =
TP

TP + FN + FP
, (21)

mIoU =
IoU1 + IoU2

2
, (22)

SeK is the combination of IoU2 and the new κ after unconsidered true predictions of
non-changed pixels. SeK is calculated as follows:

SeK = κ× eIoU2−1, (23)

κ =
p0 − pe

1− pe
, (24)

p0 =
∑N

i=0 qii

∑N
i=0 ∑N

j=0 qij
, (25)

pe =
∑N

i=0(qi+ × q+i)(
∑N

i=0 ∑N
j=0 qij

)2 , (26)

where Q =
{

qij, 0 ≤ i ≤ N, 0 ≤ j ≤ N
}

is the confusion matrix, in which “0” represents the
unchanged class, and N represents the number of categories. qi+ denotes the row sum of Q,
and q+i denotes the column sum. Based on mIoU and Sek, Score can be calculated as [37]:

Score = 0.3×mIoU + 0.7× SeK. (27)

4.3. Training Details

All methods are implemented with PyTorch on Linux and trained using two NVIDIA
RTX 2080Ti GPUs. During training, the same experimental parameters are used in all
experiments. We use stochastic gradient descent to train the network with an initial
learning rate of 0.01 and a weight decay of 0.9. The batch size and α are set to 4 and
0.5, respectively. We further split each dataset into training, validation, and testing sets
randomly at a ratio of 7:1:2. To make better use of the GPU for training, we uniformly
resize image patches to 256 × 256 and train the framework with 50 epochs. To improve
robustness, data augmentation is performed via random flipping and rotating of the
input images.

5. Results
5.1. Comparison Experiments

To verify the superiority of SMNet on SCD tasks, several excellent remote sensing
image CD models were compared:

• FC-Siam-conc [12]: A fully convolutional Siamese network that fuses bi-temporal
features through skip-connections for CD.

• FC-Siam-diff [12]: A fully convolutional Siamese network that utilizes multi-layer
difference features to fuse bi-temporal information.

• DSIFN [40]: A deeply supervised differential network that generates change maps
using multi-scale feature fusion.
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• HRSCD-str3 [35]: A network that introduces temporal correlation information by
constructing a BCD branch.

• HRSCD-str4 [35]: A Siamese network that designs a skip operation to connect Siamese
encoders with the decoder of the CD branch.

• BiSRNet [41]: A bi-temporal semantic reasoning (SR) network that applies Siamese
and cross-temporal SR to enhance information exchange between temporal and
change branches.

• FCCDN [24]: A feature constraint CD network based on a dual encoder–decoder that
uses a non-local feature pyramid network to extract and fuse multi-scale features and
proposes a densely connected feature fusion module to enhance robustness.

• BIT [42]: A network that combines a CNN and transformer learns a compact set of
tokens to represent high-level concepts that reveal change of interest in bi-temporal
images. The transformer finds the relationship between semantic concepts in the
token-based space-time.

The quantitative analysis of experimental results on the SECOND is shown in Table 1,
indicating that our method delivers excellent performance. Specifically, SMNet achieves the
best mIoU, SeK, and OA values of 71.95%, 20.29%, and 86.68%, respectively. Compared with
the BIT, SMNet shows consistent improvements for all evaluation metrics, demonstrating
that the PR and TB combination greatly assists feature extraction, resulting in the acquisition
of much richer global information. Our multi-task method shares some of its obvious
advantages with BiSRNet and FCCDN over the single-task methods, such as FC-Siam-conc,
FC-Siam-diff, and DSIFN. The main reason may be that semantic and change information
interferes with each other in the single-task method. The experimental results on the
Landsat-SCD are shown in Table 2, where the proposed method achieves the best results on
each evaluation metric. In particular, our method is 7.16% higher compared to BIT in SeK.

Table 1. Comparison results on SECOND dataset.

Method mIoU/% SeK/% Score/% OA/%

FC-Siam-conc 66.38 10.60 27.33 84.11
FC-Siam-diff 66.65 9.57 26.69 84.01

DSIFN 66.28 9.37 26.44 83.20
HRSCD-str3 65.85 11.89 28.08 82.85
HRSCD-str4 69.69 16.91 32.74 84.81

BiSRNet 69.13 15.08 31.30 83.90
FCCDN 69.38 17.06 32.75 86.44

BIT 70.17 18.06 33.69 86.01
SMNet (ours) 71.95 20.29 35.79 86.68

Table 2. Comparison results on Landsat-SCD dataset.

Method mIoU/% SeK/% Score/% OA/%

FC-Siam-conc 64.66 5.70 23.39 80.09
FC-Siam-diff 69.22 10.25 27.94 84.25

DSIFN 70.37 20.67 35.58 85.66
HRSCD-str3 78.23 32.70 46.36 90.65
HRSCD-str4 80.33 36.68 49.78 91.79

BiSRNet 80.44 37.65 50.49 92.16
FCCDN 77.10 29.72 43.94 90.29

BIT 82.60 43.98 55.56 93.45
SMNet (ours) 85.65 51.14 61.49 94.53

Figure 6 visualizes partial results on the SECOND. Since the multi-task methods
decouple the SCD task into two sample sub-tasks of se. Since the multi-task methods
decouple the SCD task into two sample sub-tasks of semantic segmentation and BCD, which
largely reduces the output space. As a result, multi-task methods are more accurate and
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complete than single-task methods (e.g., FC-Siam-conc). In complex scenes, as shown in the
first and second groups in Figure 5, there are a large number of false and missed detection
in compared methods due to the relatively similar spectral characteristics between low
vegetation and trees in the images. However, the proposed method effectively establishes
context information and clearly distinguishes low vegetation and trees by capturing richer
global information. In the case of irregular changes at multiple scales, as shown in the third
and fourth groups in Figure 5, FC-Siam-conc, BiSRNet, FCCDN, and BIT all have missed
detection at different degrees. However, SMNet demonstrated higher adaptability to multi-
scale change regions and produced smoother edges by distinguishing foreground and
background information. Since the resolution of the Landsat-SCD dataset is relatively low,
it poses a greater challenge to the performance of the model. In this dataset, the proposed
model accurately identifies fine-grained changes that are easily missed by compared models,
such as the drying of rivers and the change of small farmland and buildings in Figure 7.

Figure 8 presents the intermediate results of the BIT and the proposed method on
the SECOND. It can be seen that BIT shows obvious misjudgment in the recognition of
semantic types, which may be caused by its transformer receiving only the lowest semantic
features from the CNN, resulting in inadequate semantic information. The proposed
method not only effectively reduces the response to unrelated information and improves
the classification ability of different objects via the PRTB backbone, but it also successfully
leveraged the MCFM module to accurately detect change regions and improve boundary
expressability. It is worth noting that in the case of extreme label imbalances, water
is detected more accurately by SMNet, which demonstrates that the proposed method
achieves excellent performance for remote sensing image SCD.

5.2. Ablation Experiments

To validate the contributions of the key components of our framework, four sets of
ablation experiments were performed on the SECOND. In this paper, we use the backbone
network composed of the P-Res block as the baseline. Each module is joined to the network
framework individually for performance evaluation on basis of the baseline. The results
are listed in Table 2.
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As shown in rows 1 and 2 of Table 3, compared with the baseline, the addition of
the multi-task loss achieves a gain of 0.34% and 0.73% for mIoU and Sek, respectively.
This indicates that the multi-task loss improves semantic expressability via co-supervised
model training. The third row of Table 2 shows that the addition of the PRTB backbone
achieves significant improvements in all metrics, which is due to that our PRTB backbone
considers more global information and context information of the model. From the last row
of Table 2, introducing the MCFM increases the mIoU value from 71.50% to 71.95% and the
Sek value from 19.45% to 20.29%, respectively. This illustrates that the MCFM is effective in
highlighting the boundaries of change areas. Some of the visualization results are shown in
Figure 9, which illustrates the improvements in terms of fewer missed and false detection.
In particular, the ability to distinguish ground, low vegetation, and tree categories have
been significantly increased.
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Table 3. Ablation study on the SECOND dataset.

Model mIoU/% SeK/% Score/% OA/%

Base 70.28 17.10 33.06 85.83
Base + Lmul 70.62 17.83 33.67 85.38
Base + PRTB 70.64 18.74 34.31 86.25

Base + Lmul + PRTB 71.50 19.45 35.10 86.44
Base + Lmul + PRTB + MCFM 71.95 20.29 35.79 86.68

In addition, the performance exhibited by different layer transformer blocks on the
SECOND dataset is discussed in this paper, and the results are shown in Table 4. It can be
seen that too many transformer blocks decrease the detection effectiveness of the network.
When the number of n-layers is set to (1, 2, 4, 2, 1), the best detection results are obtained at
mIoU and SeK, which reduces redundant computation.
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Table 4. The effect of the n-layer transformer block on the SECOND dataset.

Layers mIoU/% SeK/% Score/% OA/% Flops/G Params/M

(1,1,1,1,1) 70.54 18.17 33.91 85.86 67.63 36.87
(2,2,2,2,2) 70.62 18.59 34.17 86.30 70.35 38.63
(1,2,4,2,1) 71.95 20.29 35.79 86.68 71.05 37.48
(4,4,4,4,4) 70.72 18.66 34.28 86.50 75.79 42.16

The loss function provides effective supervision information for network training,
which has a significant impact on network performance. In this paper, α is introduced in
the multi-task loss to balance the loss values between the semantic and change branches.
In the process of training, the larger value of α indicates more supervision information
from semantic branches to the model. To analyze the sensitivity of α, we chose four sets
of values from 0 to 0.8 for our experiments. Figure 10 shows the effect of different α

values in the multi-task loss on each evaluation metric. It can be seen that all curves of the
SECOND dataset reach the best value when α = 0.5, which indicates that semantic loss
and binary change loss play equal roles in the co-supervision network training. However,
all evaluation metrics have the lowest value when α = 0.8, which illustrates that semantic
supervision is greatly important for remote sensing image SCD.
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6. Conclusions

SCD is a meaningful and challenging task in remote sensing field. It requires the full
exploitation of the semantic and change features. In this paper, we propose SMNet, a novel
CNN and transformer implementation model for remote sensing image SCD. It can output
semantic and change information end-to-end. Based on an encoder–decoder architecture,
we built the PRTB backbone, which uses the combination of CNN and transformer to extract
image features with more global information. This improves the semantic expressability
of our network. Then, we introduce the MCFM, which enhances the sensitivity of the
model to change regions in complex backgrounds by fusing foreground, background, and
global information. Finally, we use the multi-task loss to jointly guide network training,
further improving the detection efficacy of SMNet. Comparative experimental results
on the SECOND and Landsat-SCD datasets show that our new framework shows better
accuracy. Ablation experiments then clearly demonstrate the necessity of each module for
the detection results.

The SECOND and Landsat-SCD datasets are currently available datasets for remote
sensing image SCD tasks with pixel-level annotations of large-scale images. The creation
of such datasets is extremely time-consuming and laborious. Therefore, we plan to con-
sider unsupervised or semi-supervised methods in the future to capture semantic change
information through self-learning and achieve SCD tasks with comparable or even higher
accuracy.
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