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Abstract: Segmentation and visualization of three-dimensional digital cultural heritage are important
analytical tools for the intuitive understanding of content. In this paper, we propose a semantic seg-
mentation and visualization framework that automatically classifies carved items (people, buildings,
plants, etc.) in cultural heritage reliefs. We also apply our method to the bas-reliefs of Borobudur
Temple, a UNESCO World Heritage Site in Indonesia. The difficulty in relief segmentation lies in the
fact that the boundaries of each carved item are formed by indistinct soft edges, i.e., edges with low
curvature. This unfavorable relief feature leads the conventional methods to fail to extract soft edges,
whether they are three-dimensional methods classifying a three-dimensional scanned point cloud or
two-dimensional methods classifying pixels in a drawn image. To solve this problem, we propose a
deep-learning-based soft edge enhanced network to extract the semantic labels of each carved item
from multichannel images that are projected from the three-dimensional point clouds of the reliefs.
The soft edges in the reliefs can be clearly extracted using our novel opacity-based edge highlighting
method. By mapping the extracted semantic labels into three-dimensional points of the relief data,
the proposed method provides comprehensive three-dimensional semantic segmentation results of
the Borobudur reliefs.

Keywords: cultural heritage; digital archive; semantic segmentation; deep learning; edge extraction
from relief; Borobudur temple; Borobudur reliefs

1. Introduction

Recently, with the development of three-dimensional (3D) digitization of large-scale
cultural heritage properties [1–4], efficient analysis of digitized properties has been the
focus of an increasing amount of research [5–7]. Segmentation and visualization of three-
dimensional scanned cultural heritage are important analytical tools for interpretation
and intuitive understanding of the associated content. Semantic segmentation for three-
dimensional point clouds has been widely investigated, such as outdoor scene under-
standing for autonomous driving [8–11] and robotics [12–14]. Semantic segmentation of
three-dimensional digital cultural heritage has broad applications, such as the identification
of architectural elements [15] or analysis of the state of conservation of materials [16].
However, automatic semantic segmentation for three-dimensional point clouds of cultural
heritage is challenging because most cultural heritage properties consist of complex struc-
tures and are distinct from each other. With the development and application of deep
learning in recent years, the semantic segmentation of three-dimensional point clouds in
cultural heritage has made a significant breakthrough [15–17].

In this study, we focus on semantic segmentation for three-dimensional point cloud-
type digital archives of cultural heritage reliefs. Cultural reliefs were often carved to
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illustrate stories about historical characters or cultural events. For example, the Borobudur
temple, which is a UNESCO Cultural Heritage Site in Indonesia, has 2672 bas-relief panels
(sculptural reliefs in which forms extend only slightly from the background), containing
1460 narrative panels and 1212 decorative panels. Figure 1 shows a photograph of the
Borobudur Temple in Indonesia. Figure 2 shows an example of the Borobudur Temple relief.
These reliefs are the largest collection in the world and can be divided into five sections,
each of which describes a different Buddhist story. Semantic segmentation of the reliefs
can help researchers understand the figures and objects that are relevant to the stories and
distinguish them from the decorative background.
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1460 narrative relief panels on walls. The total relief surface is 2500 square meters. 

 
Figure 2. Borobudur Temple Relief, Karmawibhangga, panel No. 22, tells the story of a group of 
men carrying umbrellas who approached a holy man sitting in the shade of a wooden building, 
while people nearby were peacefully chatting. To tell these beautiful Buddhist stories, the reliefs are 
carved with different patterns that are raised only slightly from the background. The reliefs can be 
divided into several semantic labels: characters, plants, animals, ships, buildings, and so on. 

However, semantic segmentation for bas-reliefs has inherent difficulties that are not 
present in conventional deep learning-based semantic segmentation methods, which fo-
cus on indoor or outdoor scene analysis. (1) Relief is an undulated surface different from 
typical three-dimensional objects that have 360-degree information. This leads to the ina-
bility of existing deep learning-based three-dimensional point cloud semantic segmenta-
tion methods to work directly on reliefs. Because supervised learning methods require a 
large annotated dataset, the lack of a benchmark dataset of bas-reliefs makes the task more 
challenging. (2) The boundaries of each carved item are formed by indistinct soft edges, 
i.e., edges with low curvature. This unfavorable feature of reliefs leads the conventional 

Figure 1. Borobudur Temple in Indonesia (photograph). (a) Borobudur temple; (b) corridors with
1460 narrative relief panels on walls. The total relief surface is 2500 square meters.
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Figure 2. Borobudur Temple Relief, Karmawibhangga, panel No. 22, tells the story of a group of men
carrying umbrellas who approached a holy man sitting in the shade of a wooden building, while
people nearby were peacefully chatting. To tell these beautiful Buddhist stories, the reliefs are carved
with different patterns that are raised only slightly from the background. The reliefs can be divided
into several semantic labels: characters, plants, animals, ships, buildings, and so on.

However, semantic segmentation for bas-reliefs has inherent difficulties that are not
present in conventional deep learning-based semantic segmentation methods, which focus
on indoor or outdoor scene analysis. (1) Relief is an undulated surface different from typical
three-dimensional objects that have 360-degree information. This leads to the inability of ex-
isting deep learning-based three-dimensional point cloud semantic segmentation methods
to work directly on reliefs. Because supervised learning methods require a large annotated
dataset, the lack of a benchmark dataset of bas-reliefs makes the task more challenging.
(2) The boundaries of each carved item are formed by indistinct soft edges, i.e., edges
with low curvature. This unfavorable feature of reliefs leads the conventional methods
to fail to extract soft edges, whether they are three-dimensional methods classifying a
three-dimensional scanned point cloud or two-dimensional (2D) methods classifying pixels
in a drawn image. However, the soft edges in reliefs serve as an important cue in carved



Remote Sens. 2023, 15, 956 3 of 21

item semantic segmentation. An effective edge highlighting method would improve the
segmentation accuracy.

In this paper, we propose a semantic segmentation method that automatically classifies
carved items (people, buildings, plants, etc.) in cultural heritage reliefs. This method is
successfully applied to the bas-reliefs of the Borobudur Temple. To address difficulty
(1), we propose a deep learning-based semantic segmentation framework for relief point
clouds by projecting them into multichannel images, i.e., RGB images, depth maps, and
soft-edge images. In addition, we propose an interactive relief panel extraction method to
improve the accuracy of image projection, as well as the efficiency of processing large-scale
point clouds during dataset preparation. For difficulty (2), we propose a method that
automatically extracts the soft edges as one of the inputs in multichannel images so that
the soft edges can be processed specifically. We adopt a novel three-dimensional edge
detector referred to as opacity-based edge highlighting. This method is an application of
the opacity-controlling mechanism employed in stochastic point-based rendering (SPBR),
a high-quality transparent visualization method. The opacity-based edge highlighting
method can express the soft-edge area in a relief as a gradation of surface opacity. This
opacity gradation produces distinct brightness gradation in the two-dimensional image
space, creating recognizable soft-edge images. We utilize the extracted soft edge as guide
information in our network. An intermediate prediction of the semantic edge is arranged
for the soft-edge information in the network. By supervised multitask learning, soft-edge
information is effectively utilized for semantic segmentation.

2. Related Work

As a crucial tool regarded for analysis, segmentation and classification of digital
cultural heritage have become widely investigated. Grilli et al. [16] proposed a texture-
based approach and a geometry-based approach for the classification of three-dimensional
data of heritage scenarios, which are effective for restoration and documentation purposes.
Several works have attempted to classify cultural heritage images by employing different
kinds of techniques, such as the naive Bayes nearest neighbor classifier [18], support vector
machines [19], K-means algorithms [20], and latent Dirichlet allocation [21]. Deep learning
has enabled a breakthrough in this work [15,22]. Pierdicca [15] improved the dynamic
graph convolutional neural network (DGCNN) to segment elements, such as churches,
chapels, cloisters, porticoes, and loggias in architectural cultural heritage three-dimensional
point cloud data.

The three-dimensional semantic segmentation aims at classifying each point as a spe-
cific part of the point cloud. PointNet [23], an end-to-end deep neural network, is a pioneer-
ing and well known point cloud segmentation architecture that operates directly on point
clouds and allows for the acquisition of input permutation invariance. PointNet++ [24] was
proposed as a development from PointNet to retain local geometries and to consider local
neighborhoods to ensure strong robustness and detail capture. PointNet and PointNet++
are representatives of point-based approaches [25–30]. In addition, benefiting from the
convolutional neural network (CNN), projection-based [31–33], voxel-based [34,35], and
multirepresentation fusion-based [36,37] methods have been proposed.

As relief is an undulated surface without 360-degree information, we consider that the
semantic segmentation of the relief point cloud is suitable to be solved by the projection-
based method with two-dimensional semantic segmentation. Two-dimensional semantic
segmentation has been studied so successfully in computer vision [38–47] that increas-
ing research on three-dimensional semantic segmentation is being performed by two-
dimensional methods to achieve better results, e.g., projection-based methods [32]. CNNs
have been widely used in two-dimensional semantic segmentation [38–45]. Existing seg-
mentation architectures typically consist of two stages: backbone and segmentation. The
first stage extracts features from RGB images, with popular models such as ResNet [38]
and DenseNet [39] pretrained on the ImageNet dataset [40]. The final stage seeks to make
predictions based on the extracted features. In this stage, methods such as upsampling [41],
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PPM [42], and ASPP [39] are used. Note that the convolutional layers serve as the pri-
mary building blocks in both stages. CNN-based semantic segmentation in the overall
framework is commonly used, such as FCN [44], SegNet [41], U-Net [45], PSPNet [42],
and DeepLab [43].

We utilize a three-dimensional edge highlighting method to extract soft edges as
unique features from the relief point cloud. Three-dimensional edge highlighting is more
generally analyzed as the feature highlighting of three-dimensional point clouds, which
are actively performed by a variety of mathematical and computational technique-based
methods [48]. Recently, statistical methods using eigenvalue-based three-dimensional
feature values have been widely employed [49–52]. These three-dimensional feature values
are defined based on the eigenvalues of the local three-dimensional covariance matrix. We
utilize an opacity-based edge highlighting method [53] to express the soft-edge area in
relief as a gradation of surface opacity to confirm that the comparably higher-curvature
region can also be recognized. This method is based on SPBR [54,55] to extract soft edges
in relief data. SPBR is a transparent visualization method proposed in our previous work.
The SPBR algorithm achieves controlled perspective visualization by interpreting opacity
as the probability that each pixel in the image is the color of the input point.

3. Method

This section describes the framework of semantic segmentation of the Borobudur
reliefs. We introduce the overview of the entire framework in Section 3.1. Our proposed
framework contains four parts using different proposed methods. The detailed introduc-
tions of these methods are described from Sections 3.2–3.5.

3.1. Overview

We propose a single-view projection-based semantic segmentation framework for the
three-dimensional point cloud of Borobudur reliefs. The entire structure of the framework is
depicted in Figure 3. The proposed method projects information from a three-dimensional
point cloud to multichannel images and utilizes a deep learning-based network to predict
the semantic segmentation results. First, a relief panel extraction method is proposed to ex-
tract the relief, which is the component for semantic segmentation, from photogrammetric
point cloud data. This relief panel extraction method, which automatically includes RGB
images and depth-map projections, improves the efficiency and accuracy of dataset creation
for semantic segmentation. Then, the opacity-based edge highlighting method is utilized to
extract the soft-edge information, which is the unique feature of the Borobudur reliefs from
the point cloud. After the RGB images, depth maps, and soft-edge images are prepared,
we implement a semantic segmentation network based on CNN deep learning named the
soft-edge enhanced network. The prepared three kinds of images are concatenated into
multichannel images and used as the input of the proposed network. The use of multichan-
nel images improves the accuracy of the proposed semantic segmentation network from
different perspectives. First, RGB images are used to project color information from point
clouds and convert photogrammetric point clouds into photographs. Second, the depth
map addresses the loss of depth information due to the projection. Third, soft-edge images
can reflect the slight change in curvature in the relief point clouds. With the proposed
method, the corresponding semantic labels of each carved item in reliefs can be extracted.
Finally, by mapping the extracted semantic labels into three-dimensional points of the
relief data, the proposed method provides comprehensive three-dimensional semantic
segmentation results for the Borobudur reliefs.

3.2. Relief Panel Extraction and RGB-D Image Projection

The three-dimensional point cloud of the Borobudur reliefs is obtained by photogram-
metry. In the raw data of the scanned points, regions other than relief panels are also
included. Therefore, a relief panel extraction method is proposed in this paper. Open-
source software, such as CloudCompare [56] and Meshlab [57], can be used to manually
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extract relief panels. However, manual extraction and adjustment require considerable
labor, and the accuracy of image projection cannot be guaranteed. In this work, we propose
a semiautomatic method for relief panel extraction and RGB-D image projection. Figure 4
shows the process of relief panel extraction.
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Figure 4. Relief panel extraction.

Control point selection. The position, size, and direction of the targeted relief panel
are determined by selecting four control points. The four points are the four corners of the
relief panel and are interactively selected by the user in the clockwise direction starting
from the top left corner. Here, the selected points are represented as p1, p2, p3, and p4.

Approximate region of interest extraction. This process removes surrounding points
and extracts an approximate region of interest around the target relief panel from the raw
point cloud data. The average coordinates, pc, of the four control points are used as the
center of the spherical region of interest, while the farthest distance from the centroid
among the four control points is utilized as the radius rs of the spherical region. Here, pc
and rs are calculated using the following equations:

pc =
p1 + p2 + p3 + p4

4
(1)

rs = MAX(‖pi − pc‖), pi ∈ {p1, p2, p3, p4}. (2)
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Determination of the relief panel’s local coordinates. Calculating the local coordinates
of the relief panel is necessary for correct image projection. This step focuses on calculating
the normal vector n of the region of interest by plane fitting. After the second step, most
undesired points are trimmed, leaving only the data containing the entire point cloud of the
relief panel and some surrounding parts. The normal of the fitting plane is used to set the
z-axis of the relief panel’s local coordinate system. The positive direction of the normal is
determined by the left-hand rule based on clockwise rotation of the four control points. The
vertical direction from the center point pc to the line between the first and second control
points is set to be the y-axis of the local coordinate system. The orthogonal x-axis is then set
accordingly. After the local coordinate system is determined, the global coordinates of the
point cloud can be transformed to local coordinates using the coordinate transformation

Clocal = R T Cglobal (3)

where Cglobal are the global coordinates of the points in the relief panel’s point cloud, and
Clocal are the local coordinates. T is the translation matrix, which translates the origin of
the local coordinate system to the origin of the global coordinate system. R is the rotation
matrix, which transforms the direction between the two coordinate systems. We utilize
a gradually decreasing rectangle to the region of interest to update the local coordinate
system automatically.

Relief panel extraction and image projection. After the optimized local coordinate
system is determined, the projection of the four control points on the x-y plane forms a
quadrilateral. This quadrilateral defines the final region of interest of the target relief panel.
Finally, the extracted relief panel is projected to a RGB image and a depth map. The intensity
in the depth map is calculated from the value of the z-axis by a linear transformation. The
intensity is set in the range of 0 to 255.

3.3. Opacity-Based Edge Highlighting

This section describes our proposed soft-edge extraction method for Borobudur reliefs.
Figure 5 shows the process of soft-edge extraction from relief photogrammetric point cloud.
We proposed this opacity-based edge highlighting method in our previous work [54].
The main idea of this method is that we extract the three-dimensional edge areas and
then execute rendering with higher opacity to the three-dimensional edges to make them
brighter than the surrounding non-edge regions.

The opacity is based on SPBR [54]. In this rendering method, the transparency of a
visualized surface is achieved based on probabilistic theory. That is, we define the surface
opacity by the probability that each pixel becomes the point color [55]. SPBR realizes
fast and precise three-dimensional see-through imaging transparent visualization. As the
transparency originates from the stochastic determination of pixel intensities, it achieves
the correct depth feel in visualization without requiring time-consuming depth sorting
of three-dimensional points. Thus, this method is particularly suitable for large-scale
three-dimensional point clouds.

The steps to execute SPBR are as follows:
STEP 1. Creation of point ensembles: the point cloud is randomly divided into multiple

subgroups, each of which has the same number of three-dimensional points. We call the
subgroups “point ensembles.” The number of ensembles is denoted as L.

STEP 2. Point projection per point ensemble: for each point ensemble in step 2, its
constituent three-dimensional points are independently projected into the image plane. As
a result, L intermediate images are created. In the projection process, we incorporate the
point–occlusion effect per pixel.

STEP 3. Averaging the intermediate images: an average image is created by averaging
the intensities of the corresponding pixels in the above L intermediate images. Then, the
transparent image of the point ensembles can be created. The ensemble number L controls
the statistical accuracy and works as an image-quality parameter.
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Considering a local area with an area of S, we execute the point–density adjustment
for this area, such that the following user-defined surface opacity α is realized:

α = 1− (1− s/S)nadj/L (4)

where s is the particle cross-section area, which is tuned such that an image of each
three-dimensional point overlaps exactly one pixel; nadj is the adjusted number of three-
dimensional points in this local area; and L is the number of point ensembles.
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Based on this opacity provided by SPBR, we can execute our proposed opacity-based
edge highlighting method. To extract the three-dimensional edge, the eigenvalue-based
three-dimensional feature is utilized to extract high-curvature areas from the given point
cloud. Several kinds of eigenvalue-based three-dimensional feature values have been
proposed. In our research, we adopt the change in curvature and the linearity:

Change of curvature : Cλ =
λ3

λ1 + λ1 + λ3
(5)

Linearity : Lλ =
λ1 − λ2

λ1
(6)

where λ1, λ2, and λ3 are the eigenvalues of the three-dimensional structure tensor (the local
three-dimensional covariance matrix) [58] with λ1 > λ2 > λ3 > 0. In our implementation,
the three-dimensional structure tensor is calculated for each spherical local region centered
at each point. The change in curvature Cλ measures the minimal extension of the local
point distribution that should vanish in the case of a planar distribution. The linearity,
Lλ, measures the difference between the two independent-directional largest extensions
of the local point distribution that should also vanish in the case of a planar distribution.
Thus, a large value of Cλ or Lλ indicates that the examined local set of points forms a
three-dimensional edge of the point-based surface.
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We denote the adopted three-dimensional feature value as f and normalize it to make
the distribution fall between zero and one. With the three-dimensional feature value f , we
propose a function to relate a three-dimensional feature value to opacity α. The function can
highlight the soft edge from the relief point cloud. In this function, we define the opacity
α as follows:

α( f ) =


αmin

αmax − αmin

(Fth − fth)
d ( f − fth)

d + αmin

αmax

( f 6 fth)
( fth < f 6 Fth)
(Fth < f 6 1)

(7)

where fth and Fth are two threshold values with fth 6 Fth. The parameter d controls the
speed of the opacity increase. The opacity graph is shown in Figure 6. In the soft-edge
regions, we need a plateau area at f > Fth to cover all of the highest curvature regions.
Thus, we assign a constant high opacity for local areas with f > Fth. To make the opacity
gradually decrease as the position moves away from the centerline of the edge regions,
we make α gradually increase for local areas with fth < f 6 Fth. This opacity distribution
gives the narrow areas around the centerlines comparably higher opacity, and the areas are
highlighted with brighter colors.
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the function.

The visualization of soft-edge highlighting from relief photogrammetry by the opacity-
based method is shown in Figure 5a. The soft edge is a unique feature in the reliefs that
forms boundaries between the carved items and the wall background. Soft edges have only
slightly higher curvatures than their surrounding areas. This method successfully extracts
the soft-edge features in the relief.

After the soft-edge component is extracted by the proposed method, we project it
into two-dimensional images as the input for the network. The value of each pixel in the
projected image is converted from the opacity of the extracted three-dimensional edge
points, as shown in Equation (8).

g(α) = 1−
(

α− αmin

αmax − αmin

)
(8)

where g represents the value of each pixel in the projected soft-edge image, and α represents
the opacity of the extracted soft-edge points. The soft-edge projection image is shown
in Figure 5b.
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3.4. Soft-Edge Enhanced Network for Semantic Segmentation

In this section, we present our proposed soft-edge enhanced semantic segmentation
network. The proposed method is based on an encoding–decoding structure, as shown
in Figure 7. Section 3.4.1 presents the soft-edge enhanced utilization techniques of the
semantic segmentation network. The structure of our soft-edge enhanced network is
described in Section 3.4.2. The training loss function is illustrated in Section 3.4.3.
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Figure 7. Structure of the soft-edge enhanced network. This is a multichannel input network with
RGB images, depth maps, and soft-edge images. The network utilizes DenseNet121 as the backbone
and extracts five sizes of feature layers: H/2, H/4, H/8, H/16, and H/32. Three decoder blocks
(as shown in the upper right) are set to supervise the segmentation edge and segmentation body
intermediate layer and semantic segmentation results in the decoder sections.

3.4.1. Soft-Edge Enhanced Utilization

As the soft edge is a unique feature of relief, we utilize two techniques to effectively
apply the soft-edge information. (1) Feature skip connection. This technique is inspired
by U-Net [45], a pioneering method in biomedical image segmentation, which is similar
to relief analysis, with fewer training data and focusing on high-frequency information,
such as edges. During deep convolution, the network tends to focus more on wide percep-
tion and ignore the edge detail information. The feature skip connection can recover and
retrace edge detail features to enhance the soft-edge information. (2) Multitask learning
to supervise the intermediate layer. This technique is inspired by DecoupleSegNets [59],
which is based on the concepts of semantic bodies and edges. We utilize a similar idea
that decouples the body and the edge with different types of supervision by multitasking
to optimize the edge feature and the body feature. The edge feature is supervised by the
segmentation edge mask, while the body feature is supervised by the mask where the seg-
mentation edges are ignored during training. Compared with DecoupleSegNets, we focus
on edge prediction, while DecoupleSegNets is oriented more to body prediction. Our use
of soft-edge information extracted from the three-dimensional edge highlighting as input
can facilitate network prediction of the segmentation edges from soft-edge information.
Supervising the intermediate layer of the segmentation edge creates an easier task for soft
edge information to maintain the clarity of the edge for segmentation and the consistency
of body parts for each object.
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3.4.2. Network Structure

The network is a multichannel input network with RGB images, depth maps, and
soft-edge images. The input layers of the network consist of three different images with a
resolution of H, as shown in Figure 7. The RGB image input layer has three channels, and
the depth-map input layer and soft-edge input layer have one channel.

At the beginning of the encoder phase, these three input images are concatenated into
one integrated feature map with five channels. Then, a subsequent 1 × 1 convolutional
layer is utilized to output a feature map that self-adaptively adjusts the number of channels
to three channels. The following parts of the encoder contain five layers that are extracted
from DenseNet121 [39], with H/2, H/4, H/8, H/16, and H/32. The channel numbers of
each layer are 64, 64, 128, 256, and 512.

Three decoder stages that have similar decoder blocks are utilized for the semantic
body, edge, and final output. The decoder block first passes the input features through the
3 × 3 convolutional layer twice with a size of H/32. This is followed by four upsampling
steps. After each upsampling layer, the feature layer is concatenated with the incoming
feature layer of the same size by skip connection, and the features are passed through the
3 × 3 convolution layer twice. The output of the decoder block is the same size as H/2 with
64 channels.

The segmentation edge decoder passes the features of the output of the decoder
block into a 3 × 3 convolution layer that outputs with the size H/2 with 1 channel. The
sigmoid activation layer is applied to predict the probability of the pixels being inside the
segmentation edge region. The segmentation edge consists of the nonzero pixels obtained
from performing high-pass filtering on the semantic segmentation result.

In the segmentation body decoder, the output features of the decoder block are decou-
pled by subtracting the output of the segmentation edge decoder block. A 3 × 3 convolution
layer follows the decoupled feature layer that outputs with the size H/2 with Ncls channels,
where Ncls represents the number of classes. Then, a softmax layer is used to determine the
probability of each pixel belonging to each class in the segmentation body. The segmenta-
tion body consists of the pixels where the segmentation edges are ignored. The learning
objective Fbody for the segmentation body decoder is given by:

Fbody = Fgt − Fedge (9)

where Fgt represents the ground truth of the semantic segmentation, and Fedge represents
the segmentation edge.

In the final decoder, every two intermediate feature maps extracted by 3 × 3 convo-
lution layers in the segmentation edge and body encoder are involved in the convolution
in this decoder block by a skip connection. There is also a 3 × 3 convolution layer and
a SoftMax layer following. The 3 × 3 convolution layer outputs the size H/2 with Ncls
channels, and the softmax layer determines the probability of each pixel belonging to each
class in the semantic segmentation result.

3.4.3. Training Loss

To improve the final segmentation accuracy, three loss functions are utilized for the
segmentation edge decoder, segmentation body decoder, and final decoder in our paper.
These three loss functions are presented as Ledge, Lbody, and Lfinal. Then, a joint loss function
L is defined in Equation (10) to train the proposed network. The total training loss L is
defined as follows:

L = αLedge

(
sedge, s′edge

)
+ βLbody

(
sbody, s′body

)
+ γLfinal

(
s, s′

)
(10)

where s′edge, s′body, and s′ represent the ground truth of the segmentation edge, the segmen-
tation body, and the final result, respectively; sedge, sbody, and s represent the intermediate
prediction results from the semantic edge, the segmentation body, and the final decoders,
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respectively; and α, β, and γ are three hyperparameters that control the weighting among
the three losses. We set α = 1.5, β = 1.0, and γ = 1.0 as default.

In the segmentation edge decoder, the MSE loss is utilized to predict the probabil-
ity that a pixel point is inside the segmentation edge region. The expression of Ledge
is as follows:

Ledge

(
sedge, s′edge

)
=
(

sedge − s′edge

)2
(11)

We utilize the focal loss [60] for the probability of segmentation map prediction in the
segmentation body and the final decoders. The Lbody can be defined by Equation (12):

Lbody

(
sbody, s′body

)
= FL

(
sbody −Medge, s′body −Medge

)
(12)

Lfinal
(
s, s′

)
= FL

(
s, s′

)
(13)

where Medge represents the ground truth of the segmentation edge as a mask. The focal
loss is an extension of the cross-entropy loss function that downweights easy examples and
focuses training on hard negatives.

FL(pt) = −α(1− pt)
γ log(pt) (14)

where pt represents the probability for each class, and where α and γ are two hyperparam-
eters; α is a weighting factor that controls the balance among each class, and γ smoothly
adjusts the rate at which easy examples are downweighted.

3.5. Mapping and Visualization

We achieve the three-dimensional semantic segmentation results by mapping the
two-dimensional predicted results of the network into the three-dimensional point cloud
of the relief panels that are extracted from Section 3.2. The two-dimensional results overlap
with the plane of z = 0 in the local coordinate system of the relief. The three-dimensional
segmentation results in global coordinates in the photogrammetric point cloud data are
obtained from the following equation.

Cglobal = T−1 R−1 Clocal, (15)

where Cglobal, Clocal, T, and R appear in Equation (3) in Section 3.2.
The alpha blending method is utilized to visualize the three-dimensional semantic

segmentation result following Equation (16).

cvis = αccls + (1− α)crgb, (16)

where α represents an opacity from 0 to 1 and where. cvis, ccls, and crgb represent the colors
of the visualization, segmentation, and original point, respectively.

4. Experimental Results

In this section, we introduce the process of building the dataset for semantic segmen-
tation in Section 4.1. Section 4.2 describes our experimental approach and experimental
results for the proposed network. The visualization results of the semantic segmentation
for the Borobudur reliefs are shown in Section 4.3.

4.1. Dataset Creation

The training dataset is composed of pairs of RGB images, depth maps, soft-edge
images, and segmentation labels. The dataset creation process is shown in Figure 8. The
original data are photogrammetric point cloud data that contain the reliefs and structures of
the temple. We collect the relief parts that contain three-dimensional coordinates and color
information and separate the information into an RGB image and the corresponding depth
map by the method introduced in Section 3.2. Moreover, we apply the edge highlighting
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method introduced in Section 3.3 to extract the soft-edge points and project them into
images. We draw the semantic segmentation category labels on the two-dimensional image
and set the category to four classes: background (black), characters (red), plants (greed),
and others (blue). We annotate 26 images by manually drawing object contours and giving
labels to each object.
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Figure 8. Block diagram of dataset creation.

The resolution of the projected images is 3200 × 1024, which incurs a considerable
computational cost to the network. There are only 26 pairs of these projected images,
which are not enough to train a deep neural network. Therefore, we cut these images into
6656 patch pairs to train the neural network. The resolution of the image patch is set by
three different sizes: 1024 × 1024, 768 × 768, and 512 × 512. Among 26 pairs of projected
images, 24 pairs are applied to train the neural network, and two pairs serve as validation
data for the quantitative evaluation.

4.2. Network Evaluation

To evaluate the proposed method, two relief panels were chosen for the quantitative
and qualitative experiments. From left to right in Figure 9 are the RGB image, depth map,
soft edge, ground truth of semantic segmentation, and prediction results. The soft edges
feature a difference in concentration. The extraction of soft edges is currently affected
by the point cloud density, requiring manual fine-tuning of parameters. However, the
experimental results show that our network is robust for different concentrations in soft
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edges and maintains the clarity of the segmentation edge and the consistency of body parts
for each object.
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We employed five metrics (accuracy, precision, recall, intersection over union (IoU),
and F1-score) and output the confusion matrix to evaluate our network. The results are
presented in Table 1. The left side of the table is the confusion matrix, where each row
represents the pixel count of each category in the ground truth, and each column represents
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the pixel count of each category in the predicted results. The right side of the table shows the
evaluation metrics on each category; higher values are better. According to the evaluation
metrics, our network achieves 90.53% accuracy in prediction, as well as a 81.52% mean IoU.

Table 1. Confusion matrix and evaluation metrics of the network on test data.

Matrix Background Characters Plants Others Recall Precision IoU F1-Score
Background 6,036,161 100,867 70,766 443,841 0.9075 0.8983 0.8230 0.9029
Characters 129,260 7,635,226 19,573 114,388 0.9667 0.9376 0.9083 0.9519

Plants 144,168 63,712 2,689,938 34,097 0.9175 0.8931 0.8267 0.9051
Others 409,643 343,360 231,605 3,771,091 0.7930 0.8643 0.7051 0.8271
Mean Accuracy: 0.9053 0.8961 0.8983 0.8158 0.8968

We also implemented prediction for the segmentation edge information and output the
image of the intermediate layer of the segmented edge. The results are shown in Figure 10.
Regarding the prediction of edge information, the first column of the figure shows the
segmentation edge obtained from the semantic segmentation ground truth, and the second
column shows the probability of segmentation edge pixel prediction. The third column
shows the ground truth, and the fourth column shows the prediction results of semantic
segmentation. We consider that learning the segmentation edges helps the network clarify
the contours of semantic segmentation.
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Figure 10. Prediction for segmentation edges. Left to right: ground truth of the segmentation edge,
prediction results of the segmentation edge, ground truth of semantic segmentation, and prediction
results of semantic segmentation. The results show that the network can predict approximate
segmentation edges and is consistent with the prediction results of semantic segmentation.
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We compare our proposed network with the existing two-dimensional semantic seg-
mentation networks SegNet, U-Net, PSPNet, and DeepLabV3+.

The results in Figure 11 show that our proposed network prediction maintains the
clarity of the segmentation edge and the consistency of semantic segmentation for each
object. A comparison of the evaluation metric results is shown in Table 2.
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Figure 11. Left to right: input RGB image, ground truth of semantic segmentation, prediction results
of our proposed network, and prediction results of SegNet, U-Net, PSPNet, and DeepLabV3+. The
results show that extant networks are more sensitive to the color information of input images and
demonstrate the robustness of our proposed network to photo information.

Table 2. Comparison of evaluation metric results between current networks and our proposed
network. The results demonstrate that our network outperforms other networks in all metrics.

Network Recall Precision mIoU F1-Score Accuracy

SegNet 0.6843 0.7079 0.5388 0.6932 0.7240

U-Net 0.6708 0.7084 0.5251 0.6839 0.7120

PSPNet 0.6953 0.7096 0.5470 0.7011 0.7184

DeeplabV3+ 0.6707 0.6877 0.5200 0.6777 0.6993

Ours 0.8961 0.8983 0.8158 0.8968 0.9053
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4.3. Visualization Results

We used a voting algorithm for the divided patches to predict the semantic segmenta-
tion results for the whole panel of reliefs. The method mentioned in Section 3.5 used to
map the visualization results on the region of interest relativity coordinate.

We performed prediction experiments for semantic segmentation of the whole relief’s
photogrammetric point cloud data. The point cloud of the relief is shown at the top of
Figure 12. We transform the point cloud into a 3200 × 1024 image using the method
described in Section 3. After the point cloud is imaged, we crop the image into N equally
spaced and overlapping square 1024 × 1024 image patches. N is usually set to 64. The
semantic segmentation results of these N patches are then predicted. Voting is performed
on the overlapping parts. The two-dimensional prediction results are shown in the middle
part of Figure 12. The final mapping result is shown at the bottom of the figure. Figure 13
shows the visualization results of some additional samples of relief point clouds. Our
results achieve very clear classification and high accuracy and improve the readability
of the relief content. We also conducted experiments to apply our proposed semantic
segmentation framework directly to the original point cloud. The visualization results are
shown in Figure 14.
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5. Discussion

According to the prediction results in Figure 11, our results outperform those of the
conventional two-dimensional semantic segmentation network. Our method is robust
to relief images with mottled colors due to corrosion. The bottom 4 rows in Figure 11
show that the colors of the input RGB images are uniform, as these reliefs are not heavily
corroded and the segmentation can be visually distinguished. The existing two-dimensional
semantic segmentation networks are more stable for these images. However, the top 2 rows
in Figure 11 show images of heavily corrupted reliefs whose colors are nonuniform. Their
results in the existing two-dimensional semantic segmentation networks are strongly
affected, and it is difficult to segment accurately from these unclear colors. This is proven
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by the results in Table 2, where the existing networks have a low average in recall, precision,
accuracy, and mIoU.

However, our results predict consistent semantic segmentation for each object in all
cases and are robust to any kind of RGB image. Moreover, our semantic segmentation re-
sults make the contours much clearer. A comparison of the results of the evaluation metrics
also shows that our network outperforms the other networks by more than 20 percent in
all evaluations.

For the proposed method, the resolution of the output image is 3200 × 1024. When
mapped to the point cloud, one pixel corresponds so less than 1 mm. The resolution
of the segmentation results can successfully support our requirements for segmenting
four categories of target objects. Expansion of segmentation categories is a plan for the
continuation of this research. There are many other important categories, such as the
category “ship” in Borobudur reliefs. This requires high costs of data acquisition. We
plan to expand the segmentation categories to enrich semantic segmentation results in our
future work.

6. Conclusions

In this paper, we propose a deep-learning-based, soft-edge enhanced semantic seg-
mentation method that automatically classifies carved items (people, buildings, plants,
etc.) in cultural heritage reliefs. This method is successfully applied to the bas-reliefs
of the Borobudur Temple. The method is characterized by utilizing the unique feature
of reliefs, which are the soft (low-curvature) edges composing boundaries of the carved
items. The soft edge is extracted by our novel opacity-based edge highlighting method.
We also propose a soft-edge enhanced network with a multichannel image as input, i.e.,
RGB images, depth maps, and soft-edge images. The soft-edge images are utilized as
guide information in our soft-edge enhanced network. An intermediate prediction of the
semantic edge is arranged for the soft edge information in the network. By supervised
multitask learning, soft-edge information is effectively utilized for semantic segmentation.
We demonstrate the accuracy of the proposed method. According to the results of the
quantitative experiments, the accuracy of the semantic segmentation reaches 90%, which
prominently exceeds the accuracy of other current methods. For the results of qualitative
experiments, the proposed method successfully classifies people, plants, backgrounds, and
other objects and maintains the clarity of the edge for segmentation and the consistency
of semantic segmentation for each object. Each kind of pattern is clearly divided in the
semantic results, which increases the readability of the contents of the reliefs.

In future work, we consider that, not only the semantic segmentation task, but also
the object detection and instance segmentation algorithms can go further to increase the
readability of relief data. In our future research, we plan to combine semantic segmentation,
target detection, and instance segmentation algorithms to improve our relief visualization
and analysis tool. We also hope to use our relief visualization analysis tool for digital
museums, humanities research, and other applications.
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