Remote Sensing-Based Approach for the Assessing of Ecological Environmental Quality Variations Using Google Earth Engine: A Case Study in the Qilian Mountains, Northwest China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Source and Preprocessing
2.2.1. RSEI Datasets
2.2.2. Driving Factor Datasets
2.3. Methods
2.3.1. Construction of RSEI
Calculation of Four Indicators Based on the GEE Platform
- (1)
- Greenness index
- (2)
- Wetness index
- (3)
- Dryness index
- (4)
- Heat index
Calculation of RSEI
- (1)
- Water, permanent snow, and ice masking
- (2)
- Standardization of indexes
- (3)
- Combination of the indicators
2.3.2. Spatiotemporal Change Detection of RSEI
2.3.3. Spatial Heterogeneity Analysis
2.3.4. Assessment of Influencing Factors
- GeoDetector method
- 2.
- GWR model
3. Results
3.1. Spatiotemporal Distribution of EEQ
3.2. Dynamic Changes in EEQ from 2000 to 2020
3.3. Spatial Autocorrelation Pattern of EEQ
3.4. Analysis of the Influencing Factors Based on Spatial Differences in RSEI
3.4.1. Analysis of Geographical Detector Results
3.4.2. Spatial Heterogeneity Analysis of Driving Factors
4. Discussion
4.1. Spatiotemporal Variations in EEQ in the QLM
4.2. Dominant Factors Affecting EEQ
4.3. Uncertainty and Prospects
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Qin, X.; Liu, W.B.; Mao, R.C.; Song, J.X.; Chen, Y.N.; Ma, C.; Li, M.Y. Quantitative assessment of driving factors affecting human appropriation of net primary production (HANPP) in the Qilian Mountains, China. Ecol. Indic. 2021, 121, 106997. [Google Scholar] [CrossRef]
- Li, Z.X.; Qi, F.; Li, Z.J.; Wang, X.F.; Juan, G.; Zhang, B.J.; Li, Y.C.; Deng, X.H.; Jian, X.; Gao, W.D.; et al. Reversing conflict between humans and the environment-The experience in the Qilian Mountains. Renew. Sustain. Energy Rev. 2021, 148, 111333. [Google Scholar] [CrossRef]
- Yao, Z.Y.; Zhao, C.Y.; Yang, K.S.; Liu, W.C.; Li, Y.; You, J.D.; Xiao, J.H. Alpine grassland degradation in the Qilian Mountains, China-A case study in Damaying Grassland. CATENA 2016, 137, 494–500. [Google Scholar] [CrossRef]
- Zhu, Q.; Guo, J.X.; Guo, X.; Chen, L.; Han, Y.; Liu, S.Y. Relationship between ecological quality and ecosystem services in a red soil hilly watershed in southern China. Ecol. Indic. 2021, 121, 107119. [Google Scholar] [CrossRef]
- Yue, H.; Liu, Y.; Li, Y.; Lu, Y. Eco-Environmental Quality Assessment in China’s 35 Major Cities Based on Remote Sensing Ecological Index. IEEE Access 2019, 7, 51295–51311. [Google Scholar] [CrossRef]
- Willis, K.S. Remote sensing change detection for ecological monitoring in United States protected areas. Biol. Conserv. 2015, 182, 233–242. [Google Scholar] [CrossRef]
- Liu, C.L.; Li, W.L.; Wang, W.Y.; Zhou, H.K.; Liang, T.G.; Hou, F.J.; Xu, J.; Xue, P.F. Quantitative spatial analysis of vegetation dynamics and potential driving factors in a typical alpine region on the northeastern Tibetan Plateau using the Google Earth Engine. Catena 2021, 206, 105500. [Google Scholar] [CrossRef]
- Xu, H.Q.; Wang, Y.F.; Guan, H.D.; Shi, T.T.; Hu, X.S. Detecting Ecological Changes with a Remote Sensing Based Ecological Index (RSEI) Produced Time Series and Change Vector Analysis. Remote Sens. 2019, 11, 2345. [Google Scholar] [CrossRef]
- Xiong, Y.; Xu, W.H.; Lu, N.; Huang, S.D.; Wu, C.; Wang, L.G.; Dai, F.; Kou, W.L. Assessment of spatial? Temporal changes of ecological environment quality based on RSEI and GEE: A case study in Erhai Lake Basin, Yunnan province, China. Ecol. Indic. 2021, 125, 107518. [Google Scholar] [CrossRef]
- Xu, H.Q.; Wang, M.Y.; Shi, T.T.; Guan, H.D.; Fang, C.Y.; Lin, Z.L. Prediction of ecological effects of potential population and impervious surface increases using a remote sensing based ecological index (RSEI). Ecol. Indic. 2018, 93, 730–740. [Google Scholar] [CrossRef]
- Liao, W.H.; Jiang, W.G. Evaluation of the Spatiotemporal Variations in the Eco-environmental Quality in China Based on the Remote Sensing Ecological Index. Remote Sens. 2020, 12, 2462. [Google Scholar] [CrossRef]
- Jing, Y.Q.; Zhang, F.; He, Y.F.; Kung, H.T.; Johnson, V.C.; Arikena, M. Assessment of spatial and temporal variation of ecological environment quality in Ebinur Lake Wetland National Nature Reserve, Xinjiang, China. Ecol. Indic. 2020, 110, 105874. [Google Scholar] [CrossRef]
- Liu, Y.X.; Liu, S.L.; Sun, Y.X.; Li, M.Q.; An, Y.; Shi, F.N. Spatial differentiation of the NPP and NDVI and its influencing factors vary with grassland type on the Qinghai-Tibet Plateau. Environ. Monit. Assess. 2021, 193, 48. [Google Scholar] [CrossRef]
- Xu, H. A remote sensing index for assessment of regional ecological changes. China Environ. Sci. 2013, 33, 889–897. [Google Scholar]
- Hu, X.S.; Xu, H.Q. A new remote sensing index for assessing the spatial heterogeneity in urban ecological quality: A case from Fuzhou City, China. Ecol. Indic. 2018, 89, 11–21. [Google Scholar] [CrossRef]
- Zheng, Z.H.; Wu, Z.F.; Chen, Y.B.; Yang, Z.W.; Marinello, F. Exploration of eco-environment and urbanization changes in coastal zones: A case study in China over the past 20 years. Ecol. Indic. 2020, 119, 106847. [Google Scholar] [CrossRef]
- Bi, X.; Chang, B.R.; Hou, F.; Yang, Z.H.; Fu, Q.; Li, B. Assessment of Spatio-Temporal Variation and Driving Mechanism of Ecological Environment Quality in the Arid Regions of Central Asia, Xinjiang. Int. J. Environ. Res. Public Health 2021, 18, 7111. [Google Scholar] [CrossRef]
- Guo, B.B.; Fang, Y.L.; Jin, X.B.; Zhou, Y.K. Monitoring the effects of land consolidation on the ecological environmental quality based on remote sensing: A case study of Chaohu Lake Basin, China. Land Use Policy 2020, 95, 104569. [Google Scholar] [CrossRef]
- Yuan, B.D.; Fu, L.N.; Zou, Y.; Zhang, S.Q.; Chen, X.S.; Li, F.; Deng, Z.M.; Xie, Y.H. Spatiotemporal change detection of ecological quality and the associated affecting factors in Dongting Lake Basin, based on RSEI. J. Clean. Prod. 2021, 302, 126995. [Google Scholar] [CrossRef]
- Boori, M.S.; Choudhary, K.; Paringer, R.; Kupriyanov, A. Eco-environmental quality assessment based on pressure-state-response framework by remote sensing and GIS. Remote Sens. Appl. Soc. Environ. 2021, 23, 100530. [Google Scholar] [CrossRef]
- Wang, Y.Z.; Yu, K.F.; Chen, X.Y.; Wang, W.H.; Huang, X.Y.; Wang, Y.H.; Liao, Z.H. An approach for assessing ecosystem-based adaptation in coral reefs at relatively high latitudes to climate change and human pressure. Environ. Monit. Assess. 2020, 192, 579. [Google Scholar] [CrossRef] [PubMed]
- Bagan, H.; Yamagata, Y. Analysis of urban growth and estimating population density using satellite images of nighttime lights and land-use and population data. GISci. Remote Sens. 2015, 52, 765–780. [Google Scholar] [CrossRef]
- Wang, J.F.; Li, X.H.; Christakos, G.; Liao, Y.L.; Zhang, T.; Gu, X.; Zheng, X.Y. Geographical Detectors-Based Health Risk Assessment and its Application in the Neural Tube Defects Study of the Heshun Region, China. Int. J. Geogr. Inf. Sci. 2010, 24, 107–127. [Google Scholar] [CrossRef]
- Wang, H.; Liu, L.B.; Yin, L.; Shen, J.S.; Li, S.C. Exploring the complex relationships and drivers of ecosystem services across different geomorphological types in the Beijing-Tianjin-Hebei region, China (2000–2018). Ecol. Indic. 2021, 121, 107116. [Google Scholar] [CrossRef]
- Xie, E.Z.; Zhang, Y.X.; Huang, B.; Zhao, Y.C.; Shi, X.Z.; Hu, W.Y.; Qu, M.K. Spatiotemporal variations in soil organic carbon and their drivers in southeastern China during 1981–2011. Soil Tillage Res. 2021, 205, 104763. [Google Scholar] [CrossRef]
- Zhang, Z.Y.; Liu, Y.F.; Wang, Y.H.; Liu, Y.L.; Zhang, Y.; Zhang, Y. What factors affect the synergy and tradeoff between ecosystem services, and how, from a geospatial perspective? J. Clean. Prod. 2020, 257, 120454. [Google Scholar] [CrossRef]
- Xu, H.J.; Zhao, C.Y.; Wang, X.P. Elevational differences in the net primary productivity response to climate constraints in a dryland mountain ecosystem of northwestern China. Land Degrad. Dev. 2020, 31, 2087–2103. [Google Scholar] [CrossRef]
- Geng, L.Y.; Che, T.; Wang, X.F.; Wang, H.B. Detecting Spatiotemporal Changes in Vegetation with the BFAST Model in the Qilian Mountain Region during 2000–2017. Remote Sens. 2019, 11, 103. [Google Scholar] [CrossRef]
- Wang, H.; Liu, C.L.; Zang, F.; Yang, J.H.; Li, N.; Rong, Z.L.; Zhao, C.Y. Impacts of Topography on the Land Cover Classification in the Qilian Mountains, Northwest China. Can. J. Remote Sens. 2020, 46, 344–359. [Google Scholar] [CrossRef]
- Yang, L.S.; Feng, Q.; Adamowski, J.F.; Alizadeh, M.R.; Yin, Z.L.; Wen, X.H.; Zhu, M. The role of climate change and vegetation greening on the variation of terrestrial evapotranspiration in northwest China’s Qilian Mountains. Sci. Total Environ. 2021, 759, 143532. [Google Scholar] [CrossRef]
- Lu, J.Z.; Lu, H.W.; Brusseau, M.L.; He, L.; Gorlier, A.; Yao, T.C.; Tian, P.P.; Feng, S.S.; Yu, Q.; Nie, Q.W.; et al. Interaction of climate change, potentially toxic elements (PTEs), and topography on plant diversity and ecosystem functions in a high-altitude mountainous region of the Tibetan Plateau. Chemosphere 2021, 275, 130099. [Google Scholar] [CrossRef]
- Chen, L.F.; Zhang, H.; Zhang, X.Y.; Liu, P.H.; Zhang, W.C.; Ma, X.Y. Vegetation changes in coal mining areas: Naturally or anthropogenically Driven? CATENA 2022, 208, 105712. [Google Scholar] [CrossRef]
- Feng, R.D.; Wang, F.Y.; Wang, K.Y.; Wang, H.J.; Li, L. Urban ecological land and natural-anthropogenic environment interactively drive surface urban heat island: An urban agglomeration-level study in China. Environ. Int. 2021, 157, 106857. [Google Scholar] [CrossRef]
- Wang, H.; Zang, F.; Zhao, C.Y.; Liu, C.L. A GWR downscaling method to reconstruct high-resolution precipitation dataset based on GSMaP-Gauge data: A case study in the Qilian Mountains, Northwest China. Sci. Total Environ. 2022, 810, 152066. [Google Scholar] [CrossRef]
- Chen, Z.Q.; Yu, B.L.; Yang, C.S.; Zhou, Y.Y.; Yao, S.J.; Qian, X.J.; Wang, C.X.; Wu, B.; Wu, J.P. An extended time series (2000-2018) of global NPP-VIIRS-like nighttime light data from a cross-sensor calibration. Earth Syst. Sci. Data 2021, 13, 889–906. [Google Scholar] [CrossRef]
- Boori, M.S.; Choudhary, K.; Paringer, R.; Kupriyanov, A. Spatiotemporal ecological vulnerability analysis with statistical correlation based on satellite remote sensing in Samara, Russia. J. Environ. Manag. 2021, 285, 112138. [Google Scholar] [CrossRef]
- Healey, S.P.; Cohen, W.B.; Yang, Z.Q.; Krankina, O.N. Comparison of Tasseled Cap-based Landsat data structures for use in forest disturbance detection. Remote Sens. Environ. 2005, 97, 301–310. [Google Scholar] [CrossRef]
- Xu, H. A new index for delineating built-up land features in satellite imagery. Int. J. Remote Sens. 2008, 29, 4269–4276. [Google Scholar] [CrossRef]
- Weng, Q.H.; Fu, P.; Gao, F. Generating daily land surface temperature at Landsat resolution by fusing Landsat and MODIS data. Remote Sens. Environ. 2014, 145, 55–67. [Google Scholar] [CrossRef]
- Khodaparast, M.; Rajabi, A.M.; Edalat, A. Municipal solid waste landfill siting by using GIS and analytical hierarchy process (AHP): A case study in Qom city, Iran. Environ. Earth Sci. 2018, 77, 52. [Google Scholar] [CrossRef]
- Abson, D.J.; Dougill, A.J.; Stringer, L.C. Using Principal Component Analysis for information-rich socio-ecological vulnerability mapping in Southern Africa. Appl. Geogr. 2012, 35, 515–524. [Google Scholar] [CrossRef]
- Li, W.L.; Liu, C.L.; Su, W.L.; Ma, X.L.; Zhou, H.K.; Wang, W.Y.; Zhu, G.F. Spatiotemporal evaluation of alpine pastoral ecosystem health by using the Basic-Pressure-State-Response Framework: A case study of the Gannan region, northwest China. Ecol. Indic. 2021, 129, 108000. [Google Scholar] [CrossRef]
- Chen, J.B.; Wang, Y.J.; Li, F.Y.; Liu, Z.C. Aquatic ecosystem health assessment of a typical sub-basin of the Liao River based on entropy weights and a fuzzy comprehensive evaluation method. Sci. Rep. 2019, 9, 14045. [Google Scholar] [CrossRef] [PubMed]
- Ariken, M.; Zhang, F.; Liu, K.; Fang, C.L.; Kung, H.T. Coupling coordination analysis of urbanization and eco-environment in Yanqi Basin based on multi-source remote sensing data. Ecol. Indic. 2020, 114, 106331. [Google Scholar] [CrossRef]
- Yang, C.; Zhang, C.C.; Li, Q.Q.; Liu, H.Z.; Gao, W.X.; Shi, T.Z.; Liu, X.; Wu, G.F. Rapid urbanization and policy variation greatly drive ecological quality evolution in Guangdong-Hong Kong-Macau Greater Bay Area of China: A remote sensing perspective. Ecol. Indic. 2020, 115, 106373. [Google Scholar] [CrossRef]
- Darand, M.; Dostkamyan, M.; Rehmanic, M.I.A. Spatial Autocorrelation Analysis of Extreme Precipitation in Iran. Russ. Meteorol. Hydrol. 2017, 42, 415–424. [Google Scholar] [CrossRef]
- Moran, P.A.P. Notes on continuous stochastic phenomena. Biometrika 1950, 37, 17–23. [Google Scholar] [CrossRef]
- Ghulam, A.; Ghulam, O.; Maimaitijiang, M.; Freeman, K.; Porton, I.; Maimaitiyiming, M. Remote Sensing Based Spatial Statistics to Document Tropical Rainforest Transition Pathways. Remote Sens. 2015, 7, 6257–6279. [Google Scholar] [CrossRef]
- Anselin, L.; Syabri, I.; Kho, Y. GeoDa: An introduction to spatial data analysis. Geogr. Anal. 2006, 38, 5–22. [Google Scholar] [CrossRef]
- Wang, H.; Liu, X.M.; Zhao, C.Y.; Chang, Y.P.; Liu, Y.Y.; Zang, F. Spatial-temporal pattern analysis of landscape ecological risk assessment based on land use/land cover change in Baishuijiang National nature reserve in Gansu Province, China. Ecol. Indic. 2021, 124, 107454. [Google Scholar] [CrossRef]
- Song, Y.Z.; Wang, J.F.; Ge, Y.; Xu, C.D. An optimal parameters-based geographical detector model enhances geographic characteristics of explanatory variables for spatial heterogeneity analysis: Cases with different types of spatial data. GISci. Remote Sens. 2020, 57, 593–610. [Google Scholar] [CrossRef]
- Brunsdon, C.; Fotheringham, A.S.; Charlton, M.E. Geographically Weighted Regression: A Method for Exploring Spatial Nonstationarity. Geogr. Anal. 1996, 28, 281–298. [Google Scholar] [CrossRef]
- Hou, W.J.; Gao, J.B. Spatially Variable Relationships between Karst Landscape Pattern and Vegetation Activities. Remote Sens. 2020, 12, 1134. [Google Scholar] [CrossRef]
- Lu, B.B.; Charlton, M.; Harris, P.; Fotheringham, A.S. Geographically weighted regression with a non- Euclidean distance metric: A case study using hedonic house price data. Int. J. Geogr. Inf. Sci. 2014, 28, 660–681. [Google Scholar] [CrossRef]
- He, Y.H.; Tang, C.C.; Wang, Z.R. Spatial patterns and influencing factors of sewage treatment plants in the Guangdong-Hong Kong-Macau Greater Bay Area, China. Sci. Total Environ. 2021, 792, 148430. [Google Scholar] [CrossRef]
- Lin, Y.Y.; Hu, X.S.; Zheng, X.X.; Hou, X.Y.; Zhang, Z.X.; Zhou, X.N.; Qiu, R.Z.; Lin, J.G. Spatial variations in the relationships between road network and landscape ecological risks in the highest forest coverage region of China. Ecol. Indic. 2019, 96, 392–403. [Google Scholar] [CrossRef]
- Fang, L.L.; Wang, L.C.; Chen, W.X.; Sun, J.; Cao, Q.; Wang, S.Q.; Wang, L.Z. Identifying the impacts of natural and human factors on ecosystem service in the Yangtze and Yellow River Basins. J. Clean. Prod. 2021, 314, 127995. [Google Scholar] [CrossRef]
- Gao, X.; Huang, X.X.; Lo, K.; Dang, Q.W.; Wen, R.Y. Vegetation responses to climate change in the Qilian Mountain Nature Reserve, Northwest China. Glob. Ecol. Conserv. 2021, 28, e01698. [Google Scholar] [CrossRef]
- Ma, Y.R.; Guan, Q.Y.; Sun, Y.F.; Zhang, J.; Yang, L.Q.; Yang, E.Q.; Li, H.C.; Du, Q.Q. Three-dimensional dynamic characteristics of vegetation and its response to climatic factors in the Qilian Mountains. CATENA 2022, 208, 105694. [Google Scholar] [CrossRef]
- Xu, H.J.; Zhao, C.Y.; Wang, X.P. Spatiotemporal differentiation of the terrestrial gross primary production response to climate constraints in a dryland mountain ecosystem of northwestern China. Agric. For. Meteorol. 2019, 276, 107628. [Google Scholar] [CrossRef]
- Zhu, L.J.; Meng, J.J.; Zhu, L.K. Applying Geodetector to disentangle the contributions of natural and anthropogenic factors to NDVI variations in the middle reaches of the Heihe River Basin. Ecol. Indic. 2020, 117, 106545. [Google Scholar] [CrossRef]
- Teng, M.J.; Zeng, L.X.; Hu, W.J.; Wang, P.C.; Yan, Z.G.; He, W.; Zhang, Y.; Huang, Z.L.; Xiao, W.F. The impacts of climate changes and human activities on net primary productivity vary across an ecotone zone in Northwest China. Sci. Total Environ. 2020, 714, 136691. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.F.; Guan, Q.Y.; Wang, Q.Z.; Yang, L.Q.; Pan, N.H.; Ma, Y.R.; Luo, H.P. Quantitative assessment of the impact of climatic factors on phenological changes in the Qilian Mountains, China. For. Ecol. Manag. 2021, 499, 119594. [Google Scholar] [CrossRef]
- Wu, H.W.; Guo, B.; Fan, J.F.; Yang, F.; Han, B.M.; Wei, C.X.; Lu, Y.F.; Zang, W.Q.; Zhen, X.Y.; Meng, C. A novel remote sensing ecological vulnerability index on large scale: A case study of the China-Pakistan Economic Corridor region. Ecol. Indic. 2021, 129, 107955. [Google Scholar] [CrossRef]
- Shan, W.; Jin, X.B.; Ren, J.; Wang, Y.C.; Xu, Z.G.; Fan, Y.T.; Gu, Z.M.; Hong, C.Q.; Lin, J.H.; Zhou, Y.K. Ecological environment quality assessment based on remote sensing data for land consolidation. J. Clean. Prod. 2019, 239, 118126. [Google Scholar] [CrossRef]
Factor Type | Variables | Unit | Abbreviation | Data Description | Data Source |
---|---|---|---|---|---|
Natural factors | Temperature | °C | TEMP | Raster, 1 km | http://www.geodata.cn/data/, (accessed on 30 December 2022) |
Precipitation | mm | PCPN | Raster, 1 km | Wang et al. [34] | |
Digital elevation model | m | Dem | Raster, 90 m | http://www.gscloud.cn/, (accessed on 30 December 2022) | |
Slope | ° | Slope | Raster, 90 m | Extracted from DEM | |
Distance to water sources | km | D-water | Raster, 1 km | https://www.openstreetmap.org, (accessed on 30 December 2022) | |
Human factors | Population density | people/km2 | Pop | Raster, 1 km | https://www.worldpop.org, (accessed on 30 December 2022) |
Nighttime light intensity | nW cm−2 sr−1 | NTL | Raster, 500m | https://doi.org/10.7910/DVN/YGIVCD, (accessed on 30 December 2022) | |
Distance to roads | km | D-road | Raster, 1 km | https://www.openstreetmap.org, (accessed on 30 December 2022) | |
Distance to towns | km | D-town | Raster, 1 km |
T1–T2 | T2 | |||||
---|---|---|---|---|---|---|
Poor | Fair | Moderate | Good | Excellent | ||
T1 | Poor | Unchanged | Improved | Improved | Improved | Improved |
Fair | Degraded | Unchanged | Improved | Improved | Improved | |
Moderate | Degraded | Degraded | Unchanged | Improved | Improved | |
Good | Degraded | Degraded | Degraded | Unchanged | Improved | |
Excellent | Degraded | Degraded | Degraded | Degraded | Unchanged |
Description | Interaction |
---|---|
q(X1 ∩ X2) < Min(q(X1), q(X2)) | Weaken, nonlinear |
Min(q(X1), q(X2)) < q(X1 ∩ X2) < Max(q(X1), q(X2)) | Weaken, univariate |
q(X1 ∩ X2) > Max(q(X1), q(X2)) | Enhanced, bivariate |
q(X1 ∩ X2) = q(X1) + q(X2) | Independent |
q(X1 ∩ X2) > q(X1) + q(X2) | Enhance, nonlinear |
Year | Item | PC1 | PC2 | PC3 | PC4 | RSEI ± SD |
---|---|---|---|---|---|---|
2000 | Eigenvalue | 0.042 | 0.009 | 0.002 | 0.001 | 0.408 ± 0.237 |
Contribution rate (%) | 78.907 | 16.916 | 3.119 | 1.059 | ||
2005 | Eigenvalue | 0.044 | 0.010 | 0.002 | 0.001 | 0.432 ± 0.240 |
Contribution rate (%) | 77.729 | 17.599 | 3.594 | 1.079 | ||
2010 | Eigenvalue | 0.044 | 0.009 | 0.002 | 0.001 | 0.438 ± 0.244 |
Contribution rate (%) | 79.115 | 16.070 | 3.505 | 1.309 | ||
2015 | Eigenvalue | 0.036 | 0.009 | 0.002 | 0.000 | 0.413 ± 0.219 |
Contribution rate (%) | 75.466 | 19.721 | 3.976 | 0.837 | ||
2020 | Eigenvalue | 0.033 | 0.010 | 0.002 | 0.000 | 0.460 ± 0.229 |
Contribution rate (%) | 74.243 | 21.307 | 3.597 | 0.853 |
Factor Type | 2000 | 2005 | 2010 | 2015 | 2020 | |
---|---|---|---|---|---|---|
Natural factors | TEMP | 0.078 ** | 0.090 ** | 0.086 ** | 0.057 ** | 0.042 ** |
PCPN | 0.654 ** | 0.693 ** | 0.644 ** | 0.664 ** | 0.699 ** | |
Dem | 0.027 ** | 0.024 ** | 0.028 ** | 0.020 ** | 0.016 ** | |
Slope | 0.058 ** | 0.057 ** | 0.056 ** | 0.072 ** | 0.075 ** | |
D-water | 0.188 ** | 0.205 ** | 0.194 ** | 0.209 ** | 0.208 ** | |
Human factors | Pop | 0.035 ** | 0.052 ** | 0.035 ** | 0.027 ** | 0.031 ** |
NTL | 0.000 | 0.001 | 0.001 | 0.001 | 0.002 | |
D-road | 0.110 ** | 0.126 ** | 0.125 ** | 0.121 ** | 0.112 ** | |
D-town | 0.224 ** | 0.242 ** | 0.255 ** | 0.251 ** | 0.219 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Liu, C.; Zang, F.; Liu, Y.; Chang, Y.; Huang, G.; Fu, G.; Zhao, C.; Liu, X. Remote Sensing-Based Approach for the Assessing of Ecological Environmental Quality Variations Using Google Earth Engine: A Case Study in the Qilian Mountains, Northwest China. Remote Sens. 2023, 15, 960. https://doi.org/10.3390/rs15040960
Wang H, Liu C, Zang F, Liu Y, Chang Y, Huang G, Fu G, Zhao C, Liu X. Remote Sensing-Based Approach for the Assessing of Ecological Environmental Quality Variations Using Google Earth Engine: A Case Study in the Qilian Mountains, Northwest China. Remote Sensing. 2023; 15(4):960. https://doi.org/10.3390/rs15040960
Chicago/Turabian StyleWang, Hong, Chenli Liu, Fei Zang, Youyan Liu, Yapeng Chang, Guozhu Huang, Guiquan Fu, Chuanyan Zhao, and Xiaohuang Liu. 2023. "Remote Sensing-Based Approach for the Assessing of Ecological Environmental Quality Variations Using Google Earth Engine: A Case Study in the Qilian Mountains, Northwest China" Remote Sensing 15, no. 4: 960. https://doi.org/10.3390/rs15040960
APA StyleWang, H., Liu, C., Zang, F., Liu, Y., Chang, Y., Huang, G., Fu, G., Zhao, C., & Liu, X. (2023). Remote Sensing-Based Approach for the Assessing of Ecological Environmental Quality Variations Using Google Earth Engine: A Case Study in the Qilian Mountains, Northwest China. Remote Sensing, 15(4), 960. https://doi.org/10.3390/rs15040960