Estimation of Arctic Sea Ice Thickness from Chinese HY-2B Radar Altimetry Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. HY-2B Radar Altimetry Data
2.2. Cryosat-2 SIT Data
2.3. ICESat-2 SIT Data
2.4. OIB SIT Data
2.5. BGEP Ice Draft Data
2.6. Auxiliary Data
2.7. Sea Ice Thickness Retrieval Method
3. Results
3.1. Comparison against the IS-2 SIT Data
3.2. Comparison against the IS-2 SIT Data
3.3. Comparison against the OIB Ice Thickness Data
3.4. Comparison against the BGEP Ice Draft Data
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Toggweiler, J.R.; Russell, J. Ocean circulation in a warming climate. Nature 2008, 451, 286–288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dickson, B. Oceanography: All change in the Arctic. Nature 1999, 397, 389–391. [Google Scholar] [CrossRef] [PubMed]
- Holland, M.M.; Bitz, C.M.; Tremblay, B. Future abrupt reductions in the summer Arctic sea ice. Geophys. Res. Lett. 2006, 33, 265–288. [Google Scholar] [CrossRef] [Green Version]
- Laxon, S.; Peacock, N.; Smith, D. High interannual variability of sea ice thickness in the Arctic region. Nature 2003, 425, 947–950. [Google Scholar] [CrossRef] [PubMed]
- Guerreiro, K.; Fleury, S.; Zakharova, E.; Kouraev, A.; Rémy, F.; Maisongrande, P. Comparison of CryoSat-2 and ENVISAT radar freeboard over Arctic sea ice: Toward an improved Envisat freeboard retrieval. Cryosphere 2017, 11, 2059–2073. [Google Scholar] [CrossRef] [Green Version]
- Paul, S.; Hendricks, S.; Ricker, R.; Kern, S.; Rinne, E. Empirical parametrization of Envisat freeboard retrieval of Arctic and Antarctic sea ice based on CryoSat-2: Progress in the ESA Climate Change Initiative. Cryosphere 2018, 12, 2437–2460. [Google Scholar] [CrossRef] [Green Version]
- Kwok, R.; Cunningham, G.F. Variability of Arctic sea ice thickness and volume from CryoSat-2. Philos. Trans. A Math. Phys. Eng. Sci. 2015, 373, 20140157. [Google Scholar] [CrossRef]
- Tilling, R.L.; Ridout, A.; Shepherd, A. Estimating Arctic sea ice thickness and volume using CryoSat-2 radar altimeter data. Adv. Space Res. 2018, 62, 1203–1225. [Google Scholar] [CrossRef]
- Lawrence, I.R.; Armitage, T.W.K.; Tsamados, M.C.; Stroeve, J.C.; Dinardo, S.; Ridout, A.L.; Muir, A.; Tilling, R.L.; Shepherd, A. Extending the Arctic sea ice freeboard and sea level record with the Sentinel-3 radar altimeters. Adv. Space Res. 2021, 68, 711–723. [Google Scholar] [CrossRef]
- Kwok, R.; Cunningham, G.F. ICESat over Arctic sea ice: Estimation of snow depth and ice thickness. J. Geophys. Res. 2008, 113, C08010. [Google Scholar] [CrossRef]
- Kurtz, N.T.; Markus, T.; Cavalieri, D.J.; Sparling, L.C.; Krabill, W.B.; Gasiewski, A.J.; Sonntag, J.G. Estimation of sea ice thickness distributions through the combination of snow depth and satellite laser altimetry data. J. Geophys. Res. 2009, 114, C10007. [Google Scholar] [CrossRef] [Green Version]
- Farrell, S.L.; Laxon, S.W.; McAdoo, D.C.; Yi, D.; Zwally, H.J. Five years of Arctic sea ice freeboard measurements from the Ice, Cloud and land Elevation Satellite. J. Geophys. Res. 2009, 114, C04008. [Google Scholar] [CrossRef]
- Petty, A.A.; Kurtz, N.T.; Kwok, R.; Markus, T.; Neumann, T.A. Winter Arctic Sea Ice Thickness from ICESat-2 Freeboards. J. Geophys. Res. Ocean. 2020, 125, e2019JC015764. [Google Scholar] [CrossRef]
- Petty, A.A.; Keeney, N.; Cabaj, A.; Kushner, P.; Bagnardi, M. Winter Arctic sea ice thickness from ICESat-2: Upgrades to freeboard and snow loading estimates and an assessment of the first three winters of data collection. Cryosphere 2023, 17, 127–156. [Google Scholar] [CrossRef]
- Jiang, M.; Xu, K.; Jia, Y.; Fan, C.; Xu, X. Evaluation of HY-2B Altimeter Products Over Ocean. In Proceedings of the IGARSS 2020—2020 IEEE International Geoscience and Remote Sensing Symposium, Waikoloa, HI, USA, 26 September–2 October 2020; pp. 5858–5861. [Google Scholar] [CrossRef]
- Xu, K.; Liu, P.; Tang, Y.; Yu, X. The improved design for HY-2B radar altimeter. In Proceedings of the IGARSS 2020—2020 IEEE International Geoscience and Remote Sensing Symposium, Fort Worth, TX, USA, 23–28 July 2017. [Google Scholar] [CrossRef]
- Philip, A.; Taburet, G.; Charles, E.; Raynal, M.; Faugère, Y.; Quéruel, N.; Bignalet-Cazalet, F.; Dibarboure, G. HY-2B Now Used Operationally in Multi-Mission Sea Level and Wave Systems. Available online: https://ostst.aviso.altimetry.fr/fileadmin/user_upload/tx_ausyclsseminar/files/OSTST_2020_HY2B_feedbacks_and_contribution.pdf (accessed on 14 February 2023).
- Laxon, S.W.; Giles, K.A.; Ridout, A.L.; Wingham, D.J.; Willatt, R.; Cullen, R.; Kwok, R.; Schweiger, A.; Zhang, J.; Haas, C.; et al. CryoSat-2 estimates of Arctic sea ice thickness and volume. Geophys. Res. Lett. 2013, 40, 732–737. [Google Scholar] [CrossRef] [Green Version]
- Kurtz, N.T.; Galin, N.; Studinger, M. An improved CryoSat-2 sea ice freeboard retrieval algorithm through the use of waveform fitting. Cryosphere 2014, 8, 1217–1237. [Google Scholar] [CrossRef] [Green Version]
- Ricker, R.; Hendricks, S.; Helm, V.; Skourup, H.; Davidson, M. Sensitivity of CryoSat-2 Arctic sea-ice freeboard and thickness on radar-waveform interpretation. Cryosphere 2014, 8, 1607–1622. [Google Scholar] [CrossRef] [Green Version]
- Markus, T.; Neumann, T.; Martino, A.; Abdalati, W.; Brunt, K.; Csatho, B.; Farrell, S.; Fricker, H.; Gardner, A.; Harding, D.; et al. The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2): Science requirements, concept, and implementation. Remote Sens. Environ. 2017, 190, 260–273. [Google Scholar] [CrossRef]
- Kacimi, S.; Kwok, R. Arctic Snow Depth, Ice Thickness, and Volume from ICESat-2 and CryoSat-2: 2018–2021. Geophys. Res. Lett. 2022, 49, e2021GL097448. [Google Scholar] [CrossRef]
- Kwok, R.; Kacimi, S.; Webster, M.A.; Kurtz, N.T.; Petty, A.A. Arctic Snow Depth and Sea Ice Thickness from ICESat-2 and CryoSat-2 Freeboards: A First Examination. J. Geophys. Res. Ocean. 2020, 125, e2019JC016008. [Google Scholar] [CrossRef]
- Kurtz, N.T.; Farrell, S.L.; Studinger, M.; Galin, N.; Harbeck, J.P.; Lindsay, R.; Onana, V.D.; Panzer, B.; Sonntag, J.G. Sea ice thickness, freeboard, and snow depth products from Operation IceBridge airborne data. Cryosphere 2013, 7, 1035–1056. [Google Scholar] [CrossRef] [Green Version]
- Dawson, G.; Landy, J.; Tsamados, M.; Komarov, A.S.; Howell, S.; Heorton, H.; Krumpen, T. A 10-year record of Arctic summer sea ice freeboard from CryoSat-2. Remote Sens. Environ. 2022, 268, 112744. [Google Scholar] [CrossRef]
- Hendricks, S.; Ricker, R. Product User Guide & Algorithm Specification-AWI CryoSat-2 Sea Ice Thickness (Version 2.3). Available online: https://www.researchgate.net/publication/346677382 (accessed on 14 February 2023).
- Jiang, M.; Xu, K.; Zhong, W.; Jia, Y. Preliminary HY-2B Radar Freeboard Retrieval Over Arctic Sea Ice. In Proceedings of the IGARSS 2022—2022 IEEE International Geoscience and Remote Sensing Symposium, Kuala Lumpur, Malaysia, 17–22 July 2022; pp. 3904–3907. [Google Scholar] [CrossRef]
- Helm, V.; Humbert, A.; Miller, H. Elevation and elevation change of Greenland and Antarctica derived from CryoSat-2. Cryosphere 2014, 8, 1539–1559. [Google Scholar] [CrossRef] [Green Version]
- Fernandes, M.J.; Lázaro, C.; Vieira, T. On the role of the troposphere in satellite altimetry. Remote Sens. Environ. 2021, 252, 112149. [Google Scholar] [CrossRef]
- Jiang, M.; Xu, K.; Liu, Y.; Zhao, J.; Wang, L. Assessment of reprocessed sea surface height measurements derived from HY-2A radar altimeter and its application to the observation of 2015–2016 El Niño. Acta Oceanol. Sin. 2018, 37, 115–129. [Google Scholar] [CrossRef]
- Wu, Q.; Zhang, P.; Sun, M.; Liu, S.; Wang, H.; Chen, S. Performance evaluation of GIMs released by different IGS ionosphere associate analysis centers in ionospheric constrained single-frequency precise point positioning. Adv. Space Res. 2021, 68, 4834–4856. [Google Scholar] [CrossRef]
- Lyard, F.H.; Allain, D.J.; Cancet, M.; Carrère, L.; Picot, N. FES2014 global ocean tide atlas: Design and performance. Ocean. Sci. 2021, 17, 615–649. [Google Scholar] [CrossRef]
- Carrère, L.; Lyard, F. Modeling the barotropic response of the global ocean to atmospheric wind and pressure forcing-comparisons with observations. Geophys. Res. Lett. 2003, 30, 1275. [Google Scholar] [CrossRef] [Green Version]
- Cartwright, D.E.; Edden, A.C. Corrected tables of tidal harmonics. Geophys. J. Int. 1973, 33, 253–264. [Google Scholar] [CrossRef] [Green Version]
- Wahr, J.M. Deformation induced by polar motion. J. Geophys. Res. 1985, 90, 9363–9368. [Google Scholar] [CrossRef]
- Andersen, O.B.; Abulaitijiang, A.; Zhang, S.; Rose, K.S. A New High Resolution Mean Sea Surface (DTU21MSS) for Improved Sea Level Monitoring. In Proceedings of the EGU General Assembly Conference Abstracts, Online, 19–30 April 2021; p. EGU21-16084. [Google Scholar] [CrossRef]
- Kwok, R.; Cunningham, G.F.; Zwally, H.J.; Yi, D. Ice, Cloud, and land Elevation Satellite (ICESat) over Arctic sea ice: Retrieval of freeboard. J. Geophys. Res. 2007, 112, C12013. [Google Scholar] [CrossRef] [Green Version]
- Lindsay, R.W.; Rothrock, D.A. Arctic sea ice leads from advanced very high resolution radiometer images. J. Geophys. Res. Ocean 1995, 100, 4533–4544. [Google Scholar] [CrossRef]
- Zwally, H.J.; Yi, D.; Kwok, R.; Zhao, Y. ICESat measurements of sea ice freeboard and estimates of sea ice thickness in the Weddell Sea. J. Geophys. Res. 2008, 113, C02S15. [Google Scholar] [CrossRef] [Green Version]
- Skourup, H.; Forsberg, R. Sea ice freeboards from ICESat—A comparison to airborne lidar measurements. In Arctic Sea Ice. Thickness: Past, Present and Future; Springer: Berlin/Heidelberg, Germany, 2006; pp. 82–92. [Google Scholar]
- Zhang, S.; Xuan, Y.; Li, J.; Geng, T.; Li, X.; Xiao, F. Arctic Sea Ice Freeboard Retrieval from Envisat Altimetry Data. Remote Sens. 2021, 13, 1414. [Google Scholar] [CrossRef]
- Mallett, R.D.C.; Lawrence, I.R.; Stroeve, J.C.; Landy, J.C.; Tsamados, M. Brief communication: Conventional assumptions involving the speed of radar waves in snow introduce systematic underestimates to sea ice thickness and seasonal growth rate estimates. Cryosphere 2020, 14, 251–260. [Google Scholar] [CrossRef] [Green Version]
Parameter | Value |
---|---|
Emission signal center frequency | 13.58 GHZ (Ku), 5.25 GHZ (C) |
Orbit altitude | 973 km |
Orbit inclination angle | 99.3° |
Orbit period | 14 days |
Number of range bin | 128 |
Transmission pulse width | 102.4 μs |
Ku pulse repetition rate | 2 kHz |
Antenna aperture | 1.3 m |
Bandwidth | 320 MHZ |
Ground footprint diameter | 1.9 km (Ku), 10 km (C) |
October | November | December | January | February | March | April | |
---|---|---|---|---|---|---|---|
0.83 | 0.88 | 0.87 | 0.90 | 0.93 | 0.93 | 0.94 | |
−0.82 | −0.91 | −0.88 | −0.92 | −0.96 | −0.96 | −1.00 |
AWI CS-2 | GSFC CS-2 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
SIT (m) | N | Bias (m) | STD (m) | RMSE (m) | MRE | N | Bias (m) | STD (m) | RMSE (m) | MRE | |
HY-2B | 0–1 | 100,931 | 1.18 | 0.49 | 1.28 | 2.30 | 4178 | 0.92 | 0.59 | 1.09 | 1.05 |
1–2 | 92,624 | 1.23 | 0.52 | 1.34 | 0.92 | 123,424 | 0.79 | 0.57 | 0.98 | 0.55 | |
2–3 | 16,694 | 0.92 | 0.65 | 1.12 | 0.43 | 25,403 | 0.75 | 0.61 | 0.97 | 0.35 | |
3–4 | 3020 | 0.09 | 0.77 | 0.77 | 0.17 | 2208 | 0.37 | 0.56 | 0.67 | 0.16 | |
4–5 | 642 | −1.02 | 0.93 | 1.38 | 0.23 | 204 | −0.57 | 0.80 | 0.98 | 0.15 | |
5–6 | 184 | −2.37 | 1.08 | 2.61 | 0.43 | 27 | −1.40 | 0.43 | 1.47 | 0.24 | |
Calibrated HY-2B | 0–1 | 100,931 | 0.08 | 0.44 | 0.45 | 0.68 | 4178 | −0.19 | 0.52 | 0.55 | 0.50 |
1–2 | 92,624 | 0.07 | 0.48 | 0.49 | 0.26 | 123,424 | −0.34 | 0.52 | 0.62 | 0.33 | |
2–3 | 16,694 | −0.29 | 0.60 | 0.67 | 0.18 | 25,403 | −0.44 | 0.56 | 0.72 | 0.24 | |
3–4 | 3020 | −1.12 | 0.72 | 1.34 | 0.31 | 2208 | −0.86 | 0.53 | 1.01 | 0.23 | |
4–5 | 642 | −2.22 | 0.87 | 2.39 | 0.50 | 204 | −1.80 | 0.76 | 1.95 | 0.41 | |
5–6 | 184 | −3.55 | 1.02 | 3.69 | 0.65 | 27 | −2.64 | 0.41 | 2.67 | 0.48 |
AWI CS-2 | GSFC CS-2 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Ice Type | N | Bias (m) | STD (m) | RMSE (m) | MRE | N | Bias (m) | STD (m) | RMSE (m) | MRE | |
HY-2B | FYI | 167,298 | 1.14 | 0.55 | 1.27 | 1.57 | 120,528 | 0.73 | 0.57 | 0.92 | 0.51 |
MYI | 17,952 | 1.31 | 0.66 | 1.47 | 0.75 | 15,395 | 1.14 | 0.51 | 1.25 | 0.53 | |
ALL | 185,250 | 1.16 | 0.56 | 1.29 | 1.49 | 135,923 | 0.77 | 0.58 | 0.97 | 0.51 | |
Calibrated HY-2B | FYI | 167,298 | 0.02 | 0.52 | 0.52 | 0.46 | 120,528 | −0.41 | 0.51 | 0.67 | 0.34 |
MYI | 17,952 | 0.06 | 0.65 | 0.65 | 0.23 | 15,395 | −0.11 | 0.49 | 0.50 | 0.16 | |
ALL | 185,250 | 0.02 | 0.53 | 0.53 | 0.44 | 135,923 | −0.37 | 0.54 | 0.65 | 0.32 |
JPL IS-2 | GSFC IS-2 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
SIT (m) | N | Bias (m) | STD (m) | RMSE (m) | MRE | N | Bias (m) | STD (m) | RMSE (m) | MRE | |
HY-2B | 0–1 | 23,819 | 1.31 | 0.38 | 1.37 | 1.90 | 71,875 | 1.29 | 0.57 | 1.42 | 2.94 |
1–2 | 49,665 | 1.17 | 0.40 | 1.23 | 0.81 | 64,091 | 1.01 | 0.56 | 1.16 | 0.73 | |
2–3 | 12,319 | 1.04 | 0.41 | 1.12 | 0.45 | 18,225 | 0.60 | 0.63 | 0.87 | 0.31 | |
3–4 | 2413 | 0.39 | 0.40 | 0.56 | 0.14 | 4455 | 0.009 | 0.70 | 0.70 | 0.15 | |
4–5 | 667 | −0.45 | 0.37 | 0.58 | 0.10 | 1202 | −0.83 | 0.69 | 1.08 | 0.18 | |
5–6 | 109 | −1.19 | 0.32 | 1.24 | 0.22 | 316 | −1.83 | 0.80 | 2.00 | 0.33 | |
Calibrated HY-2B | 0-1 | 23,819 | 0.17 | 0.33 | 0.37 | 0.39 | 71,875 | 0.18 | 0.52 | 0.55 | 0.97 |
1–2 | 49,665 | 0.006 | 0.36 | 0.36 | 0.18 | 64,091 | −0.13 | 0.51 | 0.53 | 0.28 | |
2–3 | 12,319 | −0.17 | 0.39 | 0.43 | 0.13 | 18,225 | −0.58 | 0.58 | 0.83 | 0.27 | |
3–4 | 2413 | −0.84 | 0.39 | 0.92 | 0.24 | 4455 | −1.22 | 0.66 | 1.39 | 0.34 | |
4–5 | 667 | −1.69 | 0.35 | 1.73 | 0.38 | 1202 | −2.07 | 0.66 | 2.17 | 0.46 | |
5–6 | 109 | −2.44 | 0.30 | 2.46 | 0.46 | 316 | −3.06 | 0.76 | 3.15 | 0.56 | |
AWI CS-2 | 0–1 | 27,528 | 0.01 | 0.34 | 0.34 | 0.25 | 91,094 | 0.16 | 0.44 | 0.47 | 0.83 |
1–2 | 55,201 | −0.21 | 0.30 | 0.37 | 0.18 | 73,756 | −0.24 | 0.46 | 0.52 | 0.26 | |
2–3 | 13,687 | −0.45 | 0.44 | 0.63 | 0.21 | 20,742 | −0.76 | 0.58 | 0.96 | 0.33 | |
3–4 | 2521 | −0.67 | 0.50 | 0.84 | 0.20 | 5087 | −1.35 | 0.84 | 1.60 | 0.40 | |
4–5 | 684 | −0.79 | 0.64 | 1.02 | 0.20 | 1391 | −1.95 | 1.12 | 2.25 | 0.44 | |
5–6 | 107 | −0.78 | 0.81 | 1.13 | 0.18 | 355 | −2.55 | 1.36 | 2.89 | 0.48 | |
0–1 | 23,265 | 0.61 | 0.34 | 0.70 | 0.84 | 50,339 | 0.80 | 0.38 | 0.89 | 1.89 | |
1–2 | 54,951 | 0.17 | 0.33 | 0.37 | 0.20 | 56,514 | 0.17 | 0.35 | 0.40 | 0.20 | |
GSFC | 2–3 | 13,633 | −0.29 | 0.33 | 0.44 | 0.15 | 16,990 | −0.42 | 0.41 | 0.58 | 0.20 |
CS-2 | 3–4 | 2534 | −0.64 | 0.43 | 0.77 | 0.19 | 4066 | −1.00 | 0.51 | 1.12 | 0.29 |
4–5 | 680 | −0.98 | 0.47 | 1.09 | 0.22 | 1086 | −1.65 | 0.66 | 1.78 | 0.37 | |
5–6 | 109 | −1.25 | 0.62 | 1.40 | 0.24 | 264 | −2.21 | 0.71 | 2.32 | 0.41 |
JPL IS-2 | GSFC IS-2 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Ice Type | N | Bias (m) | STD (m) | RMSE (m) | MRE | N | Bias (m) | STD (m) | RMSE (m) | MRE | |
HY-2B | FYI | 66,997 | 1.17 | 0.40 | 1.24 | 1.08 | 127,298 | 1.06 | 0.65 | 1.24 | 1.69 |
MYI | 11,067 | 0.99 | 0.65 | 1.19 | 0.52 | 12,254 | 0.84 | 0.84 | 1.19 | 0.59 | |
ALL | 78,064 | 1.15 | 0.44 | 1.23 | 1.00 | 139,552 | 1.04 | 0.67 | 1.24 | 1.59 | |
Calibrated HY-2B | FYI | 66,997 | 0.02 | 0.37 | 0.37 | 0.23 | 127,298 | −0.06 | 0.62 | 0.63 | 0.59 |
MYI | 11,067 | −0.25 | 0.64 | 0.69 | 0.18 | 12,254 | −0.41 | 0.84 | 0.94 | 0.27 | |
ALL | 78,064 | −0.01 | 0.43 | 0.43 | 0.22 | 139,552 | −0.09 | 0.65 | 0.66 | 0.57 | |
AWI CS-2 | FYI | 75,838 | −0.17 | 0.34 | 0.38 | 0.20 | 159,465 | −0.12 | 0.60 | 0.61 | 0.53 |
MYI | 11,602 | −0.39 | 0.44 | 0.59 | 0.18 | 12,822 | −0.53 | 0.75 | 0.92 | 0.27 | |
ALL | 87,440 | −0.20 | 0.36 | 0.41 | 0.19 | 172,287 | −0.15 | 0.62 | 0.64 | 0.51 | |
GSFC CS-2 | FYI | 71,935 | 0.25 | 0.43 | 0.50 | 0.36 | 103,639 | 0.37 | 0.57 | 0.68 | 0.91 |
MYI | 11,583 | −0.21 | 0.45 | 0.50 | 0.14 | 12,015 | −0.35 | 0.76 | 0.84 | 0.25 | |
ALL | 83,518 | 0.19 | 0.46 | 0.50 | 0.32 | 115,654 | 0.29 | 0.64 | 0.70 | 0.85 |
Time Span | Ice Type | HY2B | Calibrated HY-2B | AWI CS-2 | GSFC CS-2 | GSFC IS-2 | JPL IS-2 |
---|---|---|---|---|---|---|---|
October 2019–April 2020 | FYI | 0.17 | 0.16 | 0.11 | 0.10 | 0.14 | 0.20 |
MYI | 0.17 | 0.18 | 0.19 | 0.16 | 0.28 | 0.29 | |
ALL | 0.11 | 0.12 | 0.10 | 0.08 | 0.07 | 0.17 | |
October 2020–April 2021 | FYI | 0.13 | 0.13 | 0.11 | 0.09 | 0.15 | 0.22 |
MYI | 0.18 | 0.19 | 0.16 | 0.13 | 0.20 | 0.24 | |
ALL | 0.10 | 0.11 | 0.10 | 0.08 | 0.10 | 0.22 | |
October 2021–April 2022 | FYI | 0.17 | 0.16 | 0.13 | 0.13 | 0.13 | - |
MYI | 0.20 | 0.21 | 0.24 | 0.22 | 0.37 | - | |
ALL | 0.13 | 0.13 | 0.12 | 0.12 | 0.11 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, M.; Zhong, W.; Xu, K.; Jia, Y. Estimation of Arctic Sea Ice Thickness from Chinese HY-2B Radar Altimetry Data. Remote Sens. 2023, 15, 1180. https://doi.org/10.3390/rs15051180
Jiang M, Zhong W, Xu K, Jia Y. Estimation of Arctic Sea Ice Thickness from Chinese HY-2B Radar Altimetry Data. Remote Sensing. 2023; 15(5):1180. https://doi.org/10.3390/rs15051180
Chicago/Turabian StyleJiang, Maofei, Wenqing Zhong, Ke Xu, and Yongjun Jia. 2023. "Estimation of Arctic Sea Ice Thickness from Chinese HY-2B Radar Altimetry Data" Remote Sensing 15, no. 5: 1180. https://doi.org/10.3390/rs15051180
APA StyleJiang, M., Zhong, W., Xu, K., & Jia, Y. (2023). Estimation of Arctic Sea Ice Thickness from Chinese HY-2B Radar Altimetry Data. Remote Sensing, 15(5), 1180. https://doi.org/10.3390/rs15051180