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Abstract: Non-uniformity in the response of spectral image elements is an inevitable phenomenon in
hyperspectral imaging, which mainly manifests itself as the presence of band noise in the acquired
hyperspectral data. This problem is prominent in the infrared band owing to the detector material,
operating environment, and other factors. Non-uniformity is an important factor that can affect the
quality of the hyperspectral data, which has a serious impact on both data analysis and applications
and requires corrections via technical means wherever possible. This paper proposes a novel target-
based non-uniformity self-correction method for infrared push-broom hyperspectral images. The
Mars Mineralogical Spectrometer (MMS) onboard the Tianwen-1 orbiter was used as the research
and application object. The model is constructed and applied to the target scene characteristics
and detection patterns of Mars remote sensing exploration, which are combined with the causes
of noise generation in the infrared spectral image bands. The design of the MMS dual-channel
Visible-Near-Infrared (V-NIR) and Near-Mid-Infrared (N-MIR) co-field of view co-target detection
and laboratory calibration data for the V-NIR spectral band can achieve non-uniformity corrections
(NUCs). Therefore, for the MMS in-orbit Mars exploration mission, the method selected spectral
data (920-1055 nm) characterized by a reduced atmospheric influence to iteratively obtain the
homogeneous region, which was used to calculate the non-uniformity correction factor for the N-MIR
spectral band. This method was compared, validated, and evaluated with other conventional methods
using both laboratory and in-orbit hyperspectral data. The results showed that the experimental data
corrections were comparable to laboratory calibrations, with a maximum relative deviation of <2.6%.
These results prove that our method not only provides an excellent non-uniformity correction, but
also ensures spectral fidelity. It can thus be used as a non-uniformity correction process for the MMS
and similar hyperspectral imagers.
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1. Introduction

The two-dimensional (2-D) focal plane of a push-broom infrared hyperspectral imager
is used in one dimension to receive spectral information and in the other dimension for
line-array push-broom imaging. Different detection units acquire the radiation signals in
the same band at different spatial locations in the line-array target. Inconsistencies in the
response between different elements of the 2-D focal plane are inevitable with existing
detector materials and process technologies [1,2]. At the same time, such non-uniformity
is often closely related to the instrument operating environment, which can lead to more
complex NUCs [3,4]. The presence of non-uniformity simultaneously reduces the imaging
quality and spectral accuracy of hyperspectral images, which have a serious impact on
information extraction and target identification. Effective NUCs must be realized to ensure
effective scientific output.
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Prior to launch, NUC factors for the push-broom hyperspectral imager had to be
obtained via a laboratory calibration. After orbit, three main methods can be used to
further correct for possible changes in the uniformity of the detector (when the correction
coefficients obtained by ground calibration do not conform to the correction requirements):
spectral filter-based methods [5-7], full variational and improved algorithms [8-11], and
spatial domain information statistics-based methods and improved algorithms [12-16].
Methods based on spectral filtering mainly include the joint frequency domain, space
domain filtering, and wavelet transform filtering. However, a loss of image detail and
image blurring will occur while filtering due to damage to the overall structure of the image;
furthermore, this method cannot determine the frequency of noise. Various algorithms
based on full variance can be developed by constructing an energy generalization equation
with constraints; however, the parameters of the constraints are not easily selectable,
especially when characterized by noise. Methods based on spatial domain information
statistics mainly include histogram matching, moment matching, and their improvement
algorithms. These methods directly employ the original information in the image data,
which is easy to use and portable. However, reasonable assumptions concerning the
reference value not affected by non-uniformity directly determine optimal or poor denoising
qualities. As for the use of popular machine learning methods, their usability is greatly
reduced by the lack of real data. It does not work for the solution of practical NUC
problems.

This paper proposes an NUC method based on the bright and dark regions of an image
via analyses of spectral imaging detection modes and instrument characteristics, although
this is not the first time this idea has been proposed (for example, Hu et al. used histogram
statistics to obtain bright and dark regions for NUCs [17], and Zhou et al. used two phases
(training and application) for spectral calibration using indirect mapping [18]). Specifically,
we perform a novel selection of bright and dark regions based on image segmentation from
the simultaneous images that are least affected by non-uniformity, as opposed to various
previous methods that work only on the uncorrected image directly. This successfully
decreases the amount of mistakes generated by prior methods that made assumptions on
the uncorrected image based on the statistical idea of spatial domain information and does
not require data from a laboratory for training. Additionally, the algorithm is simple and
clear to operate. Our method uses Mars Mineralogical Spectrometer (MMS) data, from
imaging scenes on the Martian surface while in orbit, and hyperspectral data, acquired by
laboratory calibrations, to perform NUC experiments and application validations. This
achieved satisfactory calibration results. This paper aims to yield more effective NUCs for
the MMS and provide practical correction methods and technical procedures for NUCs
with similar payload data.

2. Materials and Methods
2.1. MMS Data

Rocks and sediments on the surface record the evolutionary history of Mars, while
the mineral composition and structural features of Martian rocks record rock formation
conditions and history. Hyperspectral remote sensing surveys have played a major role
in the identification, distribution, and characterization of typical mineral types on the
Martian surface [19-21]. The MMS (Figure 1) is a Tianwen-1 orbiter science payload
that acquires spectral images of the visible to infrared spectral bands on the Martian
surface in a large elliptical orbit. At periapsis, the orbital altitude will reach a minimum of
265 km, an altitude of less than 800 km, and the effective detection time per orbit will be
approximately 26 min. In order to enable dual-channel spectral imaging detection of the
same object in the V-NIR and N-MIR spectral bands, the MMS comprises of a Visible-Near-
Infrared (V-NIR) module and a Near-Mid-Infrared (N-MIR) module, both of which have
the same field of view [22-25]. The V-NIR module uses a charge-coupled device (CCD)
array detector (512 columns x 320 rows) to acquire spectral images from 379-1076 nm,
while the N-MIR module uses a mercury—cadmium-telluride focal plane array (MCT FPA)
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(512 columns x 255 rows) to acquire spectral information from 1033 to 3425 nm. Both
channels were designed with an instantaneous field of view (IFOV) of 0.5 mrad and a field
of view (FOV) of 12°.
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Figure 1. Schematic diagram of the Mars Mineralogical Spectrometer instrument.

The data downlink limitations and spectral characteristics of different mineral types
are considered when imaging the surface of Mars at the MMS nadir observation site. The
scientific data can be downlinked as 2 x 2,4 x 4, 8 x 8, and 16 x 16, among others, to obtain
space-continuous 208-unit spectral sounding, space-continuous 104-unit spectral sounding,
space-continuous 52-unit spectral sounding, and space-continuous 26-unit spectral sound-
ing. Furthermore, the spectral dimension can include both hyperspectral (576-band) and
multispectral (72-band) mode options [23]. As a result, this allows the MMS to have more
complex non-uniform noise than conventional hyperspectral imagers.

2.2. N-MIR Spectrum Non-Uniformity

As described in Section 2.1, the MMS operates in the mode of returning data after bin-
ning multiple image elements and bands due to the limitation of data downlink bandwidth.
At the detector level, the data in the MMS N-MIR spectral band have residual NUC errors
from three main sources. First, when the operating environment is beyond the environment
range of the instrument, the NUC coefficients measured before launch cannot be used.
Second, after long-term work, errors are present due to aging image element response
changes. The last point is that the on-chip blind element repair fails due to the floating
variation of some blind elements of the MCT detector in the N-MIR module, and it is not
possible to repair all blind element image values before the image elements are binned,
which causes abnormal image element values.

The response of a well-performing imaging spectrometer is generally linear. In general,
the relationship between the DN value of the image element and the radiance of the MMS
output can be represented by a linear model:

DN;jx = GixLijx + Bik (1)

where DN is the value of the MMS image element before binning; i, j, and k are the
column number, row number, and band number of the image element, respectively; G; . is
the gain; L; j is the incident radiance; and B, ; is the bias (or dark background). The DN
value of the image element after M; X M; x M binning can be expressed as:

, 1 bM; ”Mj mM;
DN, .» = MMM, ) Y. GikLijkx + Bik )
IV k= (0-1) My +1 j=(n—1)Mj+1 i=(m—1)M;+1
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where DN’ is the pixel value of the MMS after binning; M;, M;, and M are the number of
columns, rows, and bands of the bound, respectively (generally M; = M;); and m, n, and b
represent the column, row, and band serial numbers after binning, respectively. From the
above formula, after the image element is bound, the radiance still has a linear relationship
with the DN value.

The NUC factor can be obtained through radiometric calibration of a reference source
before launch, such as an integrating sphere or a blackbody. The relationship between
the radiometric calibration coefficients of the binned mode and un-binned mode can be
approximated as:

) 1 bMy mM,;
G b — Gi,k (3)
" MiMic (T 41 im (T My 41
) 1 ka mM;
" M; My k=(b—1)My+1i=(m—1)M;+1

where G, , and B,,;, are the gain and dark background after binning, respectively. The
relationship between the binned pixel value and the radiance can be simplified and ex-
pressed as

DNm,n,h = Gm,bLm,n,h + Bm,b (5)

where L;n,n,b is the radiance corresponding to the image element after it is bound.

From the explanation above, it seems that working outside the instrument’s typical
operating environment, image element aging, and image element blindness caused by
an optical or electronic system defect can all affect the gain and dark background of
binned pixels containing anomalous pixels. This will result in non-uniformity correction
coefficients before launch not demonstrating the expected effects; the MMS data appear as
strip noise, as shown in Figure 2.

(1)

E. (Z)a .
E. (4). .

Normal value

3)

Direction of
Push-broom

Figure 2. Four typical cases of MMS image element binning. All these phenomena indicate problems
where blind elements cannot be removed directly by the calibration factors obtained before launch.

2.3. Methods

The N-MIR spectral band data of the MMS can only be accurately corrected for non-
uniformity by obtaining the correction coefficients. Although the NUC model is simple,
the required solution parameters are only gain and bias, and there are increased difficulties
in the absence of valid reference data. Based on laboratory calibration, each pixel from
the same radiation source detector should have the same response. In actual imaging, if
relatively bright and dark uniform areas can be obtained, a two-point correction can be
used to perform enhanced NUCs. We can obtain the assumed prerequisites by analyzing
the imaging characteristics of the experimental data from the MMS parking orbit. As shown
in Figure 3, the MMS is on a large elliptical orbit, using spectral imaging data bands that
span multiple latitudes. In the one-track data, as the dimensionality transforms from high
to low, the column direction radiance value has notable high and low points; each spectrum
segment has a regional difference in bright and dark areas from high to low latitudes. Based
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on this, the NUC sensor can obtain more objective and accurate correction coefficients
that are similar to laboratory corrections. To combine the characteristics of the MMS, we
formulated a set of technical procedures to correct the non-uniformity of the MMS N-MIR
spectrum data, as shown in Figure 3.
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Figure 3. A complete push-broom detection example (left). Radiance trends of different bands. The
center wavelengths are (a) 1656.5 nm, (b) 2140.8 nm, (c) 2433.7 nm, and (d) 3307.2 nm. The red boxes
show that there are bright and dark regions in various bands (right).

As shown in Figure 4, the NUC technique based on uniform regions mainly includes
the following processes: dark background removal, V-NIR spectral band correction, uni-
form bright and dark region selection, and N-MIR spectral band NUC coefficient calculation.
First, the dark background was removed from the MMS spectral data. The original NUC
coefficient was then used to correct V-NIR spectral band non-uniformity to obtain V-NIR
spectral data without strip noise. Next, the V-NIR spectral data were used as a reference to
select the bright and dark uniform regions with uniform radiation. Finally, the uniform re-
gion was used as a reference to calculate the NUCs for the N-MIR spectral band coefficients.
Each process is shown in Figure 4.

MMS Ground test VNIR after
—_— D ———

VNIR coefficient correction
|
v
Time dimension
Select Dark uniform area selection
MMS before Remove dark and Bright l MMS after
calibration background uniform region R i calibration
Spatial dimension
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|
MMS Calculate NMIR NMIR after
NMIR NUC coefficient correction

Figure 4. Non-uniformity corrections process based on bright and dark uniform regions.

2.3.1. Dark Background Removal

In the N-MIR spectral band, the dark background derives from the detector’s dark
current and internal instrument background radiation contributions. The MMS has a dark
background monitoring area, which enables estimations of the dark background for each
image per image element per frame [23]. The dark background value estimated from the
dark background monitoring area was used for dark background removal calculations.
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2.3.2. V-NIR Spectral Laboratory Coefficient NUC

Non-uniformity mainly includes inconsistent image element response caused by the
detector process and vignetting caused by optical components. Generally, the response dif-
ferences between the CCD detector elements used in the V-NIR band are small. Vignetting
has a clear regularity such that we can easily correct non-uniformity. Therefore, V-NIR
spectral non-uniformity correction can be completed using the laboratory non-uniformity
correction coefficient under the same operating environment. Equation (3) can be used to
compute the V-NIR spectral NUC.

2.3.3. Bright and Dark Uniform Region Selection

The presence of enhanced noise in the MMS N-MIR channel can affect uniform region
selection. We assumed that the MMS V-NIR module uses a CCD array detector to complete
spectral image acquisition. The nature of the CCD detector and V-NIR’s high signal-to-noise
ratio, with a non-uniformity error of <1.5%, makes its streak noise negligible. Considering
the existence of the Martian atmosphere, aerosols have a large impact on visible light.
Therefore, we used the NIR spectrum of the V-NIR channel to select uniform bright and
dark regions. The process is shown in Figure 5.
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Figure 5. MMS uniform region selection and correction flow chart. (a) Initial V-NIR selection of a
uniform region in the time dimension, (b) further V-NIR selection of the uniform region in the spatial
dimension, and (c) the N-MIR spectral band for the NUC.

The initial bright and dark uniform regions were first obtained through screening
in the time dimension. As shown in the MMS image in Figure 6, we first merged the
near-infrared (920-1055 nm) spectral dimension, which was followed by accumulation of
the row direction to obtain a column mean I. We set the sliding window size C to 2000 and
the step size n to 100 lines. For each window [;, C column mean data were obtained. The
window center position was assumed to be W,,;;;. The mean value ave; and variance var;
were obtained in each window. The mean value indicates the level of the value within the
window. The smaller the variance, the more uniform the distribution of the values of the
random variables, with reduced variability. These values are calculated as follows:
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1 Wmid+%
ave; = c Z If (6)
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!

Bright and dark max uniform pixel
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Figure 6. Flow chart of the proposed method. S, and S;, denote the set of the most uniform image
windows, I i) that satisfy the condition.

The final bright and dark uniform regions were then determined via spatial segmenta-
tion. After obtaining the V-NIR data initially selected as a homogeneous image element
set, features (i.e., shadows and borders) still existed in the image element set that were
inconsistent with the background variation due to random distribution. Therefore, the
initially selected bright and dark regions were segmented to remove the numerically lim-
ited outlier patches to obtain more desirable uniform regions. Region segmentation can be
performed using more general threshold segmentation, more complex seed-filling gradient
segmentation, or several other segmentation methods. Threshold-based segmentation is
generally suitable when outlier image elements are characterized by a random distribution,
while seed-filling gradient segmentation is suitable when the number of image rows is
small and the outlier points form small-scale patches. For the best MMS approach in terms
of Mars imaging features, we focused on the iterative thresholding segmentation algorithm.

The imaging data were transformed into a two-dimensional spatial image by first
merging the spectral dimensions. For example, we used a modified iterative operation to
find the upper boundary of a bright uniform region that distinguishes outlier patches by
setting the initial threshold TO, which is usually the global grey scale average. Dividing
the image into two parts according to the threshold TO, m0 and m1 are the average of the
elements of the two parts of the image. The new T1; value is obtained using the following
calculation:

T1; = m0 + (m1 —m0) x 0.9 ®)
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Subsequently, we set TO = T'1; and repeated the above steps until the difference between
the threshold value of the iteration and the previous iteration was less than 107, The
final result, T1, is the upper boundary of the desired bright uniform region. The iterative
formula for the lower boundary is:

T2; = n0 + (n1 — n0) x 0.1 )

Above, the set of image elements between the threshold T1 and T2 is the ideal bright
uniform region. The calculation of the bright uniform region S;l is shown in Figure 7. The
ideal dark uniform region is calculated in the same way. Finally, the ideal set of bright and
dark uniform regions, S;l and S;Z, is obtained.

Uniform pixel set S,q,
Initialization thresholds T1,T2 =T,

I

Update T'1; via Equation (8);
Update T2; via Equation (9);

& =abs(T1; —T1;_1);
& = abs(T2; —T2;_4);

® e >

Yes

Ideal bright uniform pixel set:
Sy =T1< S, <T2

Figure 7. Flow chart detailing how to obtain the ideal bright uniform region.

2.3.4. Calculation of NUC in the N-MIR Spectral Band

The image positions of the N-MIR channels S,; and S,;; are the regional image sets
S;l and S;z obtained from the V-NIR channels. To perform an accurate NUC for the
hyperspectral data in the N-MIR band of the MMS, the correction coefficients G;,k and
Bias;l ik
In the bright region, we obtained the following;:

in Equation (5) must first be obtained.

Yi = GixLik + By (10)
In the dark region, we obtained the following;:
Yp = GixLik + Big (11)

where Yy and Y] are the values in the bright and dark regions in band k, respectively, and
Ly ix and Lp ; i are the median values of the i column in the bright and dark regions in the
Kband. The NUC coefficient of each pixel was calculated as follows:

/ Yy —Yp

G, =—-H"°D (12)
" Lyik—Lp,k

/ YyLlpix — YDLH,ik
Bl,k - —

_ (13)
Lpik — LH,ik
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The N-MIR spectra NUC was completed using G;  and B; « to obtain the correction
data SA; ik

Al

5;ik = GixLijk + Bjx (14)

3. Results and Discussion
3.1. Data and Evaluation Standards

The data used in this study were multispectral mode imaging data (19 spectral
bands from V-NIR and 52 spectral bands from N-MIR selectively acquired for miner-
als) obtained by the MMS on 2 April 2021 from 63°-21° N on the surface of Mars. The
vertical ground distance from nadir observation was 280-800 km and the spatial res-
olution was approximately 283-809 m/pixel. The size of the experimental data was
12,033 pixels x 207 pixels x 71 bands.

Ground truth is not available to evaluate the effectiveness of the method before per-
forming NUCs. Therefore, two simulations were conducted in this study to quantitatively
compare the effectiveness of the different methods for N-MIR spectral NUCs. First, pre-
launch MMS externally scanned imaging on the ground was used to verify the effectiveness
of the algorithm. Second, laboratory NUC coefficient-corrected MMS V-NIR data were
used as base data, with simulated non-uniformity noise added as simulated experimental
data. The histogram matching (HM) method [12], moment matching (MM) algorithm [26],
low-pass Butterworth filtering (BW) [7] algorithm, full variational combined regularization
(TV) [10] method, and the algorithm proposed in this paper were used to process the noisy
images. The maximum relative error and structural similarity quantifiers were also used
to evaluate the correction effect of the simulation experiment. Finally, the N-MIR spectral
data were evaluated quantitatively using the noise reduction ratio, inverse coefficients of
variation, spectral curves, and other reference-free indices to compare the real correction
effects of the different methods.

To objectively analyze the denoising ability of the proposed method and its ability
to protect the original information, qualitative and quantitative evaluation metrics were
introduced. The qualitative evaluation metrics included the visual effect of the image,
the longitudinal mean curve, and the random spectral curve. The quantitative evaluation
metrics used both reference and non-reference metrics. The reference evaluation metrics in-
cluded maximum relative error (Ry,x) and structural similarity (Ssy), where smaller Ry
and larger Sgpy values represented improved image quality. We obtained the maximum
error value concerning the difference between two images in all bands on the real image,
which is mathematically defined as follows:

(15)

Rmax = max 1\/ZlMl Zfil(xk(i']) - ]/k(i/j))2
e Xk M x N

where x and y are the reference image (noise-free ideal image) and the corrected image,
respectively, and k relative errors were calculated across k bands and then compared to
obtain the maximum error value R;;;x.

Structural similarity (Ssjyr) was defined as follows:

(16)

1 & (2uyuy +Cp) (200 + C)
Ssim(x,y)=

k=1 (u§ +uj + Cl) (a,% +og + Cz)
where uy, uy, 0'%, (75, and oy are the mean, standard deviation, and covariance of x and y,
respectively; C; and C; are both positive constants, which prevent the denominator from
equaling 0; and the structural similarity of the spectral image is the mean of K bands.

The non-reference metrics included the noise reduction ratio (NR) and inverse coeffi-

cient of variation (ICV). The noise reduction ratio describes the attenuation of strip noise
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in the frequency domain of an image; a larger noise reduction ratio indicates better noise
removal. Here, NR was defined as follows:

1 & Ny

Nr= Y L
K& N

(17)

where Nj is the power of the non-uniformity noise frequency component in the input
image, N1 is the power of the non-uniformity frequency component in the denoised image,
and Ny is the average of K bands.

Furthermore, I-y was used to calculate the level of non-uniform noise in a uniform
region of the image; a larger Icy value indicates better denoising. Here, Icy was defined as
follows:

1& R,
Iy ==Y =% (18)
v Kkg Ry,

where R, is the average signal response of a uniform region in the image with a value equal
to the mean of all pixel values within a given window, Ry, is the standard deviation of the
pixels within the window used to estimate the noise component within the window, and
Icy is the mean of K bands.

3.2. Simulation Experiments

The simulation experiment used MMS N-WIR ground-based imaging data collected in
the laboratory prior to launch. This included both the strip noise data to be corrected and
the laboratory-corrected radiance product. Therefore, comparison with standard product
data can be used to objectively evaluate the calibration effectiveness of methods. Figure 8
shows the corrected visual results obtained by different methods for the MMS N-WIR
ground imaging data. HM and BW failed to correct the ground imaging data, which
was likely due to the complexity of the scene and strip noise. There was still no residual
pseudo-noise after MM and TV correction; TV presented limited smoothing that led to
blurring. In contrast, our method yielded the best results among these methods solely in
terms of visuals.

B
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5 “3 .\‘t‘
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e

‘ .
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Figure 8. Calibration results of the laboratory MMS N-WIR (central wavelength of 1368.2 nm) data
in linear stretched images. Original N-WIR image (left); image with band noise (second from the
left). Correction results based on the different algorithms for the simulated images shown: (a) HM,
(b) MM, (c) BW, (d) TV, and (e) the proposed method. Yellow squares indicate selected light and dark
regions.

Comparing the objective evaluation metrics in Table 1, the evaluation metrics with
the true values also showed that the corrected image R;;,x obtained by our algorithm
resembled the error in the laboratory NUCs, with a maximum relative deviation of only
2.6%. Structural similarity was significantly higher in the proposed algorithm compared to
other algorithms, reaching 0.9921.
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Table 1. Comparison of objective indicators for the simulations.
Evaluation Metric HM MM BW TV Proposed
Rinax 19.2% 3.2% 14.8% 4.5% 2.6%
Ssim 0.6735 0.8937 0.4731 0.8124 0.9921
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Figure 9 shows the longitudinal averages of the 1368.2 nm band images and compares
the correction results of the different methods with the results after correction using the
laboratory non-uniformity correction factor. The horizontal coordinate of the longitudinal
mean curve indicates the scan column number and the vertical coordinate indicates the
average DN value of the column-oriented pixels, with Figure 9a showing laboratory-
corrected radiance. Comparison of the radiance of 9a with the curves of different methods
shows the noise suppression ability of the denoising process and the degree of damage
to the original data. It can be seen that the images processed by the HM, MW, and TV
methods remove non-uniform noise; however, their mean curves per column are too smooth
against the actual image structure, which indicates that the method destroys the original
information of the image when removing noise. BW fails to solve the non-uniformity
problem in this simulated scenario, and neither preserves the original image information
nor effectively removes strip noise. The column curves processed by the proposed method
in this paper are closer to the actual ideal image without losing image details, which
indicates that the images processed by this paper do a good job of removing stripes and
preserving original image information.
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Figure 9. Longitudinal averages of the laboratory MMS N-WIR (central wavelength of 1368.2 nm)
data in linear stretched images. (a) Correctly corrected longitudinal radiance averages of N-WIR
and (b) original N-WIR longitudinal DN averages. Longitudinal DN averages based on the (c) HM,
(d) MM, (e) BW, (f) TV, and (g) proposed method.

The main novelty of the method proposed in this article is the utilization of the
high energy and low radiation interference of the V-NIR spectral band to accurately find
uniform regions of N-MIR coefficient measurement by using V-NIR to correct the images
(from ground coefficients) under any conditions. Processing using only N-MIR data was
first performed with the classical method, with bright and dark regions selected and
finally applied on the original N-MIR data. Due to the processing method not being
able to completely remove stripe noise, there is a lack of column data when selecting
the bright and dark regions. As shown in Figure 10, in the simulated dataset, the MM
algorithm is used first to remove noise, and the preliminary corrected error image is then
used for uniform region selection. The existence of residual stripe columns will result in
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insufficient applicability of the uniform region algorithm, causing the column information
to be removed and producing striped noise with no data. The above problems will not
occur in the method proposed.

Figure 10. NUC using N-MIR data only. (a) MM-corrected results (broken yellow boxes mean that a
complete row of uniform regions could not be obtained); (b) results of original N-MIR data correction
using both MM + uniform region methods show strip noise with no data.

Figure 11 shows the results of the MMS V-NIR simulation data correction. The HM
algorithm relied heavily on the selected reference columns, resulting in the destruction of
structural information in the image. The MM algorithm partially corrupted the grey scale
information in images due to moment matching and averaging of all columns. The BW
algorithm removed some of the non-uniform noise resulting from inherent shortcomings
in the low-pass filtering process; however, noise remained and the image structure was
severely corrupted. The TV algorithm had a component in the direction of the noise bars in
all columns such that the non-barred columns lost their grey values, with a step blur after
correction for random high-noise bars.

Figure 11. Correction results for the MMS V-NIR (central wavelength of 950.9 nm) simulation data
from linear stretched images. Original V-NIR image (left) and an image with strip noise (second
from the left). Correction results based on the different algorithms for the simulated images shown:
(a) HM, (b) MM, (c) BW, (d) TV, and (e) the proposed method.
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As shown in Figure 12, the longitudinal averages obtained by various methods were
curvilinearly compared with the true values after V-NIR simulation data were corrected
for non-uniformity. We can see that our method has the closest curve trend to the true
value, and, among these methods, we achieved the best results in terms of removing
strip noise. The evaluation metric in Table 2 also reflects the proposed method’s excellent
non-uniformity correction capability.
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Figure 12. Longitudinal averages of the MMS V-NIR (central wavelength of 950.9 nm) simulation
and denoised data.

Table 2. Comparison of the objective indicators for the simulated images shown in Figure 8.

Evaluation Metric HM MM BW TV Proposed
Rinax 10.2% 3.1% 7.4% 5.3% 2.3%
Ssim 0.7744 0.9749 0.8131 0.8536 0.9893

3.3. Application Experiment

All the N-WIR channel data from the MMS disturbed by strip noise were processed
and the non-uniform noise characteristics of each channel were very similar, with only one
representative image of the band (central wavelength of 2433.7 nm) thus selected for illus-
tration. Figure 13 shows the original image of the MMS section (400 pixels x 207 pixels), as
well as the image after denoising using the proposed and other methods. Figure 10 shows
that the focus is on the two random, apparently anomalous, strip sections in the original
image. The original image was reduced by the HM and MM methods for all columns in
terms of intra-image information-matching strip noise; however, limited noise remained.
The TV method was prone to blurring due to the selection of parameters for regularization.
The BW algorithm partially corrupted the grey scale information in the images. The image
processed by our method had almost no residual non-uniform noise, and the image was
clear with an optimal visual effect.

Regarding spectral images, we focus more on whether the information in the spectral
dimension is maintained and whether spectral distortions occur, which affect the subse-
quent analysis and application of the spectral data, while additionally focusing on obtaining
optimal visual results by removing non-uniform noise. Therefore, the spectral dimensions
of several randomly selected regions (3 x 3 and 5 x 5) on the 2433.7 nm band image were
summed and averaged to measure the impact the various methods had on the spectral
dimensions. As shown in Figure 11, the spectral dimensional radiance corresponding to
some randomly selected pixel values was compared with the original spectral data. The
BW method suffered from severe spectral distortion due to normalized calculations, while
the HM method had good spectral fidelity, as did the proposed method. We calculated
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the standard deviation of the spectra obtained by each method from the original image
spectral curve, as shown in Figure 14. The results showed that our method had a spectral
standard deviation of 0.0539, yielding better spectral fidelity.

Figure 13. Correction results for the MMS N-WIR (central wavelength of 2433.7 nm) in-orbit data
from linear stretched images. (a) Original image, (b) HM, (c) BW, (d) MM, (e) TV, and (f) the proposed
method.
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Figure 14. Spectral irradiance trends in the original image and in one area in the image after
processing via different methods.

Nr and Icy were used to further quantify the denoising ability of the different methods
and their ability to protect the original information in the image. Based on Table 3, the noise
reduction ratio and inverse coefficient of variation values for the MMS data when using the
proposed method were better than those of the other methods after the quantization and
evaluation of all bands in the MMS data. This indicates that our method has an optimal
ability to remove non-uniform noise. These results further demonstrate that our method not
only has excellent NUC ability, but also has an excellent ability to protect the information
in the original image.

Table 3. Evaluation of MMS data processed by different methods.

Method Original Image HW BW MM TV Proposed
Nr 1 1.754 1.769 1.869 1.783 2.408
Icy 13.74 18.52 17.2 20.12 16.58 22.86

These results show that, for the complex non-uniformity of MMS, the BW spectral
filtering method seriously destroyed the spectral information in the image. In contrast, with
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full variational improvements for non-uniformity, the TV method had difficulties obtaining
a suitable energy equation, which was more likely to cause incomplete denoising or a
loss of details in the spectral image. The HW and MM methods assume that information
statistics in the spatial domain can significantly improve the image. However, the a priori
assumption that “each element in the image acquires the same energy after push-broom”
does not fully hold. It is not sufficiently robust enough to preserve the original information
in the image, nor is it sufficiently thorough to suppress unusually prominent noise. After
analyzing and verifying the main contributions and shortcomings of the conventional
denoising models for the non-uniformity of the MMS, we fully utilized the characteristics
of the MMS imaging data to correct the full image via gain and bias in the bright and dark
regions selected with the NIR spectrum as a reference, thus obtaining excellent denoising
results with improved protection of the original spatial and spectral information while
suppressing strip noise. The same conclusion was obtained from image processing results
for the additional bands of the MMS. Figure 15 shows a more detailed view of the NUC
imaging results using Gaussian stretched imaging maps. The results show that the NUC
images using the present method will be beneficial for the quantitative analysis of MMS
images in the future. This will facilitate the accurate acquisition and compositional analysis
of our hyperspectral images of Mars.

Figure 15. MMS image (central wavelength of 1931.64 nm) with Gaussian stretching (a) before
correction and (b) using the proposed method. The image was rotated, and the frame shows the
Zhurong Mars rover landing zone.

4. Conclusions

In this study, the sources and characteristics of non-uniformity were analyzed in
terms of sensor hardware and instrumentation, and a NUC method for N-MIR spectral
data was proposed. The highlight is the creative use of simultaneous images that are
least affected by non-uniformity to obtain bright and dark uniform regions based on
spatial segmentation, subsequently solving for correction coefficients. Experiments and
applications were performed using hyperspectral data acquired in the MMS laboratory
and moored orbit as data sources. The results showed that the proposed method was
superior to other commonly used calibration methods and effectively performed NUCs.
The proposed method, with bright and dark regions selected with the NIR spectrum as a
reference, effectively bridges the non-uniformity generation mechanism of the push-broom
hyperspectral detector while obtaining more objective correction coefficients than other
methods. As a result, we achieved higher fidelity image details and spectral shapes, thus
providing technical support for subsequent MMS hyperspectral data pre-processing. This
can provide accurate spectral imaging information for subsequent target identification
and the extraction of information related to Martian features. Additionally, the proposed
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method is not only applicable to MMS hyperspectral data, but also to onboard and airborne
hyperspectral imagers with similar configurations to the MMS. In summary, the proposed
method has strong universality, low computational load, excellent image detail retention,
and high fidelity with spectral shapes.
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