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Abstract: Unsupervised domain adaptation (UDA) is essential since manually labeling pixel-level
annotations is consuming and expensive. Since the domain discrepancies have not been well solved,
existing UDA approaches yield poor performance compared with supervised learning approaches.
In this paper, we propose a novel sequential learning network (SLNet) for unsupervised cross-scene
aerial image segmentation. The whole system is decoupled into two sequential parts—the image
translation model and segmentation adaptation model. Specifically, we introduce the spectral space
transferring (SST) approach to narrow the visual discrepancy. The high-frequency components
between the source images and the translated images can be transferred in the Fourier spectral
space for better preserving the important identity and fine-grained details. To further alleviate
the distribution discrepancy, an efficient pseudo-label revising (PLR) approach was developed to
guide pseudo-label learning via entropy minimization. Without additional parameters, the entropy
map works as the adaptive threshold, constantly revising the pseudo labels for the target domain.
Furthermore, numerous experiments for single-category and multi-category UDA segmentation
demonstrate that our SLNet is the state-of-the-art.

Keywords: unsupervised domain adaptation; sequential learning; semantic segmentation; image
translation; aerial image

1. Introduction

Aerial image segmentation, which aims to assign a semantic category to each pixel of
an image, has various practical applications, including disaster monitoring [1], land-cover
planning [2], road extraction [3], building extraction [4], and agricultural valuation [5].
Deep convolutional neural networks (DCNNs) [6–8] trained on large-scale remote sensing
datasets provide reliable inferential knowledge, greatly promoting recent progress in aerial
image semantic segmentation.

However, these data-driven supervised methods [8–11] need to rely on large amounts
of human effort to manually collect and annotate datasets at the pixel level. In addition,
a series of mismatches in color texture, spatial layout, and lighting conditions caused by
geographical locations, different sensors, etc., also known as the domain shift, cripple the
performance of cross-scene aerial image semantic segmentation. As illustrated in Figure 1,
we show two discrepancies in unsupervised cross-scene aerial image segmentation. For
visual discrepancy, we can clearly see that there is a huge difference in appearance between
the source image and the target image, which greatly affects the transfer of knowledge
learned from the source domain to the target. For the distribution discrepancy, we present
the distribution map for each class by utilizing t-SNE [12], as shown in Figure 1b. Compared
with the source-only model (without DA), the distribution map in the target-only model
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(full-supervision) is more aligned and distinct. Therefore, solving the above discrepancies
in the domain shift is the biggest challenge in the cross-scene aerial image segmentation.

Source Domain Target Domain

Source

(a)  Visual Discrepancy

(b)  Distribution Discrepancy

Source-only Model Target-only Model

Figure 1. Two discrepancies in unsupervised cross-scene aerial image segmentation. (a) Visual
discrepancy. The images in the source domain and target domain have different appearances
(e.g., object textures, style representation) due to different locations, different sensors, different
lighting, and so on. (b) Distribution discrepancy. Here, we map the high-dimensional features of the
target image in the source-only model (without DA) and target-only model (full-supervision) into the
2D space with t-SNE [12] to reflect the inconsistent data distribution of the source domain and target
domain. Each color in the distribution map represents a category.

Unsupervised domain adaptation (UDA) is mainly employed to handle the problem
of the domain shift, where we focus on the hard case that the datasets in the target domain
have no available labels for cross-scene semantic segmentation. Traditionally, UDA meth-
ods [13–16] can be classified into two categories: one focuses on the domain alignment to
share the knowledge between the source domain and target domain, and the other is to
introduce self-supervised learning (SSL) [17] to mine the domain-specific knowledge of the
unlabeled target datasets. For the former, the UDA methods tend to minimize cross-domain
discrepancy by learning the metrics with the second moment [14,18,19] and adversarial
learning [15,16,20]. Such methods for domain alignment may lead to suboptimal solutions,
mainly because the model we ultimately want is suitable for the target domain. Despite the
methods [14,15] decreasing the domain shift to a certain extent, it is unnecessary to strictly
align the distribution of the source domain and target domain. For example, Figure 2a
shows the over-adapted translation results of domain alignment via pixel-level adver-
sarial learning. The translated images in CycleGAN [13] lose critical edges and details
related to identity, resulting in suboptimal visual quality. Therefore, ensuring realistic style
transfer and fine identity preservation during the image translation process is key. Some
recent works [21,22] employ SSL techniques to extract domain-specific knowledge from
unlabeled target datasets, thereby improving adaptation to the target domain. However,
the pseudo labels are inevitably noisy, resulting in hindrance to subsequent learning. As
illustrated in Figure 2b, although a large part of pixels are predicted correctly, pseudo
labels still suffer from incorrect predictions due to distribution discrepancy. Recently, many
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researchers [23–25] have focused on ignoring the pseudo labels with low confidence by
manually setting the threshold, which is difficult to be determined for different scenes.
Different thresholds may be required for the pixels belonging to different target domain
scenes, categories, and locations.

Source Image Target Image CycleGAN Ours

Image Ground-Truth Pseudo-label Error Map
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Figure 2. samples of the over-adapted images and noisy pseudo labels in UDA semantic segmentation.
(a) Over-adapted images. From left column to right: we provide the source image, target image,
generated translated image utilizing CycleGAN [13], and ours. (b) Noisy pseudo labels. From the left
column to the right: we present the image, the corresponding ground-truth, pseudo labels utilizing
AdaptSegNet [20], and the corresponding error map. (Best viewed in color)

In this paper, we propose a novel sequential learning network (SLNet) for unsuper-
vised cross-scene aerial image segmentation. The whole system is decoupled into two
separated modules in a sequential learning manner (i.e., “translation-to-segmentation”):
spectral-based image translation model and segmentation adaptation model with pseudo-
label revising. Specifically, we first introduce the spectral space transferring (SST) module
based on the image translation model [13] to generate high-quality translated source do-
main images. Formally, we maintain the consistency of the high-frequency components of
the source image and the translated image in the Fourier spectral space to better preserve
the identity and the details. Second, we propose a pseudo-label revising (PLR) approach in
our segmentation adaptation model, which is trained on translated source data and target
data. Formally, we explicitly incorporate the entropy metric of the prediction results of the
two independent classifiers into the training objective function to automatically provide
a pixel-level threshold. We adaptively revise the noisy pseudo labels by minimizing the
entropy metric, while ensuring a coherent training process. In each iteration, we regard the
prediction maps for the target domain as the approximation to the ground truth, and then
utilize them to improve the adaptation ability. After many iterations, the shared knowledge
across the domain and the domain-specific knowledge can be provided by the pseudo
labels to better adapt to the target domain.

In summary, the two models learned in a sequential learning manner stimulate and
promote each other, which not only leads to narrowing the domain discrepancies but also
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can exploit the domain-specific knowledge in the target domain. The main contributions of
this paper are summarized as follows:

1. Different from most UDA segmentation methods, we propose a sequential learning
system for unsupervised cross-scene aerial image segmentation. The whole system is
decoupled into the image translation model and segmentation adaptation model.

2. The spectral space transferring (SST) module is proposed to transfer the high-frequency
components between the source image and the translated image, which can better
preserve the important identity and fine-grained details.

3. To further alleviate the distribution discrepancy, an efficient pseudo-label revising
(PLR) approach was developed to guide pseudo-label learning via entropy minimiza-
tion. Without additional parameters, the entropy minimization works as the adaptive
threshold to constantly revise the pseudo labels for the target domain.

2. Related Works
2.1. Aerial Image Semantic Segmentation

With the acquisition of abundant aerial images and the development of deep learning
technologies, large-scale aerial image semantic segmentation (AISS) has led to rapid de-
velopment. Therefore, numerous CNN-based methods [6,8,26–30] and methods for model
explainability [31–33] have been applied to the semantic segmentation of aerial images.
There are three major challenges in AISS: large scale, pattern diversity, and semantic ambi-
guity, the latter of which is mainly due to a lack of semantics or the existence of different
categories with similar spectral characteristics. To settle the large-scale issue, Tong et al. [26]
designed a hybrid land-cover classification algorithm by combining hierarchical segmenta-
tion and patch-wise classification to obtain accurate boundary and category data. To solve
the pattern diversity issue, ScasNet [27] captured multi-scale contexts in a self-cascaded
manner and proposed a residual correction scheme for multi-scale feature fusion. For the
third challenge, a lot of work was carried out in succession. S-RA-FCN [6] introduced the
spatial relation module and the channel relation module to explicitly aggregate long-range
contextual information to produce relation-augmented features. HMANet [28] proposed a
hybrid multiple attention network containing class-augmented, class-channel and region
shuffle attention to obtain global contextual information from different perspectives. Faced
with the complex spectral characteristics of aerial images, DSMFNet [29] introduced the
digital surface model (DSM) by four fusion strategies as auxiliary data to improve the
performance of similar color regions. In addition, HECR-Net [30] jointly reason the 2D and
3D information by implicitly embedding height information to obtain more discriminative
features. Although the above methods have achieved great success, the above methods
are supervised by pixel-level labels, which are time-consuming and labor-intensive. In
addition, these algorithms often fail on cross-scene datasets due to domain gaps.

To solve the above issues, numerous domain adaptation methods have been pro-
posed for cross-scene aerial image semantic segmentation. GAN-RSDA [34] addressed
the style discrepancy issue by adopting generative adversarial networks (GANs) to re-
duce the domain gaps. ColorMapGAN [35] addressed the spectral distribution shift by
presenting a color mapping generative adversarial framework. SRDA-Net [36] explicitly
addressed the unsupervised domain adaptation (UDA) for AISS with a different resolu-
tion by designing an asymmetric multi-task learning framework, containing segmentation
and super-resolution. ScaleNet [37] addressed the cross-scale problem by proposing a
scale-aware adversarial learning network to adapt to differences in the scale explicitly.
BSANet [38] extracted the features in the wavelet domain and image domain by introduc-
ing a bispace adversarial learning strategy to minimize the discrepancy. These GAN-based
methods are usually not easy to train and acquire cross-domain shared knowledge, failing
to make rational use of the knowledge in the target domain.
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2.2. UDA for Semantic Segmentation

In order to rectify domain discrepancy, UDA is applied to transfer knowledge from the
source domain to the target domain, so as to achieve better generalization capability. There
exists numerous tasks [39,40] that can significantly benefit from UDA, while we mainly
focus on the application of UDA in semantic segmentation. The main challenge of UDA
for semantic segmentation is the distribution discrepancy of cross-scene data. Therefore,
we mainly introduce several common UDA methods to deal with the above challenge in
this section.

Domain Alignment aims to learn the shared knowledge across domains to align
the data distribution between the target domain and source domain. According to the
suggestions of theoretical analysis [41], domain alignment methods can be roughly divided
into minimizing the distribution discrepancy by optimizing some divergence [14,18,19]
and employing adversarial learning at different levels.

For the former, some discrepancy metrics, such as maximum mean discrepancy
(MMD) [19], as well as distance divergences, are adopted to reduce the domain discrepancy.
TCA [42] utilizes the MMD criterion to minimize the marginal distributions across domains
in the kernel Hilbert space (RKHS) to learn a set of transfer components. JDA [43] expands
TCA by jointly matching both the conditional distribution and marginal distribution in
a dimension reduction process using PCA to construct robust features. AutoDIAL [44]
introduces a domain alignment layer to match the statistics between two domains to reduce
the domain shift. Massimiliano et al. [45] extended MMD to the statistical distribution of
each layer to appropriately align the distribution of features between the source and target
domains. Unfortunately, matching statistics using the first- and second-order moments
cannot perform domain alignment well when the distribution does not obey Gaussian.

For the latter, adversarial learning methods are usually based on the GANs, which are
composed of generators responsible for generating interested samples and discriminators
responsible for determining the authenticity. Adversarial learning often occurs at different
levels: image level [15,46,47], the inter-mediate feature level [16,48], and the output space
level [20,49]. Image adversarial adaptation mainly refers to unsupervised image-to-image
translation, which can be trained with the supervision of unpaired images. Although
this strategy independently completes the alignment of marginal distribution, it cannot
preserve semantic consistency, which leads to multiple domain invariant representations
for suboptimal solutions. Feature adversarial adaptation aims at exploiting the statistical
matching of intermediate representation to discover domain-invariant features. At the
same time, semantic complexity may bring challenges to adversarial learning. Output
adversarial adaptation conducts the cross-domain distribution alignment at the output
space to avoid dealing with the high-dimensional feature.

In fact, there is no need to strictly align the distribution as long as the features are well
separated. The above methods focusing on domain alignment simply align and capture
shared knowledge across domains, but ignore the specific information in the target domain.

Self-supervised learning aims to utilize the generated pseudo labels to improve the
adaptation to the target domain, which is also referred to as self-training or self-labeling. As
the pseudo labels are inevitably noisy, confidence regularization is employed to explicitly
selects prediction maps for training. Common typical methods for acquiring pseudo
labels contain handcrafted thresholds with softmax predictions [50,51], class prototypes
distance [22,52], clustering [53], and so on. Lee et al. [54] picked up the category with
maximum predicted probability as pseudo labels for the unlabeled target dataset, and
then trained the network in a supervised fashion. TPN [52] aligns the prototypes of
each class between the source and target domain in the embedding space to reduce the
distribution discrepancy. BDL [25] leveraged the pseudo labels with high confidence for
feature adaptation, where image translation and segmentation adaptation models are
learned in a bidirectional learning manner. Zheng and Yang [21] reduced the predicted
inconsistency by applying an orthogonal method to learn the domain-specific features.
ProDA [22] leveraged the representative prototypes to estimate the likelihood of pseudo



Remote Sens. 2023, 15, 1207 6 of 24

labels and align the prototypical assignments. However, the weakness of self-supervision
learning is that pseudo labels are inevitably noisy, which can affect subsequent training.

Different from existing works, we decoupled the UDA semantic segmentation into
image translation and segmentation adaptation by combining adversarial learning and
self-supervised learning methods to capture cross-scene shared knowledge and specific
knowledge in the target domain. In addition, instead of using a handcrafted threshold to
filter pseudo labels, we use entropy regularization to revise pseudo labels. This framework
not only visually eliminates the domain shift across scenes, but also further reduces the
feature distribution discrepancy between the source and target domain, which helps us to
produce better segmentation performance.

3. Methodology

We first provide an overview, as well as the definition and description of the problem
in Section 3.1. To solve the problem, we propose a novel learning framework decoupled
into two stages: image translation and domain adaptation segmentation. Specifically, we
introduce spectral space transferring (SST) in the first stage (Section 3.2) and pseudo-label
revising (PLR) in the second stage (Section 3.3). Finally, Section 3.4 describes the details of
loss functions between image translation and segmentation adaptation model.

3.1. Overview

Concretely, given the source images Xs =
{

Xi
s
}M

i=1 with ground truth labels Ys =
{

Yi
s
}M

i=1

and the target images Xt =
{

X j
t

}N

j=1
without segmentation labels Yt =

{
Y j

t

}N

j=1
, we aim to

estimate the segmentation adaptation model parameter to minimize the prediction bias
to assign category labels Yt for the datasets in the target domain. However, the domain
gaps in the visual and feature distribution between the target and source domain bring
great challenges for the model to learn transferable knowledge at the same time. In order to
respond to the above challenges, we decouple the network into two separated subnetworks
inspired by [25,46]. As illustrated in Figure 3, different from complicated and tedious
bidirectional learning in [25], we adopt simpler sequential learning, which means that we
take the output of the first stage as the input of the second stage. We believe that we can
obtain high-quality translated images with good identity preservation in the first stage,
so as to avoid issues, such as hard convergence caused by bidirectional learning. The
overall structure of the proposed SLNet for UDA semantic segmentation can be illustrated
in Figure 4.

First, we obtain the translated images Xs′ =
{

Xi
s′
}M

i=1 by introducing a spectral-based
image translation model IT, which is in charge of unpaired image-to-image translation
from source S to target T. The framework is encapsulated into the encoder–decoder
structure with nine blocks as a pixel-level discriminator. Such a framework may lose part
of the identity details of the source data under the constraint of adversarial loss, which is
not conducive to producing high-quality translated images. Therefore, we introduce the
spectral space transferring (SST) module on the basis of [13] to preserve high-frequency
information representing important details and identity characteristics during training.
The purpose of this stage is to minimize pixel-level distribution gaps between the source
and target domain.

IT SA IT SA

(a) Bidirectional Learning (b) Sequential Learning

LIT LSA LIT LSA

Figure 3. Bidirectional learning vs. sequential learning.
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Spectral-based Image Translation Model Adversarial Training

Segmentation Adaptation Model with Pseudo-label Revising 

FFT

HFF HFF

FFT

Pixel-level 

Discriminator

Output-space 

Discriminator

Source Flow

Target  Flow

Weight Discrepancy

Source Domain:

 Label Map(0/1)

Target Domain:

 Label Map(0/1)

Source Domain:

 Label Map(0/1)

Target Domain:

 Label Map(0/1)

Source Data

Target Data

Translated 
Source Data

Target Data

Translated 
Source Data

Target Data

Source Label

Target Label

Pixel-level Discriminator

Output-space Discriminator

Transferring Matching

∑  D 

Softmax

Softmax

D 

∑

Entropy Metric

Tensor Sum

FFT Fast Fourier Transformation

HFF High-pass filter

Filter Mask

Legend Notes

Figure 4. Structure of the proposed SLNet method for UDA semantic segmentation. The upper
left part represents the spectral-based image translation model, responsible for the style transfer
and identity preservation of source domain images. The lower left part denotes the segmentation
adaptation model with pseudo-label revising, enabling a dynamic threshold to revise the noisy
pseudo labels. The upper right part shows two discriminators at different levels. The lower right part
shows the legend notes of this framework in detail.

In the second stage, we input the translated source images Xs′ with Ys, and target
images Xt into the segmentation adaptation model SA. A feature extractor applies a
backbone ResNet-101 [55] to produce a multi-scale hierarchical feature map, which is input
to two independent classifiers C1 and C2 to generate uncertain prediction results. Moreover,
we introduce self-supervised learning (SSL) to make full use of the knowledge of the
unlabeled target domain, and add the pseudo-label revising (PLR) module to automatically
set the threshold to correct pseudo-label learning. Different from the source flow, we
employ the widely used JS-divergence of two predictions as the uncertain entropy map
to revise the learning from noisy pseudo labels in the target flow. In addition, we also
performed distribution alignment at the output space level. To make a summary, we first
minimize the distribution discrepancy between the source domain and the target domain
at different levels, and then leverage the knowledge of the unlabeled data by modifying
pseudo-label learning, with the ultimate goal of reducing the distribution discrepancy
between the source and target domain.

3.2. Spectral Space Transferring

In order to regulate the momentous structural characteristics during the process of
image translation, we propose an image translation framework based on spectral space
transferring. The model is inspired by digital signal processing [56]. As illustrated in
Figure 5, we decompose the original image into low-frequency and high-frequency compo-
nents via the fast Fourier transform (FFT) algorithm [57]. Intuitively, the high-frequency
component seizes the information such as sharp edges and minute details, while the low-
frequency component corresponds to the color and style representation. Our key idea is
to maintain high-frequency consistency across source-domain images and the translated
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source-domain images in the Fourier spectral space. More specifically, we first map Xs into
spectral space through the FFT algorithm [57].

F (Xs)(m, n) =
H−1

∑
h=0

W−1

∑
w=0

Xs(h, w)e−2πi(mh
H + nw

W ), i2 = −1 (1)

in which, m ∈ [0, H − 1], n ∈ [0, W − 1]. It can be clearly seen from Equation (1) that
each point in F (Xs)(m, n) gathers the global information of all pixels in the frequency
spectral space. Most notably, we convert color images to grayscale images to erasure
color and lighting information irrelevant to details and sharp edges of objects. For easy
implementation of high pass filters, we convert the spectrum Fr of FFT to the real number
and move the zero-frequency component to the center of the spectrum without losing
any information.

Fr(Xs) =

√
[ReF (Xs)]

2 + [ImF (Xs)]
2 (2)

where ReF (Xs) and ImF (Xs) indicate the real part and the imaginary part of F (Xs)(m, n)
separately. Then, the low-frequency part of the spectrum Fr is covered by a high pass filter,
while the high-frequency component is retained. We denote with Mγ a filter mask (white
square in Figure 3), where the value in the center region is zero, and the value of the other
region is one. Here, we suppose the center of the image is (0, 0).

F h
r (Xs) = Fr(Xs) ·Mγ (3)

Mγ(h, w) =

{
0, (h, w) ∈ [−γH : γH,−γW : γW]

1, otherwise
(4)

The selection of super parameters γ is independent of the size or resolution of the input
Xs, which is due to the fact that γ is not measured in pixels. We reveal the effect choices of
γ on UDA segmentation in Section 4.4.3. The process of spectral space transferring can be
formulated as:

Lsst = EXs∼S[‖F h
r (Xs)−F h

r (Xs′)‖smooth] (5)

where ‖ · ‖smooth denotes smooth L1 normal. This loss restrains the high-frequency compo-
nents between the generated image and the source image to be consistent in the spectral
space, so as to better preserve the identity.

Image  Low frequency High frequency  Grayscale high frequency

Figure 5. Visualization of decomposing images into low-frequency and high-frequency components
with FFT [57].
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3.3. Pseudo-Label Revising

The spectral-based image translation model learns the knowledge shared by the
target domain and the source domain but ignores the specific knowledge of the target
domain. Recently, some work has introduced self-supervised learning (SSL) for pseudo-
label learning (PLL) of the target domain. In this paper, SSL is equivalent to PLL. We
employ the illustration (shown in Figure 6a,b) to explicate the tenet of this process. The
specific approach generally includes two steps. First, Xs′ with ground truth labels Ys and
Xt are input into the segmentation adaptation model SA. The first step is to generate the
pseudo-label Ŷt for the unlabeled Xt, where the objective can be formulated as follows:

Ladv(Xs′ , Xt) = EXt∼T [DSA(Xt)] +EXs′∼S[1− DSA(Xs′)] (6)

Lseg(Xs′ , Ys) = EXs′∼S[−Y j
s logF(X j

s′ |Θs)] (7)

LSSL1 = αaLadv(Xs′ , Xt) + αsLseg(Xs′ , Ys) (8)

where DSA indicates the discriminator in the segmentation adaptation (SA) model and Ladv
is the adversarial loss to reduce the distribution discrepancy between the source domain
and target domain at the output space level. Lseg measures the segmentation accuracy for
the translated source images Xs′ . Note that αa and αs are taken as 0.001 and 1, respectively.
Then, some pseudo labels Ŷt can be obtained with high confidence based on the prediction
probability. The second step of self-supervised learning is to minimize the prediction bias
using Xs′ with ground truth labels Ys and Xt, with pseudo labels Ŷt, where the objective
can be formulated as follows:

Lseg(Xt, Ŷt) = EXt∼T [−Ŷt
jlogF(X j

t |Θt)] (9)

LSSL2 = αaLadv(Xs′ , Xt) + αsLseg(Xs′ , Ys) + αtLseg(Xt, Ŷt) (10)

where αa, αs, and αt are utilized as weighting factors, with values of 0.001, 1, and 1,
respectively. The combination of SSL and adversarial learning cannot only reduce the
distribution discrepancy but also predict the correct pseudo labels for the target domain.
However, there is an inherent problem that pseudo labels inevitably contain noise, which
can largely harm the training. The main reason is that setting the threshold manually only
utilizes pseudo labels with high confidence and ignore labels with low confidence.

 (b) Manual Threshold

C C C

C1
C2

(c) Entropy Minimization

Source sample, class A

Source sample, class B

Target sample, class A

Target sample, class B

Classifier boundary

Target sample For PLL 

(a) Segmentation Adaptation

(d) Legend Notes

C1

C2

Figure 6. Diagram of self-supervised learning process in UDA semantic segmentation. (a) The upper-
left part is a segmentation adaptation model and (b) the upper-right part represents the classical
pseudo-label learning based on a manual threshold. (c) The lower-right part is our pseudo-label
revising based on entropy minimization, while (d) the lower-left part denotes the legend notes.
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To correct the label noise during self-supervised learning, we propose a pseudo-label
revising module, which can learn an automatic threshold from the uncertain entropy map
to constrain the generation of pseudo labels. Inspired by [58], we try our best to make two
classifiers C1 and C2 have different parameters by minimizing the cosine similarity of the
weights as follows:

DCS =
~w1· ~w2

‖ ~w1‖‖ ~w2‖
(11)

where ~w1 and ~w2 denote the weights of classifiers C1 and C2 separately. Here, DCS helps us
to leads to the discrepancy of C1 and C2, which is beneficial to the generation of uncertainty
entropy map. As shown in Figure 4, we employ the widely used JS-divergence of C1 and
C2 classifier outputs as the uncertain entropy map to guide the learning from noisy pseudo
labels in the target flow.

DJS =
1
2
E[F1(X j

t |Θt)]log(
F1(X j

t |Θt)

F2(X j
t |Θt)

)]

+
1
2
E[F2(X j

t |Θt)log(
F2(X j

t |Θt)

F1(X j
t |Θt)

)]

(12)

where F1(X j
t |Θt) and F2(X j

t |Θt) indicate the probability distribution of X j
t generated by the

classifiers C1 and C2, respectively. It is worth noting that the more different the distributions
provided by the two classifiers are, the larger their entropy values. Compared with classical
pseudo-label learning, the proposed pseudo-label revising based on entropy minimization
(shown in Figure 6c) utilizes the discrepancy entropy map as the automatic threshold to
guide the PLL process.

Algorithm 1 Training process of the proposed method.

Input: The source domain dataset Xs with ground truth Ys; the target domain dataset Xt;
the iteration number K.

Output: The segmentation adaptation model parameter Θt.
1: Generate high-quality translated source dataset Xs′ by IT
2: Train the source-domain parameter Θs according to Equation (8), and generate pseudo-

label Ŷt
3: Initialize Θt = Θs
4: for k→ 1 to K do
5: Input Xt to SA, enforce weight discrepancy of the two classifiers C1 and C2 by

cosine similarity DCS
6: Utilize the JS-divergence DJS to measure the entropy map
7: In the target flow, combine the conventional objective Lseg(Xt, Ŷt), DCS, and DJS as

follows:
ˆLplr(Xt, Ŷt) = e−DJS [Lseg(Xt, Ŷt) +DCS] +DJS (13)

8: Combine the objective in the source and target flow, as well as the adversarial
objective to update the Θt.

9: end for

3.4. Training Objective

In the previous part, we introduced the sequential learning framework for unsuper-
vised multi-task learning, including image translation and UDA semantic segmentation. We
explicate the training procedure and the details of the objective (presented in Algorithm 1)
in this section.

When the spectral-based image translation IT model is learned, the objective contains
two components: the loss Lgan and the objective function for SST Lsst.

Lgan(Xs, Xt′ ) = EXs∼S[DIT(Xs)] +EXt∼T [1− DIT(Xt′ )] (14)
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Lgan(Xt, Xs′ ) = EXt∼T [DIT(Xt)] +EXs∼S[1− DIT(Xs′ )] (15)

LIT = αgan[Lgan(Xs, Xt′ ) + Lgan(Xt, Xs′ )] + αsstLsst (16)

where DIT indicates the discriminator in the image translation (IT) model and the GAN loss
Lgan enforces a similar distribution between the source and target domain. The spectral
space transferring (SSL) loss Lsst is utilized for better identity preservation (s⇒ s′) while
realizing realistic style transfer (s⇒ t). αgan and αsst represent the weights of their loss
functions, which are taken as 1 and 0.5, respectively, in the work.

While the segmentation adaptation SA model is trained, we proposed the pseudo-
label revising (PLR) module to guide more effective learning from noisy pseudo labels.
As shown in Algorithm 1, we modify the SSL objective function in the target flow on the
basis of Equation (10), which is also the difference between our proposed pseudo-label
revising and the classical pseudo-label learning (illustrated in Figure 6). It is worth noting
that we do not always intend to minimize Lseg(Xt, Ŷt) and DCS. In other words, when the
entropy metric DJS has received one larger value, we expect the network to stop punishing
Lseg(Xt, Ŷt) and DCS, and vice versa. Therefore, we introduce a coefficient e−DJS as a
trade-off. Combined with the objective in the source flow and the adversarial objective, the
modified objective function can be formulated as:

LSA = αaLadv(Xs′ , Xt) + αsLseg(Xs′ , Ys) + αt ˆLplr(Xt, Ŷt) (17)

4. Experiments
4.1. Datasets

In order to demonstrate the effectiveness of the proposed framework for unsupervised
cross-scene domain adaptation, we use the following two pairs of UDA datasets for single-
category and multi-category semantic segmentation, respectively, as illustrated in Figure 7.
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Figure 7. Experimental datasets. The upper, respectively, represents Vaihingen and Potsdam datasets
for multi-category UDA semantic segmentation, showing the images and their corresponding ground
truth labels, respectively. The lower indicates the Mass and Inria datasets for single-category UDA
semantic segmentation.

Mass–Inria: single-category UDA semantic segmentation.

1. The Massachusetts building dataset [59] embodies 151 patches of the Boston area
consisting of aerial images with a spatial resolution of 1 m/pixel and a size of
1500× 1500 pixels. The entire dataset covers about 340 square kilometers, in which
137 tiles are selected as training sets, 10 tiles are selected as testing sets, and the
remaining 4 tiles are selected to validate the proposed network. For each image in
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the dataset, the corresponding ground-truth labels are provided, which contain two
categories: building and background.

2. The Inria aerial image labeling dataset [60] consists of 360 RGB ortho-rectified aerial
images with a resolution of 5000× 5000 pixels and a spatial resolution of 0.3 m/pixel.
Following the previous work [36], we arrange images 6–36 for training and images
1–5 for validation. The corresponding ground-truth labels contain two categories:
building and background are provided.

Vaih-Pots: multi-category UDA semantic segmentation

1. ISPRS Vaihingen 2D Semantic Labeling Challenge dataset contains 33 patches, where
the training set embodies 16 tiles and the remaining 17 tiles are selected to test the pro-
posed method. Each aerial image contains the corresponding true orthophoto (TOP)
and semantic label, which has an average size of 2494× 2064 pixels and a ground sam-
pling distance of 9cm. The corresponding ground-truth labels contain six categories:
impervious surface, building, low vegetation, tree, car, and clutter/background.

2. ISPRS Potsdam 2D semantic labeling challenge dataset involves 38 patches, in which
24 images are used for training and the validation set contains 14 tiles. Each aerial
image has an average size of 6000× 6000 pixels and a ground sampling distance of
5 cm.

4.2. Implementation Details

In our experiments, the whole framework is implemented with the PyTorch platform
on four Tesla P100 graphics processing units. In the first stage, we choose to employ Cycle-
GAN [13] with nine blocks as our image translation IT model and add the spectral space
transferring module. Limited to GPU memory, the images are cropped into 452× 452 by ap-
plying random operations. When training the spectral-based image translation model, the
initial learning rate is set to 2× 10−4, and decreased with the ‘lambda’ learning rate policy.
The whole IT network is optimized with the ‘Adam’ optimizer for 20 epochs. In the second
stage, the DeepLab V2 [11] with ResNet-101 [55] pre-trained on the ImageNet dataset [61]
is adopted as our segmentation adaptation SA model. Following [62], we introduce an
output space discriminator with five convolution layers, in which the channel numbers in
each layer are 64, 128, 256, 512, 1, respectively. When training the SA network, we employ a
stochastic gradient descent (SGD) [63] with weight decay 0.0005 and momentum 0.9 as the
optimizer. The initial learning rate is 2.5× 10−4, and multiplied by 1− ( iter

max_iter )
power with

power = 0.9. In addition, the initial learning rate in the output space discriminator is set to
1× 10−4 with a momentum of 0.99. Following the previous work [8,30], we comprehen-
sively validate the performance of the model by a total of two common evaluation metrics:
Intersection over union (IoU) and F1 score. It is noteworthy that we count the metrics for
all categories except clutter in the multi-category UDA semantic segmentation.

4.3. Experimental Results
4.3.1. Results on Single-Category UDA Semantic Segmentation

As reported in Table 1, we compare the results of the proposed SLNet with the other
state-of-the-art, from Mass to Inria and Inria to Mass, respectively, to verify the effectiveness
of single-category UDA semantic segmentation. Bold values represent the best score in
the column.

From Mass to Inria, our SLNet achieves the ascendant result with mIoU of 57.32%,
which outperforms that of BDL (mIoU of 54.16%) [25], SRDA-Net (mIoU of 52.86%) [36]
and so on. It is worth noting that our SLNet enables a boost over the source-only model
(without domain adaptation) by 26.53% in mIoU, while underperforming the target-only
model (supervised) by 26.17% in mIoU. From Inria to Mass, our SLNet achieves a result of
51.16% in mIoU, which brings great improvement compared with the source-only model.
Both experimental results verify the effectiveness of our SLNet for single-category UDA
semantic segmentation.
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Table 1. The quantitative results of our SLNet and the other state-of-the-art for single-category UDA
semantic segmentation based on the Mass and Inria dataset. Here, the mIoU gap indicates the gap
between the current model and target-only model. The bold represents the best performance. * means
that this method is reproduced by ourselves.

Single-Category Mass⇒ Inria Inria⇒Mass

Model mIoU mIoU Gap mIoU mIoU Gap

Source-only 30.79 52.70 24.52 54.04
ADDA * [64] 43.52 39.97 33.38 45.18

CyCADA * [46] 45.81 37.69 39.86 38.70
AdaptSegNet * [20] 46.28 37.21 43.17 35.39

ScaleNet * [37] 50.22 33.27 46.44 32.12
SRDA-Net [36] 52.86 30.64 - -

BDL * [25] 54.16 29.33 48.60 29.96

SLNet 57.32 26.17 51.16 27.40

Target-only 83.49 0.00 78.56 0.00

In order to further analyze the UDA semantic segmentation performance, we con-
ducted a visual analysis of the experimental results based on the Mass and Inria dataset,
as illustrated in Figure 8. Here, the visualization of the first two lines are from Mass to
Inria and the last two lines are from Inria to Mass. Moreover, from the first column to
the last column are images, ground truth, the results without DA, the results by applying
BDL, our results, and the error map, respectively. It can be clearly seen that compared
with the model without DA and BDL [25], our segmentation results have more accurate
prediction and fewer errors. Benefiting from sequential learning, including the image trans-
lation model with spectral space transferring (SST) and segmentation adaptation model
with pseudo-label revising (PLR), we achieved the best results for single-category UDA
semantic segmentation.

M
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Ground TruthImage Without DA BDL SLNet Error Map
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→

M
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ss

Figure 8. Qualitative results for single-category UDA semantic segmentation based on the Mass and
Inria dataset. The first two lines are from Mass to Inria, and the last two lines are from Inria to Mass.
Legend—white building surfaces, black background. The input images are cropped to 452× 452 for
better visualization.
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4.3.2. Results on Multi-Category UDA Semantic Segmentation

Different from single-category UDA semantic segmentation, multi-category UDA
semantic segmentation is more challenging due to domain gaps in spectral texture and
category distribution of multiple categories. Similarly, we perform the comparison on two
tasks (Vaihingen ⇒ Potsdam and Potsdam ⇒ Vaihingen) to verify the effectiveness of
our SLNet.

From Vaihingen to Potsdam, we report the quantitative results in Table 2, where the
proposed SLNet with ResNet-101 [55] is compared with the other state-of-the-art. We
observe that our SLNet achieves the best with mIoU of 62.58%, and mean F1 of 75.85%.
Most of the work only focuses on feature alignment from the source domain to the target
domain by employing different adversarial losses, where the knowledge of the unlabeled
target domain is not fully utilized. The best performance in BDL [25] is still 7.11% worse in
mIoU than our SLNet. Compared with BDL [25], we also introduce the image translation
model followed by the segmentation adaptation model to further reduce the domain gaps,
but the multi-task learning architecture is different. Compared with complex bidirectional
learning, sequential learning is more convenient for training and convergence. Meanwhile,
there is still a certain gap between the results of our SLNet and the target-only model,
which needs further exploration.

To more vividly show the effect of the algorithm, Figure 9 showcases four typical UDA
segmentation results, where the segmentation results of the model without DA, BDL [25],
our SLNet, and the error maps are visualized. Through visualizations in Figure 9, we
can find that our SLNet obtains more accurate segmentation maps with a novel proposed
sequential learning method.

Table 2. The quantitative results of our SLNet and the other state-of-the-art for multi-category UDA
semantic segmentation from the Vaihingen to Potsdam dataset. The bold entities represent the best
performance. * means that this method is reproduced by ourselves.

Multi-Category Vaihingen⇒ Potsdam

Model Imp. Surf. Build. Low Veg. Tree Car mIoU (%) Mean F1 (%) mIoU Gap (%)

Source-only 19.09 32.98 22.59 5.53 8.01 17.64 20.91 55.05
GAN-RSDA [34] 18.66 27.40 19.72 32.06 0.59 19.69 21.96 53.00

SEANet [17] 28.90 36.24 8.70 5.17 44.77 24.76 37.04 47.93
AdaptSegNet * [20] 43.18 44.26 39.86 21.41 11.26 31.99 44.94 40.70

CyCADA * [46] 45.36 33.62 29.13 37.07 16.49 32.33 46.58 40.36
ADDA * [64] 46.29 42.21 42.54 26.29 23.56 36.18 49.05 36.51
BSANet [38] 50.21 49.98 28.67 27.66 41.51 39.61 53.19 33.08

Dual_GAN [65] 45.96 59.01 41.73 25.80 39.71 42.44 58.77 30.25
ScaleNet [37] 49.76 46.82 52.93 40.23 42.97 46.54 - 26.15

SRDA-Net [36] 60.20 61.00 51.80 36.80 63.40 54.64 - 18.05
CCDA_LGFA [66] 64.39 66.44 47.17 37.55 59.35 54.98 70.28 17.71

BDL * [25] 61.56 59.98 44.06 45.70 66.05 55.47 72.04 17.22

SLNet 65.05 65.86 52.63 54.08 75.25 62.58 75.85 10.11

Target-only 77.13 79.45 60.08 66.56 80.24 72.69 83.74 0.00

From Potsdam to Vaihingen, we compare the quantitative performance between our
method and the state-of-the-art methods. As presented in Table 3, our SLNet yields a
considerable amplification of 62.71% and 76.42% in mIoU and mean F1, respectively. We
also list the quantitative performance for the five categories for a fair comparison. Our
SLNet decouples one task into two subtasks to narrow domain discrepancy from pixel-level
and output space, respectively. Compared with the most advanced algorithm [66], we
enable a boost of 4.42% and 6.36% in mIoU and mean F1. BDL [25] is very similar to our
work, but the low prediction confidence for the category, such as ‘Low vegetation’ and
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‘Car’ will lead to the poor prediction of pseudo labels, which can affect self-supervised
learning. In addition, we conducted qualitative and visual analyses of the experimental
results, as illustrated in Figure 10. Note that, we chose 452× 452 patches for the best
visualization. Moreover, benefiting from the image translation model with spectral space
transferring (SST) and the segmentation adaptation model with pseudo-label revising
(PLR), the proposed SLNet predicts the finer segmentation maps for multi-category UDA
semantic segmentation.

Ground TruthImage Without DA BDL SLNet Error Map

Imp. surf. Build. Low veg. Tree Car Clutter

Figure 9. Qualitative results for multi-category UDA semantic segmentation on 6-class semantic
segmentation from the Vaihingen to Potsdam dataset.

Table 3. The quantitative results of our SLNet and the other state-of-the-art for multi-category UDA
semantic segmentation from the Potsdam to Vaihingen dataset. The bold entities represent the best
performance. * means that this method is reproduced by ourselves.

Multi-Category Potsdam⇒ Vaihingen

Model Imp. Surf. Build. Low Veg. Tree Car mIoU (%) Mean F1 (%) mIoU Gap (%)

Source-only 40.39 32.81 24.16 23.58 5.33 25.25 37.02 53.09
GAN-RSDA [34] 34.55 40.64 22.58 24.94 9.90 26.52 40.77 51.82

ADDA * [64] 43.28 52.16 24.39 28.84 15.26 32.79 45.68 45.55
SEANet [17] 41.84 56.80 20.83 21.86 31.72 34.61 49.98 43.73

CyCADA * [46] 48.59 60.04 27.71 36.84 13.49 37.33 53.37 41.01
AdaptSegNet * [20] 51.96 56.19 25.68 45.97 30.16 41.99 58.49 36.35

BSANet [38] 53.55 59.87 23.91 51.93 27.24 43.30 62.68 35.04
Dual_GAN [65] 46.19 65.44 27.85 55.82 40.31 47.12 63.01 31.22

ScaleNet [37] 55.22 64.46 31.34 50.40 39.86 47.66 - 30.68
BDL * [25] 60.05 67.48 46.42 65.40 37.81 56.67 71.52 21.67

CCDA_LGFA [66] 67.74 76.75 47.02 55.03 44.90 58.29 70.06 20.05

SLNet 70.62 76.72 52.22 68.35 45.62 62.71 76.42 15.63

Target-only 79.36 85.615 72.94 75.32 78.48 78.34 87.61 0.00
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Ground TruthImage Without DA BDL SLNet Error Map

Imp. surf. Build. Low veg. Tree Car Clutter

Figure 10. Qualitative results for multi-category UDA semantic segmentation on the 6-class semantic
segmentation from the Potsdam to Vaihingen dataset.

4.4. Ablation Analysis

In this section, we carry out extensive ablation experiments (Vaihingen⇒ Potsdam) to
verify the effectiveness of sequential learning and the key modules of our model. Note that
we take Vaihingen as the source domain dataset and Potsdam as the target domain dataset.

4.4.1. Discussion

The advantages of the proposed sequential learning network (SLNet) can be summa-
rized as follows: First, the image translation (IT) model and segmentation adaptation (SA)
model are combined together in a sequential way, which helps decrease both visual and
distribution domain discrepancy. Most prior UDA methods focus on only one of these
two discrepancies, whilst maintaining a standard implementation of the other. Second,
different from CycleGAN [13], the proposed spectral space transferring (SST) module en-
sures the source images and the translated images share a similar high-frequency spectrum,
which represents the important details and identity characteristics. Therefore, our image
translation model achieves realistic style transfer and preserves detailed information to
generate high-quality translated images. Third, the proposed pseudo-label revising based
on entropy minimization does not need to set the thresholds manually but can provide
adaptive thresholds for different locations. When the entropy value is low, the model
focuses on the prediction bias term to learn from pseudo labels; when the entropy value is
high, the model is prone to ignoring the prediction bias term to skip noisy pseudo labels.

4.4.2. Analysis of Network Settings

We first explain the symbols used in the ablation experiment to describe our stepwise
experiment. Here, A0 represents the initial network without domain adaptation, where
only source domain data are involved in training. A1 refers to the output space adversarial
learning network trained with source and target domain datasets. Moreover, A2 is to
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add an auxiliary classifier on the basis of A1 to measure the uncertainty entropy map of
prediction. C indicates that we utilize CycleGAN [13] as the image translation model.
T indicates our proposed spectral-based image translation model, which is in charge of
producing high-quality translation source domain images. For A0(T), A1(T), and A2(T),
the adaptation network is trained based on the translated source and target dataset. In
addition, ([A2]

k(T), k = 1, 2, 3, . . . ) indicates employing pseudo-label revising on the basis
of A2(T), where k represents the number of iterations.

As reported in Table 4, A0 serves the lower boundary as the baseline, and the middle
eight lines show the performance of the method without SSL. A0(C) outbalances the
baseline by 24.12% in mIoU. An interesting phenomenon is that A1, A2, and A0(T) enable
a similar boost over the baseline by about 28% in mIoU. Compared with the A0(C), A1(C),
and A2(C), our proposed spectral-based image translation model, respectively, brings
3.88%, 2.13%, and 1.36% improvement in mIoU, which shows the advantages of SST. It
also implies that the image translation and segmentation adaptation model can work
independently to reduce domain gaps, and when combined with sequential learning, they
can complement each other through an iteration. In addition, we further present the
performance improvement of multiple categories on the left side of Figure 11 to verify the
effectiveness of the proposed spectral-based image translation model.

Table 4. Ablation study of the sequential learning from Vaihingen to Potsdam. See the text for the
specific description of notations. ‘SSL’ denotes the method of self-supervised learning. ‘K’ represents
the number of iterations. The bold represents the best performance.

Method SSL K mIoU(%)

A0 N - 17.64

A1 N - 44.87
A2 N - 46.18

A0(C) N - 41.76
A1(C) N - 48.16
A2(C) N - 50.81
A0(T) N - 45.64
A1(T) N - 50.29
A2(T) N - 52.17

[A2]
1(T) Y 1 58.63

[A2]
2(T) Y 2 62.58

[A2]
3(T) Y 3 60.24

Figure 11. Radar charts of mIoU (%) on 5-class UDA semantic segmentation from the Vaihingen to
Potsdam dataset. On the left is the comparison between method A2 and A2(T), while the right is the
comparison between method A2(T) and [A2]

1(T). Zoom in for details.
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We further prove that the revising of SSL can make full use of the knowledge of
the unlabeled target domain to improve the adaptation ability. Here, we provide the
results through three iterations based on Algorithm 1. When the model A2(T) is updated to
[A2]

1(T) with pseudo-label revising through one iteration, mIoU can be improved by 6.46%.
We attribute this to that SSL with pseudo-label revising (PLR) can utilize the knowledge
of the aligned data between the target domain and the source domain, and further guide
the remaining data to align. At the same time, we visualized the performance gains of all
categories from the A2(T) to [A2]

1(T) model on the right side of Figure 11. The largest
performance improvement was observed in the category with an mIoU score below 50%.
This indicates that our PLR module mitigates the negative impact of low confidence on SSL
to a certain extent.

As the number of iterations increases, we enable the automatic threshold to guide the
pseudo-label learning by estimating the entropy map, when K = 2, a large improvement
can be obtained from [A2]

1(T) to [A2]
2(T), where mIoU increased by 3.95%. It indicates

that more pseudo labels can be utilized to enhance the model’s adaptability. However, the
learning of the segmentation adaptive model will be converged with the increase of K. As
shown in Table 4, the [A2]

3(T) model underperforms the [A2]
2(T) model by 2.34% in mIoU,

which may suggest that K = 2 is a good choice. Through the above ablation experiments,
we can further confirm that the segmentation adaptation model can give more confident
predictions as we continue to reduce domain gaps and modify pseudo-label learning.

4.4.3. Effect of Spectral Space Transferring

In order to verify the effectiveness of the proposed spectral space transferring (SST)
module, we report the quantitative results in Table 5. In this section, we take method A2
without the image translation model as the baseline. Note that we train CycleGAN [13] as
our image translation model when γ = 0. When γ is greater than 0, we introduce the SST
module to preserve the frequency information, which represents the important details and
identity characteristics during training.

When γ equals 0, the method A2(T) yields an amplification of 2.01% in mIoU, which
indicates that the image translation model can indeed reduce the domain discrepancy in
the visual space. In addition, we find in Table 5 that when γ is 0.15 and 0.10, methods
A2(T) and [A2]

1(T) achieve the best performance, respectively. Theoretically, with the
increase of γ, we can preserve much of the high-frequency information to restore the details.
However, generous experiments show that when γ is greater than 0.10, our experimental
performance is less sensitive to its selection.

Table 5. The effect of the selection of super-parameters γ on the experimental performance of the model
A2(T) and [A2]

1(T). Here, ∆↑ indicates the mIoU gain. The bold represents the best performance.

Method γ mIoU (%) ∆↑
A2 - 46.18 0.00

A2(T)

0.00 48.19 2.01
0.01 50.34 4.16
0.05 51.67 5.49
0.10 51.91 5.73
0.15 52.17 5.99

[A2]
1(T)

0.00 53.95 7.77
0.01 55.88 9.70
0.05 57.92 11.74
0.10 58.63 12.45
0.15 57.27 11.09

In the case of qualitative analysis, we compare the visualization results between Cycle-
GAN [13] and our spectral-based image translation model, as illustrated in Figure 12. The
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first two lines belong to multi-category image domain adaptation, where CycleGAN [13]
often loses some original details and over-adapts to the reference domain. For example, in
the process of image translation from Vaihingen to Potsdam, cars are ignored on the first
line and the second line loses the boundary of the building, resulting in poor visual quality.
In the process of image translation from Mass to Inria, we find buildings are predicted to
be ‘other’ due to over-adaptation to the reference domain, and so on. Benefiting from the
preservation of high-frequency information during the process of image translation, we
can better preserve the identity details while conducting realistic image translation.

CycleGANInput Ours(SST)

Vaih

CycleGANInput Ours(SST)

Pots Pots Vaih

Mass Inria Inria Mass

Figure 12. Visual comparison between CycleGAN [13] and our spectral-based image translation
model. Here, we show the visualization results of image translation from Vaihingen to Potsdam,
Potsdam to Vaihingen, Mass to Inria, and Inria to Mass, respectively. The input images are cropped
to 452× 452 for better visualization.

4.4.4. Effect of Pseudo-Label Revising

Pseudo-label learning can make use of the knowledge of the unlabeled target domain,
but at the same time, it inevitably leads to a lot of noisy information. The classical pseudo-
label learning selects pseudo labels with high confidence to participate in training by the
handcrafted threshold, which solves the noise problem to a certain extent. However, the
threshold is often hard to determine, and the data with low confidence cannot be utilized.
In this section, we conduct large quantities of experiments to analyze the effectiveness of
the pseudo-label revising module from the following two aspects.

Entropy Minimization vs. Manual Threshold.
As illustrated in Figure 6, we compare the diagram of the classical pseudo-label

learning and our pseudo-label revising. The former is based on the manual threshold, while
the latter is based on entropy minimization. Here, we report the performance comparison
between different manual thresholds and entropy minimization from Vaihingen to Potsdam
in Table 6. We can find that the best performance of classical pseudo-label learning based
on the manual threshold setting of 0.85 is 56.42% in mIoU, which is 4.25% more than A2(T).
Compared with the manual threshold method, our method [A2]

1(T) can reach 58.63%
mIoU with a 2.21% increment. This is mainly because that entropy minimization works
as the automatic threshold, which constantly revises the corresponding pseudo labels for
different categories of pixels. More specifically, the proposed model tends to revise pseudo
labels for locations with small entropy to maximize the use of knowledge in the target
domain, and is prone to ignoring the pseudo labels for locations with large entropy to
minimize the negative impact of noisy pseudo labels.
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Table 6. Performance comparison between manual threshold and entropy minimization from Vaihin-
gen to Potsdam. Here, ‘+ Pseudo-label Learning’ denotes that the model is trained on the basis of
A2(T) by utilizing the pseudo-label with confidence. Our [A2]

1(T) does not set the manual threshold.
The bold represents the best performance.

Method Threshold mIoU (%)

A2(T) - 52.17

+ Pseudo-label Learning

0.95 53.71
0.90 55.88
0.85 56.42
0.80 55.17
0.75 55.49
0.70 54.38

[A2]
1(T) - 58.63

In addition, we visualize the discrepancy between the confidence map and error map
to further verify the effectiveness of entropy minimization. As illustrated in Figure 13, there
are extensive overlapping highlights between the entropy map and error map, which also
indicates that the areas with large entropy in the pseudo labels are often the areas with
wrong predictions. Nevertheless, the highlighted areas of the confidence map are usually
concentrated on the boundaries of different classes, which does not provide effective clues
for uncertain predictions.

Effect of Metric Functions. There are many metric functions to measure the dis-
crepancy of sample distribution, such as maximum mean discrepancy (MMD) [67], KL-
divergence, JS-divergence, and so on. Here, we carry out several groups of experiments to
compare common metric functions, and the experimental results are reported in Table 7.
Compared with the first two functions, we achieved the best performance of 58.63% mIoU
by adopting JS-divergence. The reasons are mainly attributed to the following two aspects.
On the one hand, MMD [67] focuses on the distribution discrepancy of prediction data
and relies on certain prior knowledge (Gaussian kernel function), which is not conducive
to the learning and convergence of the network. On the other hand, the two classifiers in
this work (C1 and C2) are not divided into the main classifier and the auxiliary classifier,
so compared with KL-divergence, JS-divergence with symmetry is more suitable for us to
measure entropy to guide pseudo-label learning.

Ground Truth Error MapPrediction Map Confidence Map Entropy Map

Figure 13. Visualization of the discrepancy between the error map, confidence map, and entropy
map. Best viewed in color.



Remote Sens. 2023, 15, 1207 21 of 24

Table 7. The influence of the selection of metric functions on the adaptive performance of the methods.
The bold entities represent the best performance.

Method Metric Functions mIoU (%)

[A2]
1(T)

MMD [67] 55.25
KL-divergence 56.94
JS-divergence 58.63

5. Conclusions

In this article, a unified sequential learning system (decoupled into the image transla-
tion model and segmentation adaptation model) was established to capture domain-shared
and domain-specific knowledge for unsupervised cross-scene aerial image segmentation.
For narrowing the visual discrepancy, the spectral-based image translation model directly
transfers high-frequency components in the Fourier spectral space for better preserving the
identity structure. For alleviating the distribution discrepancy, we explicitly incorporate the
entropy metric of the prediction results of the two independent classifiers into the training
objective function to automatically provide pixel-level threshold. Without additional pa-
rameters, we adaptively revise the noisy pseudo labels by minimizing the entropy metric,
while ensuring a coherent training process. Such a framework in a sequential learning
manner cannot only lead to narrowing the domain discrepancies but can also exploit the
domain-specific knowledge in the target domain. Furthermore, the experimental results for
single-category and multi-category UDA segmentation demonstrate that our method is
better than state-of-the-art UDA segmentation methods.
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