A Rapid Water Region Reconstruction Scheme in 3D Watershed Scene Generated by UAV Oblique Photography
Abstract
:1. Introduction
- (1)
- A novel eight-neighborhood traversal algorithm has been designed and implemented. This algorithm can accurately and rapidly extract the boundary points of water regions in 3D models of oblique photography.
- (2)
- A fully automatic algorithm for texture image selection, preprocessing and mapping has been developed. This algorithm can intelligently map the textures of water regions based on the multi-view images acquired by UAV.
- (3)
- An evaluation system has been constructed for the reconstruction results of water regions in 3D models of oblique photography. This system can allow for both qualitative and quantitative evaluations of the reconstruction effect.
2. Materials and Methods
2.1. Data Acquisition
2.2. Boundary Point Extraction of Water Region
2.3. Triangulated Irregular Network (TIN) Reconstruction and Texture Mapping of Water Region
2.4. Accuracy and Effect Evaluation of Water Region Reconstruction
3. Experiments and Results
3.1. Qualitative Evaluation
3.2. Quantitative Evaluation
- (1)
- Accuracy Evaluation
- (2)
- Efficiency Evaluation
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yan, D.; Jiang, R.; Xie, J.; Wang, Y.; Li, X. Research on water resources monitoring system of Weihe River basin based on digital globe. Comput. Eng. 2019, 45, 49–55. [Google Scholar] [CrossRef]
- Qiu, Y.; Xie, H.; Sun, J.; Duan, H. A novel spatiotemporal data model for river water quality visualization and analysis. IEEE Access 2019, 7, 155455–155461. [Google Scholar] [CrossRef]
- Shi, H.; Chen, J.; Li, T.; Wang, G. A new method for estimation of spatially distributed rainfall through merging satellite observations, raingauge records, and terrain digital elevation model data. J. Hydro-Environ. Res. 2020, 28, 1–14. [Google Scholar] [CrossRef]
- Qiu, Y.; Duan, H.; Xie, H.; Ding, X.; Jiao, Y. Design and development of a web-based interactive twin platform for watershed management. Trans. GIS 2022, 26, 1299–1317. [Google Scholar] [CrossRef]
- Harman, J.; Brown, R.; Johnson, D.; Rinderle-Ma, S.; Kannengiesser, U. Virtual business role-play: Leveraging familiar environments to prime stakeholder memory during process elicitation. In Proceedings of the 27th International Conference on Advanced Information Systems Engineering, Stockholm, Sweden, 8–12 June 2015; pp. 166–180. [Google Scholar]
- Bhimani, A.; Spolentini, P. Empowering requirements elicitation for populations with special needs by using virtual reality. In Proceedings of the SouthEast Conference on ACM SE ’17, Kennesaw, GA, USA, 13–15 April 2017; pp. 268–270. [Google Scholar]
- Harman, J.; Brown, R.; Johnson, D. Improved memory elicitation in virtual reality: New experimental results and insights. In Proceedings of the 16th IFIP Conference on Human-Computer Interaction, Mumbai, India, 23 September 2017; pp. 128–146. [Google Scholar]
- Schito, J.; Jullier, J.; Raunal, M. A framework for integrating stakeholder preferences when deciding on power transmission line corridors. EURO J. Decis. Process 2019, 7, 159–195. [Google Scholar] [CrossRef]
- Japs, S.; Kaiser, L.; Kharatyan, A. Method for 3D-environment driven domain knowledge elicitation and system model generation. In Proceedings of the 16th International Design Conference-Design 2020, Cavtat, Croatia, 26–29 October 2020; pp. 197–206. [Google Scholar]
- Zhu, Q.; Zhao, J.; Zhong, Z.; Sui, H. The extraction of topographic patterns based on regular grid DEMs. Acta Geod. Cartogr. Sin. 2004, 33, 78–82. [Google Scholar] [CrossRef]
- Carmona, R.; Froehlich, B. Error-controlled real-time cut updates for multi-resolution volume rendering. Comput. Graph. 2011, 35, 931–944. [Google Scholar] [CrossRef]
- Gao, S.; Yuan, X.; Gan, S. Experiment research on Terrain 3D modeling based on tilt photogrammetry. J. Henan Univ. Sci. Technol. (Nat. Sci.) 2018, 39, 99–104. [Google Scholar] [CrossRef]
- Mark, D.M. Automated detection of drainage networks from digital elevation models. Cartographica 1983, 21, 168–178. [Google Scholar] [CrossRef]
- Jenson, S.K.; Domingue, J.O. Extraction topo-graphic structure from digital elevation data for geo-graphic information system. Photogrammetirc Eng. Remote Sens. 1988, 54, 1593–1600. [Google Scholar] [CrossRef]
- Losasso, F.; Hoppe, H. Geometry clipmaps: Terrain rendering using nested regular grids. ACM Trans. Graph. 2004, 23, 769–776. [Google Scholar] [CrossRef]
- Zhu, Q.; Gong, J.; Du, Z.; Zhang, Y. LODs description of 3D city model. Geomat. Inf. Sci. Wuhan Univ. 2005, 30, 965–969. [Google Scholar] [CrossRef]
- Chen, B.; Lu, N.; Wu, T. A converting method of 3D model based on OpenGL. Mini-Micro Syst. 2004, 25, 475–477. [Google Scholar] [CrossRef]
- Huang, J.; Mao, F.; Xu, W.; Li, J.; Lei, T. Implementation of large area valley simulation system based on VegaPrime. J. Syst. Simul. 2006, 18, 2819–2823+2831. [Google Scholar] [CrossRef] [Green Version]
- Piccand, S.; Noumeir, R.; Eric, P. Region of interest and multiresolution for volume rendering. IEEE Trans. Inf. Technol. Biomed. 2008, 12, 561–568. [Google Scholar] [CrossRef]
- Xie, K.; Yu, W.; Yu, H.; Wu, P.; Li, T.; Peng, M. GPU-based multi-resolution volume rendering for large seismic data. In Proceedings of the 2011 International Conference on Intelligence Science and Information Engineering, Wuhan, China, 20–21 August 2011; pp. 245–248. [Google Scholar]
- Zhu, Q. Full three-dimensional GIS and its key roles in smart city. J. Geo-Inf. Sci. 2014, 16, 151–157. [Google Scholar] [CrossRef]
- Cheng, P.; Li, Z.; Nie, Y.; Li, Q. Rapid batch automatic modeling method of urban road lamps based on CityEngine and 3D Max. Eng. Surv. Mapp. 2018, 27, 40–45. [Google Scholar] [CrossRef]
- Wang, J.A.; Ma, H.T.; Wang, C.M.; He, Y.J. Fast 3D reconstruction method based on UAV photography. ETRI J. 2018, 40, 788–793. [Google Scholar] [CrossRef] [Green Version]
- Hu, X.; Li, D. Research on a single-tree point cloud segmentation method based on UAV tilt photography and deep learning algorithm. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 4111–4120. [Google Scholar] [CrossRef]
- Tu, Y.H.; Johansen, K.; Aragon, B.; Stutsel, B.M.; Angel, Y.; Camargo, O.A.L.; AlMashharawi, S.K.M.; Jiang, J.; Ziliani, M.G.; McCabe, M.F. Combining nadir, oblique, and facade imagery enhances reconstruction of rock formations using unmanned aerial vehicles. IEEE Trans. Geosci. Remote Sens. 2021, 59, 9987–9999. [Google Scholar] [CrossRef]
- Huang, C.; Zhang, H.; Zhao, J. High-efficiency determination of coastline by combination of tidal level and coastal zone DEM from UAV tilt photogrammetry. Remote Sens. 2020, 12, 2189. [Google Scholar] [CrossRef]
- Wen, X.; Zhang, S.; Zhang, Y.; Li, Z. Potential of remote sensing technology assisted by UAV oblique photography applied to dynamic monitoring of soil and water conservation. J. Yangtze River Sci. Res. Inst. 2016, 33, 93–98. [Google Scholar] [CrossRef]
- Lai, H.; Liu, L.; Liu, X.; Zhang, Y.; Xuan, X. Unmanned aerial vehicle oblique photography-based superposed fold analysis of outcrops in the Xuhuai region, North China. Geol. J. 2020, 56, 2212–2222. [Google Scholar] [CrossRef]
- Yin, T.; Zeng, J.; Zhang, X.; Zhou, X. Individual tree parameters estimation for Chinese fir (Cunninghamia lanceolate (Lamb.) Hook) plantations of south China using UAV oblique photography: Possibilities and challenges. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 14, 827–842. [Google Scholar] [CrossRef]
- Wang, Q.; Ai, H.; Zhang, L. Rapid city modeling based on oblique photography and 3ds Max technique. Sci. Surv. Mapp. 2014, 39, 74–78. [Google Scholar] [CrossRef]
- Wang, X.; Zhu, Y.; Zhang, X.; Li, X. Application of Oblique Photography Technique in Large Area 3D City Modeling. Urban Geotech. Investig. Surv. 2018, 6, 59–62. [Google Scholar]
- Zhang, B.; Zhang, L. Study on the application of 3D modeling based on UAV photography in urban planning—Taking Yi Jiequ area in Du Jiangyan as an example. AIP Conf. Proc. 2017, 1864, 020226. [Google Scholar] [CrossRef] [Green Version]
- Yu, L.; Wang, Z.; Tian, S.; Ye, F.; Ding, J.; Kong, J. Convolutional Neural Networks for Water Body Extraction from Landsat Imagery. Int. J. Comput. Intell. Appl. 2017, 16, 1750001. [Google Scholar] [CrossRef]
- Chen, Y.; Tang, L.; Kan, Z.; Bilal, M.; Li, Q. A novel water body extraction neural network (WBE-NN) for optical high-resolution multispectral imagery. J. Hydrol. 2020, 588, 125092. [Google Scholar] [CrossRef]
- Zhang, L.; Fan, Y.; Yan, R.; Shao, Y.; Wang, G.; Wu, J. Fine-grained tidal flat waterbody extraction method (FYOLOv3) for high-resolution remote sensing images. Remote Sens. 2021, 13, 2594. [Google Scholar] [CrossRef]
- Xu, Y.; Lin, J.; Zhao, J.; Zhu, X. New method improves extraction accuracy of lake water bodies in Central Asia. J. Hydrol. 2021, 603, 127180. [Google Scholar] [CrossRef]
- Jiang, Z.; Wen, Y.; Zhang, G.; Wu, X. Water Information Extraction Based on Multi-Model RF Algorithm and Sentinel-2 Image Data. Sustainability 2022, 14, 3797. [Google Scholar] [CrossRef]
- Zhang, F.; Gao, L. The analysis of real 3D modeling of oblique images based on DP-Modeler. Geomat. Spat. Inf. Technol. 2018, 41, 196–198. [Google Scholar] [CrossRef]
- Upex, P.; Jouffroy, P.; Riouallon, G. Application of 3D printing for treating fractures of both columns of the acetabulum: Benefit of pre-contouring plates on the mirrored healthy pelvis. Orthop. Traumatol. Surg. Res. 2017, 103, 331–334. [Google Scholar] [CrossRef]
- He, Y.; Jiang, Y.; Sun, L. Research on 3D data acquisition method of building based on SVS Modeler. Mod. Surv. Mapp. 2020, 43, 35–37. [Google Scholar] [CrossRef]
- Rusu, R.B.; Cousins, S. 3D is here: Point Cloud Library (PCL). In Proceedings of the 2011 IEEE International Conference on Robotics and Automation, Shanghai, China, 9–12 May 2011; pp. 1–4. [Google Scholar]
- Shewchuk, J.R. Delaunay refinement algorithm for triangular mesh generation. Comput. Geom. 2002, 22, 21–74. [Google Scholar] [CrossRef] [Green Version]
- Kong, X.; Guo, J.; Liu, Z. Basic theory of earth ellipsoid and its mathematical projection transformation. In Foundation of Geodesy; Wuhan University Press: Wuhan, China, 2010; pp. 166–169. [Google Scholar]
- He, J.; Li, Y.; Lu, H.; Ren, Z. Research of UAV aerial image mosaic based on SIFT. Opto-Electron. Eng. 2011, 38, 122–126. [Google Scholar] [CrossRef]
3D Model | Number of Points | Coordinate Range (x) | Coordinate Range (y) | Coordinate Range (z) |
---|---|---|---|---|
model_01 | 185,581 | −83.8019~25.1597 | 196.6981~293.4608 | 15.4556~40.8227 |
model_02 | 55,318 | −83.8019~0.0464 | 199.0290~330.9512 | 20.4495~36.4812 |
model_03 | 76,291 | −98.4907~50.1999 | 516.4602~588.6694 | 65.4179~84.0148 |
model_04 | 60,339 | 325.1720~369.3640 | −159.8860~−106.2403 | 38.4707~53.2799 |
model_05 | 170,346 | 10.6901~107.8690 | −130.7712~−48.9058 | 95.0714~110.2020 |
model_06 | 18,701 | −15.1823~26.1760 | 303.8401~338.9920 | 125.6604~134.7461 |
model_07 | 372,732 | −158.1614~−32.8305 | −153.5332~−31.5963 | 38.0605~69.0925 |
model_08 | 348,132 | −523.1904~−377.0732 | 52.6536~223.9019 | 20.9784~67.3059 |
model_09 | 72,168 | 32.6015~93.5034 | −262.7206~−200.4312 | 77.8785~97.9674 |
model_10 | 120,951 | −157.7250~−93.8586 | −37.0853~26.7636 | 19.6439~52.9920 |
3D Model | Schemes | AE (Unit: m) | RMSE (Unit: m) | SD (Unit: m) | EOA (Unit: %) |
---|---|---|---|---|---|
model_01 | This scheme | 0.293671 | 0.436409 | 0.246782 | 1.162059 |
Scheme in [33] | 0.502648 | 0.623545 | 0.532614 | 5.369245 | |
Scheme in [37] | 0.456841 | 0.598413 | 0.508592 | 6.326541 | |
model_02 | This scheme | 0.154879 | 0.342610 | 0.107922 | 0.070159 |
Scheme in [33] | 0.559348 | 0.657246 | 0.501236 | 4.895633 | |
Scheme in [37] | 0.585645 | 0.623598 | 0.486235 | 5.632154 | |
model_03 | This scheme | 0.470261 | 0.613727 | 0.297445 | 2.343532 |
Scheme in [33] | 0.523648 | 0.641235 | 0.526354 | 5.553241 | |
Scheme in [37] | 0.513647 | 0.623194 | 0.543969 | 5.763215 | |
model_04 | This scheme | 0.302912 | 0.399930 | 0.595390 | 2.802301 |
Scheme in [33] | 0.469216 | 0.615623 | 0.586324 | 5.230684 | |
Scheme in [37] | 0.521853 | 0.612548 | 0.572694 | 4.796523 | |
model_05 | This scheme | 0.891332 | 0.797488 | 0.676160 | 7.293576 |
Scheme in [33] | 0.493257 | 0.665123 | 0.563247 | 5.639521 | |
Scheme in [37] | 0.462584 | 0.691254 | 0.586218 | 5.326566 | |
model_06 | This scheme | 0.392715 | 0.567713 | 0.236397 | 6.951579 |
Scheme in [33] | 0.562415 | 0.665238 | 0.563241 | 5.845524 | |
Scheme in [37] | 0.512398 | 0.698423 | 0.543697 | 6.320227 | |
model_07 | This scheme | 0.272851 | 0.458527 | 0.185233 | 4.731892 |
Scheme in [33] | 0.521563 | 0.652347 | 0.536247 | 5.369656 | |
Scheme in [37] | 0.486325 | 0.642359 | 0.512398 | 5.785544 | |
model_08 | This scheme | 0.389727 | 0.488049 | 0.344092 | 1.054049 |
Scheme in [33] | 0.554236 | 0.631251 | 0.563244 | 4.763565 | |
Scheme in [37] | 0.542169 | 0.657358 | 0.523692 | 5.221526 | |
model_09 | This scheme | 0.677022 | 0.707902 | 0.489006 | 11.141575 |
Scheme in [33] | 0.516974 | 0.684592 | 0.553622 | 5.912548 | |
Scheme in [37] | 0.536958 | 0.645963 | 0.543669 | 5.632411 | |
model_10 | This scheme | 0.221631 | 0.405329 | 0.160023 | 1.247305 |
Scheme in [33] | 0.542354 | 0.676523 | 0.523687 | 6.231521 | |
Scheme in [37] | 0.523627 | 0.645286 | 0.526384 | 5.454217 | |
Average of ten models | This scheme | 0.406700 | 0.521768 | 0.333845 | 3.879803 |
Scheme in [33] | 0.5245659 | 0.6512723 | 0.5449816 | 5.4811138 | |
Scheme in [37] | 0.5142047 | 0.6438396 | 0.5347548 | 5.6258924 |
3D Model | Consumed Time (Unit: s) |
---|---|
model_01 | 10.851 |
model_02 | 5.053 |
model_03 | 8.833 |
model_04 | 6.262 |
model_05 | 7.522 |
model_06 | 18.135 |
model_07 | 34.599 |
model_08 | 33.561 |
model_09 | 16.542 |
model_10 | 31.755 |
Average of ten models | 17.311 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiu, Y.; Jiao, Y.; Luo, J.; Tan, Z.; Huang, L.; Zhao, J.; Xiao, Q.; Duan, H. A Rapid Water Region Reconstruction Scheme in 3D Watershed Scene Generated by UAV Oblique Photography. Remote Sens. 2023, 15, 1211. https://doi.org/10.3390/rs15051211
Qiu Y, Jiao Y, Luo J, Tan Z, Huang L, Zhao J, Xiao Q, Duan H. A Rapid Water Region Reconstruction Scheme in 3D Watershed Scene Generated by UAV Oblique Photography. Remote Sensing. 2023; 15(5):1211. https://doi.org/10.3390/rs15051211
Chicago/Turabian StyleQiu, Yinguo, Yaqin Jiao, Juhua Luo, Zhenyu Tan, Linsheng Huang, Jinling Zhao, Qitao Xiao, and Hongtao Duan. 2023. "A Rapid Water Region Reconstruction Scheme in 3D Watershed Scene Generated by UAV Oblique Photography" Remote Sensing 15, no. 5: 1211. https://doi.org/10.3390/rs15051211
APA StyleQiu, Y., Jiao, Y., Luo, J., Tan, Z., Huang, L., Zhao, J., Xiao, Q., & Duan, H. (2023). A Rapid Water Region Reconstruction Scheme in 3D Watershed Scene Generated by UAV Oblique Photography. Remote Sensing, 15(5), 1211. https://doi.org/10.3390/rs15051211