A Multi-Satellite Mapping Framework for Floating Kelp Forests
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Methodological Framework
2.2.1. Step 1: Imagery Dataset
2.2.2. Step 2: Preprocessing
2.2.3. Step 3: Classification
2.2.4. Step 4: Quality Assessment
2.2.5. Resolution Analysis
3. Results
3.1. Imagery Quality Assessment
3.2. Preprocessing
3.3. Classification & Accuracy Assessment
3.4. Resolution Analysis
4. Discussion
4.1. Methodological Framework: Standardization and Adaptability
4.2. The Impact of Resolution and Drawing Appropriate Conclusions
4.3. The Challenges and Broad Applications of the Methodological Framework
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wernberg, T.; Krumhansl, K.; Filbee-Dexter, K.; Pedersen, M.F. Chapter 3—Status and Trends for the World’s Kelp Forests. In World Seas: An Environmental Evaluation, 2nd ed.; Sheppard, C., Ed.; Academic Press: Cambridge, MA, USA, 2019; pp. 27–78. ISBN 978-0-12-805052-1. [Google Scholar]
- Jayathilake, D.R.M.; Costello, M.J. Version 2 of the World Map of Laminarian Kelp Benefits from More Arctic Data and Makes It the Largest Marine Biome. Biological Conservation 2021, 257, 109099. [Google Scholar] [CrossRef]
- Bolton, J.J. The Biogeography of Kelps (Laminariales, Phaeophyceae): A Global Analysis with New Insights from Recent Advances in Molecular Phylogenetics. Helgol Mar Res 2010, 64, 263–279. [Google Scholar] [CrossRef] [Green Version]
- Johnson, S.W.; Murphy, M.L.; Csepp, D.J.; Harris, P.M.; Thedinga, J.F. A Survey of Fish Assemblages in Eelgrass and Kelp Habitats of Southeastern Alaska; U.S Department of Commerce: Washington, DC, USA, 2003; p. 48. [Google Scholar]
- Krumhansl, K.A.; Okamoto, D.K.; Rassweiler, A.; Novak, M.; Bolton, J.J.; Cavanaugh, K.C.; Connell, S.D.; Johnson, C.R.; Konar, B.; Ling, S.D.; et al. Global Patterns of Kelp Forest Change over the Past Half-Century. Proc Natl Acad Sci USA 2016, 113, 13785–13790. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Filbee-Dexter, K.; Wernberg, T. Rise of Turfs: A New Battlefront for Globally Declining Kelp Forests. BioScience 2018, 68, 64–76. [Google Scholar] [CrossRef] [Green Version]
- Eger, A.; Marzinelli, E.; Baes, R.; Blain, C.; Blamey, L.; Carnell, P.; Choi, C.G.; Hessing-Lewis, M.; Kim, K.Y.; Lorda, J.; et al. The Economic Value of Fisheries, Blue Carbon, and Nutrient Cycling in Global Marine Forests. EcoEvoRxiv 2021. [Google Scholar] [CrossRef]
- Bennion, M.; Fisher, J.; Yesson, C.; Brodie, J. Remote Sensing of Kelp (Laminariales, Ochrophyta): Monitoring Tools and Implications for Wild Harvesting. Rev. Fish. Sci. Aquac. 2019, 27, 127–141. [Google Scholar] [CrossRef]
- Wernberg, T.; Smale, D.A.; Tuya, F.; Thomsen, M.S.; Langlois, T.J.; de Bettignies, T.; Bennett, S.; Rousseaux, C.S. An Extreme Climatic Event Alters Marine Ecosystem Structure in a Global Biodiversity Hotspot. Nat. Clim. Change 2013, 3, 78–82. [Google Scholar] [CrossRef]
- Wernberg, T.; Bennett, S.; Babcock, R.C.; de Bettignies, T.; Cure, K.; Depczynski, M.; Dufois, F.; Fromont, J.; Fulton, C.J.; Hovey, R.K.; et al. Climate-Driven Regime Shift of a Temperate Marine Ecosystem. Science 2016, 353, 169–172. [Google Scholar] [CrossRef] [Green Version]
- Filbee-Dexter, K.; Feehan, C.; Scheibling, R. Large-Scale Degradation of a Kelp Ecosystem in an Ocean Warming Hotspot. Mar. Ecol. Prog. Ser. 2016, 543, 141–152. [Google Scholar] [CrossRef] [Green Version]
- Arafeh-Dalmau, N.; Montaño-Moctezuma, G.; Martínez, J.A.; Beas-Luna, R.; Schoeman, D.S.; Torres-Moye, G. Extreme Marine Heatwaves Alter Kelp Forest Community Near Its Equatorward Distribution Limit. Front. Mar. Sci. 2019, 6, 499. [Google Scholar] [CrossRef]
- Cavanaugh, K.C.; Reed, D.C.; Bell, T.W.; Castorani, M.C.N.; Beas-Luna, R. Spatial Variability in the Resistance and Resilience of Giant Kelp in Southern and Baja California to a Multiyear Heatwave. Front. Mar. Sci. 2019, 6, 413. [Google Scholar] [CrossRef] [Green Version]
- Smale, D.A. Impacts of Ocean Warming on Kelp Forest Ecosystems. New Phytol. 2020, 225, 1447–1454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dean, T.A.; Schroeter, S.C.; Dixon, J.D. Effects of Grazing by Two Species of Sea Urchins (Strongylocentrotus Franciscanus and Lytechinus Anamesus) on Recruitment and Survival of Two Species of Kelp (Macrocystis Pyrifera and Pterygophora Californica). Mar. Biol. 1984, 78, 301–313. [Google Scholar] [CrossRef]
- Estes, J.A.; Duggins, D.O. Sea Otters and Kelp Forests in Alaska: Generality and Variation in a Community Ecological Paradigm. Ecol. Monogr. 1995, 65, 75–100. [Google Scholar] [CrossRef] [Green Version]
- Burt, J.M.; Tinker, M.T.; Okamoto, D.K.; Demes, K.W.; Holmes, K.; Salomon, A.K. Sudden Collapse of a Mesopredator Reveals Its Complementary Role in Mediating Rocky Reef Regime Shifts. Proc. R. Soc. B 2018, 285, 20180553. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dayton, P.K.; Tegner, M.J.; Edwards, P.B.; Riser, K.L. Temporal and Spatial Scales of Kelp Demography: The Role of Oceanographic Climate. Ecol. Monogr. 1999, 69, 219–250. [Google Scholar] [CrossRef]
- Cavanaugh, K.; Siegel, D.; Reed, D.; Dennison, P. Environmental Controls of Giant-Kelp Biomass in the Santa Barbara Channel, California. Mar. Ecol. Prog. Ser. 2011, 429, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Bell, T.W.; Allen, J.G.; Cavanaugh, K.C.; Siegel, D.A. Three Decades of Variability in California’s Giant Kelp Forests from the Landsat Satellites. Remote Sens. Environ. 2020, 238, 110811. [Google Scholar] [CrossRef]
- Cameron, F.K. Potash from Kelp; U.S. Government Printing Office: Washington, DC, USA, 1915. [Google Scholar]
- Druehl, L.D. The Pattern of Laminariales Distribution in the Northeast Pacific. Phycologia 1970, 9, 237–247. [Google Scholar] [CrossRef]
- Sutherland, I.R.; Karpouzi, V.; Mamoser, M.; Carswell, B. Kelp Inventory, 2007: Areas of the British Columbia Central Coast from Hakai Passage to the Bardswell Group; Oceans and Marine Fisheries Branch, Ministry of Environment, Fisheries and Oceans Canada, Ministry of Agriculture and Lands and Heiltsuk Tribal Council: Victoria, BC, Canada, 2008. [Google Scholar]
- Yesson, C.; Bush, L.E.; Davies, A.J.; Maggs, C.A.; Brodie, J. The Distribution and Environmental Requirements of Large Brown Seaweeds in the British Isles. J. Mar. Biol. Assoc. UK 2015, 95, 669–680. [Google Scholar] [CrossRef]
- Schroeder, S.B.; Dupont, C.; Boyer, L.; Juanes, F.; Costa, M. Passive Remote Sensing Technology for Mapping Bull Kelp (Nereocystis luetkeana): A Review of Techniques and Regional Case Study. Glob. Ecol. Conserv. 2019, 19, e00683. [Google Scholar] [CrossRef]
- DFO. Report on the Progress of Recovery Strategy Implementation for Northern Abalone (Haliotis Kamtschatkana) in Pacific Canadian Waters for the Period 2007–2012; Species at Risk Act Recovery Strategy Report Series; Fisheries and Oceans Canada: Ottawa, ON, Canada, 2015; p. 28. [Google Scholar]
- Marine Planning Partnership Initiative. Haida Gwaii Marine Plan; Marine Planning Partnership Initiative: Haida Gwaii, BC, Canada, 2015; ISBN 978-0-7726-6885-1. [Google Scholar]
- Reed, D.C.; Kinlan, B.P.; Raimondi, P.T.; Washburn, L.; Gaylord, B.; Drake, P.T. CHAPTER 10-A Metapopulation Perspective on the Patch Dynamics of Giant Kelp in Southern California. In Marine Metapopulations; Kritzer, J.P., Sale, P.F., Eds.; Academic Press: Burlington, NJ, USA, 2006; pp. 353–386. ISBN 978-0-12-088781-1. [Google Scholar]
- Blakley, B.B.; Chalmers, W.T. Masset Kelp Inventory; Department of Environment, Fisheries Operations, Province of British Columbia: Vancouver, BC, Canada, 1973. [Google Scholar]
- Field, E.J.; Coon, L.M.; Clayton, W.E.L.; Clark, E.A.C. Kelp Inventory, 1976, Part 1. The Estevan Group and Campania Island; Marine Resources Branch, Ministry of Environment, Province of British Columbia: Victoria, BC, Canada, 1977. [Google Scholar]
- Coon, L.M.; Roland, W.; Sutherland, I.R.; Hall, R. Kelp Inventory 1978 NorthWest Coast of Vancouver Island; Marine Resources Branch, Ministry of Environment, Province of British Columbia: Victoria, BC, Canada, 1978. [Google Scholar]
- Coon, L.M.; Roland, W.; Field, E.J.; Clayton, W.E.L. Kelp Inventory 1976. Part 3. North & West Coasts Graham Island (Q.C.I); Marine Resources Branch, Ministry of Environment, Province of British Columbia: Victoria, BC, Canada, 1979. [Google Scholar]
- Field, E.J.; Clark, E.A.C. Kelp Inventory, 1976, Part 2. The Dundas Group; Marine Resources Branch, Ministry of Environment, Province of British Columbia: Victoria, BC, Canada, 1978. [Google Scholar]
- Sutherland, I.R. Kelp Inventory, 1989, The Vancouver Island and Malcolm Island Shores of Queen Charlotte Strait; Fisheries Development Report; Aquaculture and Commercial Fisheries Branch, Ministry of Agriculture and Fisheries Province of British Columbia: Victoria, BC, Canada, 1990. [Google Scholar]
- Sutherland, I.R. Kelp Inventory, 1996 Porcher Island, Groschen Island, Banks Island, and the Estevan Group; Fisheries Development Report; Aquaculture and Commercial Fisheries Branch, Ministry of Agriculture, Fisheries and Food, Province of British Columbia: Victoria, BC, Canada, 1998. [Google Scholar]
- Sutherland, I.R. Kelp Inventory, 1995 Nootka Sound; Fisheries Management Report; Sustainable Economic Development Branch, Ministry of Fisheries, Province of British Columbia: Victoria, BC, Canada, 1999. [Google Scholar]
- Watson, J.; Estes, J.A. Stability, Resilience, and Phase Shifts in Rocky Subtidal Communities along the West Coast of Vancouver Island, Canada. Ecol. Monogr. 2011, 81, 215–239. [Google Scholar] [CrossRef]
- Schroeder, S.B.; Boyer, L.; Juanes, F.; Costa, M. Spatial and Temporal Persistence of Nearshore Kelp Beds on the West Coast of British Columbia, Canada Using Satellite Remote Sensing. Remote Sens. Ecol. Conserv. 2019, 32, e2673. [Google Scholar] [CrossRef] [Green Version]
- Starko, S.; Bailey, L.A.; Creviston, E.; James, K.A.; Warren, A.; Brophyid, M.K.; Danasel, A.; Fass, M.; Townsend, J.A.; Neufeld, C. Environmental Heterogeneity Mediates Scale- Dependent Declines in Kelp Diversity on Intertidal Rocky Shores. PLoS ONE 2019, 14, e0213191. [Google Scholar] [CrossRef]
- Starko, S.; Neufeld, C.J.; Gendall, L.; Timmer, B.; Campbell, L.; Yakimishyn, J.; Druehl, L.; Baum, J.K. Microclimate Predicts Kelp Forest Extinction in the Face of Direct and Indirect Marine Heatwave Effects. Ecol. Appl. 2022, 32, e2673. [Google Scholar] [CrossRef]
- North, W.J.; James, D.E.; Jones, L.G. History of Kelp Beds (Macrocystis) in Orange and San Diego Counties, California. Hydrobiologia 1993, 260, 277–283. [Google Scholar] [CrossRef]
- Parnell, P.E.; Miller, E.F.; Cody, C.E.L.; Dayton, P.K.; Carter, M.L.; Stebbinsd, T.D. The Response of Giant Kelp (Macrocystis pyrifera) in Southern California to Low-Frequency Climate Forcing. Limnol. Oceanogr. 2010, 55, 2686–2702. [Google Scholar] [CrossRef] [Green Version]
- Pfister, C.A.; Berry, H.D.; Mumford, T. The Dynamics of Kelp Forests in the Northeast Pacific Ocean and the Relationship with Environmental Drivers. J. Ecol. 2018, 106, 1520–1533. [Google Scholar] [CrossRef]
- Jensen, J.R. Remote Sensing Techniques for Kelp Surveys. Photogramm. Eng. 1980, 13, 743–755. [Google Scholar]
- Britton-Simmons, K.; Eckman, J.; Duggins, D. Effect of Tidal Currents and Tidal Stage on Estimates of Bed Size in the Kelp Nereocystis luetkeana. Mar. Ecol. Prog. Ser. 2008, 355, 95–105. [Google Scholar] [CrossRef] [Green Version]
- Nijland, W.; Reshitnyk, L.; Rubidge, E. Satellite Remote Sensing of Canopy-Forming Kelp on a Complex Coastline: A Novel Procedure Using the Landsat Image Archive. Remote Sens. Environ. 2019, 220, 41–50. [Google Scholar] [CrossRef]
- Cavanaugh, K.C.; Bell, T.; Costa, M.; Eddy, N.E.; Gendall, L.; Gleason, M.G.; Hessing-Lewis, M.; Martone, R.; McPherson, M.; Pontier, O.; et al. A Review of the Opportunities and Challenges for Using Remote Sensing for Management of Surface-Canopy Forming Kelps. Front. Mar. Sci. 2021, 8, 1536. [Google Scholar] [CrossRef]
- Augenstein, E.; Stow, D.; Hope, A. Evaluation of Spot Hrv-Xs Data for Kelp Resource Inventories. Photogramm. Eng. Remote Sens. 1991, 57, 501–509. [Google Scholar]
- Deysher, L.E. Evaluation of Remote Sensing Techniques for Monitoring Giant Kelp Populations. Hydrobiologia 1993, 260, 307–312. [Google Scholar] [CrossRef]
- Cavanaugh, K.; Siegel, D.; Kinlan, B.; Reed, D. Scaling Giant Kelp Field Measurements to Regional Scales Using Satellite Observations. Mar. Ecol. Prog. Ser. 2010, 403, 13–27. [Google Scholar] [CrossRef] [Green Version]
- Anderson, R.; Rand, A.; Rothman, M.; Share, A.; Bolton, J. Mapping and Quantifying the South African Kelp Resource. Afr. J. Mar. Sci. 2007, 29, 369–378. [Google Scholar] [CrossRef]
- Hamilton, S.L.; Bell, T.W.; Watson, J.R.; Grorud-Colvert, K.A.; Menge, B.A. Remote Sensing: Generation of Long-Term Kelp Bed Data Sets for Evaluation of Impacts of Climatic Variation. Ecology 2020, 101, e03031. [Google Scholar] [CrossRef]
- Houskeeper, H.F.; Rosenthal, I.S.; Cavanaugh, K.C.; Pawlak, C.; Trouille, L.; Byrnes, J.E.K.; Bell, T.W.; Cavanaugh, K.C. Automated Satellite Remote Sensing of Giant Kelp at the Falkland Islands (Islas Malvinas). PLoS ONE 2022, 17, e0257933. [Google Scholar] [CrossRef]
- Gendall, L. Drivers of Change in Haida Gwaii Kelp Forests: Combining Satellite Imagery with Historical Data to Understand Spatial and Temporal Variability. Master’s Dissertation, University of Victoria, Victoria, BC, Canada, 2022. [Google Scholar]
- Haida Nation v. British Columbia (Minister of Forests); 2004; Report 3 S.C.R. 511. Available online: https://scc-csc.lexum.com/scc-csc/scc-csc/en/item/2189/index.do (accessed on 1 November 2022).
- Sloan, N.A.; Bartier, P.M. Living Marine Legacy of Gwaii Haanas. I: Marine Plant Baseline to 1999 and Plant-Related Management Issues; Parks Canada: Gatineau, QC, Canada, 2000; p. 114. [Google Scholar]
- Sloan, N.A.; Dick, L. Sea Otters, Aquapelagos & Ecosystem Services. Shima Int. J. Res. Into Isl. Cult. 2015, 9, 7. [Google Scholar]
- Dayton, P.K. Ecology of Kelp Communities. Annu. Rev. Ecol. Syst. 1985, 16, 215–245. [Google Scholar] [CrossRef]
- Springer, Y.; Hays, C.; Carr, M.; Mackey, M.M. Ecology and Management of Bull Kelp (Harvest), Nereocystis Luetkeana: A Synthesis with Recommendations for Future Research; Lenfest Ocean Program: Santa Cruz, CA, USA, 2007. [Google Scholar]
- Haida Marine Traditional Knowledge Study Participants; Council of the Haida Nation; Haida Oceans Technical Team; Winbourne, J. Haida Marine Traditional Knowledge Volume II; Council of the Haida Nation: Skidegate, BC, Canada, 2011. [Google Scholar]
- Stekoll, M.S.; Deysher, L.E.; Hess, M. A Remote Sensing Approach to Estimating Harvestable Kelp Biomass. J. Appl. Phycol. 2006, 18, 323–334. [Google Scholar] [CrossRef]
- Bell, T.W.; Cavanaugh, K.C.; Siegel, D.A. Remote Monitoring of Giant Kelp Biomass and Physiological Condition: An Evaluation of the Potential for the Hyperspectral Infrared Imager (HyspIRI) Mission. Remote Sens. Environ. 2015, 167, 218–228. [Google Scholar] [CrossRef]
- Cavanaugh, K.C.; Kendall, B.E.; Siegel, D.A.; Reed, D.C.; Alberto, F.; Assis, J. Synchrony in Dynamics of Giant Kelp Forests Is Driven by Both Local Recruitment and Regional Environmental Controls. Ecology 2013, 94, 499–509. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reed, D.C.; Rassweiler, A.; Carr, M.H.; Cavanaugh, K.C.; Malone, D.P.; Siegel, D.A. Wave Disturbance Overwhelms Top-down and Bottom-up Control of Primary Production in California Kelp Forests. Ecology 2011, 92, 2108–2116. [Google Scholar] [CrossRef] [PubMed]
- Mora-Soto, A.; Palacios, M.; Macaya, E.C.; Gómez, I.; Huovinen, P.; Pérez-Matus, A.; Young, M.; Golding, N.; Toro, M.; Yaqub, M.; et al. A High-Resolution Global Map of Giant Kelp (Macrocystis pyrifera) Forests and Intertidal Green Algae (Ulvophyceae) with Sentinel-2 Imagery. Remote Sens. 2020, 12, 694. [Google Scholar] [CrossRef] [Green Version]
- Casal, G.; Sánchez-Rodríguez, E.; Freire, J. Remote Sensing with SPOT-4 for Mapping Kelp Forests in Turbid Waters on the South European Atlantic Shelf. Estuar. Coast. Shelf Sci. 2011, 91, 371–378. [Google Scholar] [CrossRef]
- Ayoub, F.; Leprince, S.; Binet, R.; Lewis, K.W.; Aharonson, O.; Avouac, J.-P. Influence of Camera Distortions on Satellite Image Registration and Change Detection Applications. In Proceedings of the IGARSS 2008—2008 IEEE International Geoscience and Remote Sensing Symposium, Boston, MA, USA, 7–11 July 2008; Volume 2, pp. II-1072–II-1075. [Google Scholar]
- Chang, K.-T. Introduction to Geographic Information Systems, 5th ed.; McGraw-Hill Higher Education: New York, NY, USA, 2009. [Google Scholar]
- Matthew, M.W.; Adler-Golden, S.M.; Berk, A.; Richtsmeier, S.C.; Levine, R.Y.; Bernstein, L.S.; Acharya, P.K.; Anderson, G.P.; Felde, G.W.; Hoke, M.L.; et al. Status of Atmospheric Correction Using a MODTRAN4-Based Algorithm. In Proceedings of the Algorithms for Multispectral, Hyperspectral, and Ultraspectral Imagery VI, Orlando, FL, USA, 23 August 2000; International Society for Optics and Photonics. Volume 4049, pp. 199–207. [Google Scholar]
- Lin, C.; Wu, C.-C.; Tsogt, K.; Ouyang, Y.-C.; Chang, C.-I. Effects of Atmospheric Correction and Pansharpening on LULC Classification Accuracy Using WorldView-2 Imagery. Inf. Process. Agric. 2015, 2, 25–36. [Google Scholar] [CrossRef] [Green Version]
- Chavez, P.S. An Improved Dark-Object Subtraction Technique for Atmospheric Scattering Correction of Multispectral Data. Remote Sens. Environ. 1988, 24, 459–479. [Google Scholar] [CrossRef]
- Sawaya, K. Extending Satellite Remote Sensing to Local Scales: Land and Water Resource Monitoring Using High-Resolution Imagery. Remote Sens. Environ. 2003, 88, 144–156. [Google Scholar] [CrossRef]
- Wolter, P.T.; Johnston, C.A.; Niemi, G.J. Mapping Submergent Aquatic Vegetation in the US Great Lakes Using QuickBird Satellite Data. Int. J. Remote Sens. 2005, 26, 5255–5274. [Google Scholar] [CrossRef]
- Druehl, L.D. The Distribution of Macrocystis Integrifolia in British Columbia as Related to Environmental Parameters. Can. J. Bot. 1978, 56, 69–79. [Google Scholar] [CrossRef]
- Mumford, T.F. Kelp and Eelgrass in Puget Sound; Washington State Department of Natural Resources: Fort Belvoir, VA, USA, 2007. [Google Scholar]
- Davies, S.C.; Gregr, E.J.; Lessard, J.; Bartier, P.; Wills, P. Coastal Digital Elevation Models Integrating Ocean Bathymetry and Land Topography for Marine Ecological Analyses in Pacific Canadian Waters; Fisheries and Oceans Canada: Ottawa, ON, Canada, 2019; p. 38. ISBN 978-0-660-31492-1. [Google Scholar]
- Gregr, E.J.; Lessard, J.; Harper, J. A Spatial Framework for Representing Nearshore Ecosystems. Prog. Oceanogr. 2013, 115, 189–201. [Google Scholar] [CrossRef]
- British Columbia Marine Conservation Analysis. Marine Atlas of Pacific Canada: A product of the British Columbia Marine Conservation Analysis (BCMCA); British Columbia Marine Conservation Analysis: Vancouver, BC, Canada, 2011; ISBN 978-0-9867511-0-3. [Google Scholar]
- Tucker, C.J. Red and Photographic Infrared Linear Combinations for Monitoring Vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef] [Green Version]
- Kaufman, Y.J.; Remer, L.A. Detection of Forests Using Mid-IR Reflectance: An Application for Aerosol Studies. IEEE Trans. Geosci. Remote Sens. 1994, 32, 672–683. [Google Scholar] [CrossRef]
- O’Neill, J.D.; Costa, M.; Sharma, T. Remote Sensing of Shallow Coastal Benthic Substrates: In Situ Spectra and Mapping of Eelgrass (Zostera Marina) in the Gulf Islands National Park Reserve of Canada. Remote Sens. 2011, 3, 975–1005. [Google Scholar] [CrossRef] [Green Version]
- Whiteside, T.G.; Boggs, G.S.; Maier, S.W. Comparing Object-Based and Pixel-Based Classifications for Mapping Savannas. Int. J. Appl. Earth Obs. Geoinf. 2011, 13, 884–893. [Google Scholar] [CrossRef]
- Weih, R.C.; Riggan, N.D. Object-Based Classification vs. Pixel-Based Classification: Comparitive Importance of Multi-Resolution Imagery. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2010, 38, C7. [Google Scholar]
- Gao, Y.; Mas, J.F. A Comparison of the Performance of Pixel-Based and Object-Based Classifications over Images with Various Spatial Resolutions. Online J. Earth Sci. 2008, 2, 27–35. [Google Scholar]
- Kamal, M.; Phinn, S. Hyperspectral Data for Mangrove Species Mapping: A Comparison of Pixel-Based and Object-Based Approach. Remote Sens. 2011, 3, 2222–2242. [Google Scholar] [CrossRef] [Green Version]
- Berry, B. Quantifying Impacts of Spatial Resolution on Pixel and Object-Based Methods of Image Classification. Bachelor’s Dissertation, Dalhousie University, Halifax, NS, Canada, 2020. [Google Scholar]
- Blaschke, T. Object Based Image Analysis for Remote Sensing. ISPRS J. Photogramm. Remote Sens. 2010, 65, 2–16. [Google Scholar] [CrossRef] [Green Version]
- Gupta, N.; Bhaudauria, H.S. Object Based Information Extraction from High Resolution Satellite Imagery Using ECognition-ProQuest. Int. J. Comput. Sci. Issues 2014, 11, 139–144. [Google Scholar]
- Olivero, J.; Ferri, F.; Acevedo, P.; Lobo, J.M.; Fa, J.E.; Farfán, M.Á.; Romero, D.; Amazonian Communities of Cascaradura, Niñal, Curimacare, Chapazón, Solano and Guzmán Blanco; Real, R. Using Indigenous Knowledge to Link Hyper-Temporal Land Cover Mapping with Land Use in the Venezuelan Amazon: “The Forest Pulse”. Rev. Biol. Trop. 2016, 64, 1661–1682. [Google Scholar] [CrossRef] [Green Version]
- Boldt, J.L. State of the Physical, Biological and Selected Fishery Resources of Pacific Canadian Marine Ecosystems in 2019; Department of Fisheries and Oceans: Ottawa, ON, Canada, 2020; ISBN 978-0-660-34961-9. [Google Scholar]
- Congalton, R.G. A Review of Assessing the Accuracy of Classifications of Remotely Sensed Data. Remote Sens. Environ. 1991, 37, 35–46. [Google Scholar] [CrossRef]
- Nelson, M.D.; McRoberts, R.E.; Holden, G.R.; Bauer, M.E. Effects of Satellite Image Spatial Aggregation and Resolution on Estimates of Forest Land Area. Int. J. Remote Sens. 2009, 30, 1913–1940. [Google Scholar] [CrossRef]
- Tian, J.; Zhu, X.; Wu, J.; Shen, M.; Chen, J. Coarse-Resolution Satellite Images Overestimate Urbanization Effects on Vegetation Spring Phenology. Remote Sens. 2020, 12, 117. [Google Scholar] [CrossRef] [Green Version]
- Titus, J.; Geroge, S. A Comparison Study on Different Interpolation Methods Based on Satellite Images. Int. J. Eng. Res. 2013, 2, 4. [Google Scholar]
- Berry, H.D.; Sewell, A.T.; Wyllie-Echeverria, S.; Reeves, B.R.; Mumford, T.F.; Skalski, J.R.; Zimmerman, R.C.; Archer, J. Puget Sound Submerged Vegetation Monitoring Project: 2000–2002 Monitoring Report; Department of Natural Resources: Olympia, WA, USA, 2003; p. 170. [Google Scholar]
- Gregr, E.J.; Palacios, D.M.; Thompson, A.; Chan, K.M.A. Why Less Complexity Produces Better Forecasts: An Independent Data Evaluation of Kelp Habitat Models. Ecography 2019, 42, 428–443. [Google Scholar] [CrossRef]
- Markham, B.L.; Storey, J.C.; Williams, D.L.; Irons, J.R. Landsat Sensor Performance: History and Current Status. IEEE Trans. Geosci. Remote Sens. 2004, 42, 2691–2694. [Google Scholar] [CrossRef]
- Thomson, R.E. Oceanography of the British Columbia Coast; Canadian Special Publication of Fisheries and Aquatic Sciences; Department of Fisheries and Oceans: Ottawa, ON, Canada, 1981; ISBN 978-0-660-10978-7. [Google Scholar]
- Finger, D.J.I.; McPherson, M.L.; Houskeeper, H.F.; Kudela, R.M. Mapping Bull Kelp Canopy in Northern California Using Landsat to Enable Long-Term Monitoring. Remote Sens. Environ. 2021, 254, 112243. [Google Scholar] [CrossRef]
- Alavipanah, S.K.; Matinfar, H.R.; Emam, A.R.; Khodaei, K.; Bagheri, R.H.; Panah, Y. Criteria of Selecting Satellite Data for Studying Land Resources. Desert 2010, 15, 83–102. [Google Scholar]
- Nahirnick, N.K.; Reshitnyk, L.; Campbell, M.; Hessing-Lewis, M.; Costa, M.; Yakimishyn, J.; Lee, L. Mapping with Confidence; Delineating Seagrass Habitats Using Unoccupied Aerial Systems (UAS). Remote Sens. Ecol. Conserv. 2019, 5, 121–135. [Google Scholar] [CrossRef]
- Cavanaugh, K.C.; Cavanaugh, K.C.; Bell, T.W.; Hockridge, E.G. An Automated Method for Mapping Giant Kelp Canopy Dynamics from UAV. Front. Environ. Sci. 2021, 8, 587354. [Google Scholar] [CrossRef]
- Timmer, B.D. The Effects of Kelp Canopy Submersion on the Remote Sensing of Surface-Canopy Forming Kelps. Master’s Dissertation, University of Victoria, Victoria, BC, Canada, 2022. [Google Scholar]
- Young, N.E.; Anderson, R.S.; Chignell, S.M.; Vorster, A.G.; Lawrence, R.; Evangelista, P.H. A Survival Guide to Landsat Preprocessing. Ecology 2017, 98, 920–932. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bannari, A.; Morin, D.; Bénié, G.B.; Bonn, F.J. A Theoretical Review of Different Mathematical Models of Geometric Corrections Applied to Remote Sensing Images. Remote Sens. Rev. 1995, 13, 27–47. [Google Scholar] [CrossRef]
- Cooley, T.; Anderson, G.P.; Felde, G.W.; Hoke, M.L.; Ratkowski, A.J.; Chetwynd, J.H.; Gardner, J.A.; Adler-Golden, S.M.; Matthew, M.W.; Berk, A.; et al. FLAASH, a MODTRAN4-Based Atmospheric Correction Algorithm, Its Application and Validation. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Toronto, ON, Canada, 24–28 June 2002; Volume 3, pp. 1414–1418. [Google Scholar]
- Pflug, B.; Main-Knorn, M. Validation of Atmospheric Correction Algorithm ATCOR; Comerón, A., Kassianov, E.I., Schäfer, K., Picard, R.H., Stein, K., Gonglewski, J.D., Eds.; SPIE: Amsterdam, The Netherlands, 2014; p. 92420W. [Google Scholar]
- Camacho, M. Depth Analysis of Midway Atoll Using QuickBird Multi-Spectral Imaging Over Variable Substrates. Master’s Dissertation, Naval Postgraduate School, Monterey, CA, USA, 2006. [Google Scholar]
- Yang, M.; Hu, Y.; Tian, H.; Khan, F.A.; Liu, Q.; Goes, J.I.; Gomes, H.d.R.; Kim, W. Atmospheric Correction of Airborne Hyperspectral CASI Data Using Polymer, 6S and FLAASH. Remote Sens. 2021, 13, 5062. [Google Scholar] [CrossRef]
- Richter, R.; Schlapfer, D. Atmospheric and Topographic Correction (ATCOR Theoretical Background Document); German Aerospace Centre: Wessling, Gemany, 2019; p. 142. [Google Scholar]
- Zhu, Z. Science of Landsat Analysis Ready Data. Remote Sens. 2019, 11, 2166. [Google Scholar] [CrossRef] [Green Version]
- Frazier, A.E.; Hemingway, B.L. A Technical Review of Planet Smallsat Data: Practical Considerations for Processing and Using PlanetScope Imagery. Remote Sens. 2021, 13, 3930. [Google Scholar] [CrossRef]
- Tarpley, J.D.; Schneider, S.R.; Money, R.L. Global Vegetation Indices from the NOAA-7 Meteorological Satellite. J. Clim. Appl. Meteor. 1984, 23, 491–494. [Google Scholar] [CrossRef]
- Dierssen, H.M.; Chlus, A.; Russell, B. Hyperspectral Discrimination of Floating Mats of Seagrass Wrack and the Macroalgae Sargassum in Coastal Waters of Greater Florida Bay Using Airborne Remote Sensing. Remote Sens. Environ. 2015, 167, 247–258. [Google Scholar] [CrossRef]
- Timmer, B.; Reshitnyk, L.Y.; Hessing-Lewis, M.; Juanes, F.; Costa, M. Comparing the Use of Red-Edge and Near-Infrared Wavelength Ranges for Detecting Submerged Kelp Canopy. Remote Sens. 2022, 14, 2241. [Google Scholar] [CrossRef]
- Friedlander, A.M.; Ballesteros, E.; Bell, T.W.; Caselle, J.E.; Campagna, C.; Goodell, W.; Hüne, M.; Muñoz, A.; Salinas-de-León, P.; Sala, E.; et al. Kelp Forests at the End of the Earth: 45 Years Later. PLoS ONE 2020, 15, e0229259. [Google Scholar] [CrossRef] [Green Version]
- McPherson, M.L.; Finger, D.J.I.; Houskeeper, H.F.; Bell, T.W.; Carr, M.H.; Rogers-Bennett, L.; Kudela, R.M. Large-Scale Shift in the Structure of a Kelp Forest Ecosystem Co-Occurs with an Epizootic and Marine Heatwave. Commun. Biol. 2021, 4, 298. [Google Scholar] [CrossRef] [PubMed]
- Baraldi, A.; Boschetti, L. Operational Automatic Remote Sensing Image Understanding Systems: Beyond Geographic Object-Based and Object-Oriented Image Analysis (GEOBIA/GEOOIA). Part 1: Introduction. Remote Sens. 2012, 4, 2694–2735. [Google Scholar] [CrossRef] [Green Version]
- Evans, T.L.; Costa, M.; Tomas, W.; Camilo, A.R. A SAR Fine and Medium Spatial Resolution Approach for Mapping the Brazilian Pantanal. Geografia 2013, 38, 19. [Google Scholar]
- Uhl, F.; Bartsch, I.; Oppelt, N. Submerged Kelp Detection with Hyperspectral Data. Remote Sens. 2016, 8, 487. [Google Scholar] [CrossRef] [Green Version]
- St-Pierre, A.P.; Gagnon, P. Kelp-Bed Dynamics across Scales: Enhancing Mapping Capability with Remote Sensing and GIS. J. Exp. Mar. Biol. Ecol. 2020, 522, 151246. [Google Scholar] [CrossRef]
- Rowan, G.S.L.; Kalacska, M. A Review of Remote Sensing of Submerged Aquatic Vegetation for Non-Specialists. Remote Sens. 2021, 13, 623. [Google Scholar] [CrossRef]
- Trishchenko, A.P.; Cihlar, J.; Li, Z. Effects of Spectral Response Function on Surface Reflectance and NDVI Measured with Moderate Resolution Satellite Sensors. Remote Sens. Environ. 2002, 81, 1–18. [Google Scholar] [CrossRef]
- Teillet, P.M.; Ren, X. Spectral Band Difference Effects on Vegetation Indices Derived from Multiple Satellite Sensor Data. Can. J. Remote Sens 2008, 34, 16. [Google Scholar]
- Berry, H.D.; Mumford, T.F.; Christiaen, B.; Dowty, P.; Calloway, M.; Ferrier, L.; Grossman, E.E.; VanArendonk, N.R. Long-Term Changes in Kelp Forests in an Inner Basin of the Salish Sea. PLoS ONE 2021, 16, e0229703. [Google Scholar] [CrossRef] [PubMed]
- Rogers-Bennett, L.; Catton, C.A. Marine Heat Wave and Multiple Stressors Tip Bull Kelp Forest to Sea Urchin Barrens. Sci. Rep. 2019, 9, 15050. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tanaka, K.; Taino, S.; Haraguchi, H.; Prendergast, G.; Hiraoka, M. Warming off Southwestern Japan Linked to Distributional Shifts of Subtidal Canopy-Forming Seaweeds. Ecol. Evol. 2012, 2, 2854–2865. [Google Scholar] [CrossRef] [PubMed]
- Kumagai, N.H.; García Molinos, J.; Yamano, H.; Takao, S.; Fujii, M.; Yamanaka, Y. Ocean Currents and Herbivory Drive Macroalgae-to-Coral Community Shift under Climate Warming. Proc. Natl. Acad. Sci. USA 2018, 115, 8990–8995. [Google Scholar] [CrossRef] [Green Version]
- Johnson, C.R.; Banks, S.C.; Barrett, N.S.; Cazassus, F.; Dunstan, P.K.; Edgar, G.J.; Frusher, S.D.; Gardner, C.; Haddon, M.; Helidoniotis, F.; et al. Climate Change Cascades: Shifts in Oceanography, Species’ Ranges and Subtidal Marine Community Dynamics in Eastern Tasmania. J. Exp. Mar. Biol. Ecol. 2011, 400, 17–32. [Google Scholar] [CrossRef]
- Vergés, A.; Doropoulos, C.; Malcolm, H.A.; Skye, M.; Garcia-Pizá, M.; Marzinelli, E.M.; Campbell, A.H.; Ballesteros, E.; Hoey, A.S.; Vila-Concejo, A.; et al. Long-Term Empirical Evidence of Ocean Warming Leading to Tropicalization of Fish Communities, Increased Herbivory, and Loss of Kelp. Proc. Natl. Acad. Sci. USA 2016, 113, 13791–13796. [Google Scholar] [CrossRef] [Green Version]
- Carnell, P.E.; Keough, M.J. Reconstructing Historical Marine Populations Reveals Major Decline of a Kelp Forest Ecosystem in Australia. Estuaries Coasts 2019, 42, 765–778. [Google Scholar] [CrossRef]
- Layton, C.; Coleman, M.A.; Marzinelli, E.M.; Steinberg, P.D.; Swearer, S.E.; Vergés, A.; Wernberg, T.; Johnson, C.R. Kelp Forest Restoration in Australia. Front. Mar. Sci. 2020, 7, 74. [Google Scholar] [CrossRef] [Green Version]
- Coleman, M.A.; Reddy, M.; Nimbs, M.J.; Marshell, A.; Al-Ghassani, S.A.; Bolton, J.J.; Jupp, B.P.; De Clerck, O.; Leliaert, F.; Champion, C.; et al. Loss of a Globally Unique Kelp Forest from Oman. Sci. Rep. 2022, 12, 5020. [Google Scholar] [CrossRef]
- Rinde, E.; Christie, H.; Fagerli, C.W.; Bekkby, T.; Gundersen, H.; Norderhaug, K.M.; Hjermann, D.Ø. The Influence of Physical Factors on Kelp and Sea Urchin Distribution in Previously and Still Grazed Areas in the NE Atlantic. PLoS ONE 2014, 9, e100222. [Google Scholar] [CrossRef] [Green Version]
- Piñeiro-Corbeira, C.; Barreiro, R.; Cremades, J. Decadal Changes in the Distribution of Common Intertidal Seaweeds in Galicia (NW Iberia). Mar. Environ. Res. 2016, 113, 106–115. [Google Scholar] [CrossRef] [PubMed]
- Casado-Amezúa, P.; Araújo, R.; Bárbara, I.; Bermejo, R.; Borja, Á.; Díez, I.; Fernández, C.; Gorostiaga, J.M.; Guinda, X.; Hernández, I.; et al. Distributional Shifts of Canopy-Forming Seaweeds from the Atlantic Coast of Southern Europe. Biodivers Conserv. 2019, 28, 1151–1172. [Google Scholar] [CrossRef]
- Vega, J.M.A.; Broitman, B.R.; Vásquez, J.A. Monitoring the Sustainability of Lessonia Nigrescens (Laminariales, Phaeophyceae) in Northern Chile under Strong Harvest Pressure. J. Appl. Phycol. 2014, 26, 791–801. [Google Scholar] [CrossRef]
Sensor | Dates | Ground Resolution | Swath | Revisit | Bands and Wavelengths (NM) | Atmospheric Correction | Band Inputs | Source of Imagery | Sources for Indices |
---|---|---|---|---|---|---|---|---|---|
Landsat Series | LS-8 | 30 m multispectral | 170 km | 16 days | Blue 450–520 | Surface reflectance ready product | NDVI | Freely Available from United States Geological Survey (USGS) | [13,19,20,46,53,62,63,64] |
2013–present | 15 m panchromatic | Green 540–600 | Green, | ||||||
Red 630–690 | Red, | ||||||||
NIR 770–900 | NIR | ||||||||
SWIR 1550–1750 | |||||||||
SWIR II 2110–2290 | |||||||||
Pan 520–680 | |||||||||
LS-4–7 | |||||||||
1984–present | 30 m multispectral | 170 km | 16 days | Blue 450–520 | |||||
15 m panchromatic | Green 520–600 | ||||||||
Red 630–690 | |||||||||
NIR 770–900 | |||||||||
NIR 1550–1750 | |||||||||
MIR 2080–23500 | |||||||||
LS-1–3 | Pan 520–900 | ||||||||
1972–1983 | |||||||||
60 m multispectral | 170 km | 18 days | Green 500–600 | Rayleigh correction | NDVI | ||||
(Resampled from 80 m) | Red 600–700 | Green, | |||||||
NIR 700–800 | Red, | ||||||||
NIR 800–1100 | NIR | ||||||||
Sentinel–2 | 2015–present | 60 m–10 m multispectral | 290 km | 5 days | Coastal 443–463 | Surface reflectance ready product from SNAP Sen2Cor processor | NDVI | Freely Available from United States Geological Survey (USGS) | [65] |
Blue 490–555 | Green, | ||||||||
Green 560–595 | Red, | ||||||||
Red 665–695 | NIR | ||||||||
Red Edge I 705–720 | |||||||||
Red Edge II 740–755 | |||||||||
Red Edge 1 783–803 | |||||||||
NIR1 842–957 | |||||||||
NIR2 865–885 | |||||||||
SWIR 1380–1410 | |||||||||
SWIR I 1910–2000 | |||||||||
SWIR II 2190–2370 | |||||||||
Spot Series | SPOT 4 | 20 m multispectral | 60–80 km | 5 days | Green: 500–590 | Rayleigh correction | NDVI | Data sharing available to researchers through the Centre National d’Études Spatiales (CNES) | [50,65,66] |
1989–2013 | 10 m panchromatic | Red: 610–680 | Green, | ||||||
Near IR: 790–890 | Red, | ||||||||
SWIR 1530–1750 | NIR | ||||||||
Pan 610–680 | |||||||||
SPOT 5 | |||||||||
2002–present | 10 m multispectral | 2–3 days | Green: 500–590 | ||||||
5 m panchromatic | Red: 610–680 | ||||||||
Near IR: 780–890 | |||||||||
SPOT 6–7 | SWIR 1580–1750 | ||||||||
2012–present | Pan 480–710 | ||||||||
6 m multispectral | 1–3 days | Purchased through Apollo Mapping with academic discount | |||||||
1.5 m Panchromatic | Blue 450–520 | ||||||||
Green 530–590 | |||||||||
Red 625–695 | |||||||||
NIR 760–890 | |||||||||
Pan 450–745 | |||||||||
Geoeye–1 | 2008–present | 1.84 m multispectral | 15.2 km | 2.6 days | Blue 450–510 | Rayleigh correction | G–NDVI | Private data Sharing agreement | Determined using m–statistic |
0.46 m panchromatic | Green 510–580 | Green, | |||||||
Red 630–690 | Red, | ||||||||
NIR 780–920 | NIR | ||||||||
Pan 450–800 | |||||||||
QuickBird–2 | 2001–2015 | 2.62 m multispectral | 15.2 km | 2–3 days | Blue 450–520 | Rayleigh correction | G–NDVI | Private data sharing agreement | Determined using m-statistic |
0.65 panchromatic | Green 520–600 | Green, | |||||||
Red 630–690 | Red, | ||||||||
NIR 760–900 | NIR | ||||||||
Pan 450–800 | |||||||||
RapidEye Series | 2009–present | 5 m multispectral | 77 km | 1–6 days | Blue 440–510 | Surface reflectance ready product | RE/G | Available to researchers through Planet Labs Inc. | Determined using m-statistic |
Green 520–590 | Green, | ||||||||
Red 630–685 | Red, | ||||||||
Red edge 690–730 | RedEdge | ||||||||
NIR 760–850 | NIR | ||||||||
Worldview Series | WV-3–4 | 1.24 m multispectral | 13.1 km | 1–3 days | Coastal 400–450 | Rayleigh correction | RE/Y | Private data sharing agreement | Determined using m-statistic |
2014–present | 0.31 m panchromatic | Blue 450–510 | Green, | ||||||
Green 510–580 | Red, | ||||||||
Yellow 585–625 | NIR | ||||||||
WV-2 | 1.84 m multispectral | 16.4 km | Red 630–690 | ||||||
2009–present | 0.46 m panchromatic | Red Edge 705–745 | Pansharpened without NIR | [25,38,46] | |||||
NIR1 770–895 | |||||||||
NIR2 860–1040 | R/G | ||||||||
Pan 450–800 | Green | ||||||||
Blue | |||||||||
Planetscope Series | 2018–present | 3.7 m multispectral | 24 km–32.5 km | Daily | Blue: 455–515 | Surface reflectance ready product | NIR/G | Available to researchers through Planet Labs Inc. | Determined using m-statistic |
Green: 500–590 | Green, | ||||||||
Red: 590–670 | Red, | ||||||||
NIR: 780–860 | NIR | ||||||||
Blue: 464–517 | |||||||||
Green: 547–585 | |||||||||
Red: 650–682 | |||||||||
NIR: 846–888 |
Resolution | Sensor | Scale |
---|---|---|
0.5 | Aerial Imagery, Pansharpened Worldview | 40 |
2–3 | QuickBird, Worldview | 30 |
4 | PlanetScope | 28 |
5 | Rapid Eye | 25 |
6 | Spot | 20 |
10 | Spot | 10 |
20 | Sentinel-2 | 7 |
30 | Landsat-4–8 | 5 |
60 | Landsat-1–3 | 5 |
Quality | Cloud (%) | Tide (%) | Glint (%) | Waves (%) | Timing (%) | Haze (%) | Quality | Score | Percent (%) |
---|---|---|---|---|---|---|---|---|---|
0 | 79 | 31 | 52 | 96 | 92 | 77 | Optimal | <1 | 46 |
1 | 10 | 17 | 42 | 4 | 8 | 12 | Good | 2 to 3 | 37 |
2 | 10 | 19 | 4 | 0 | 0 | 6 | Medium | 4 to 5 | 15 |
3 | 2 | 33 | 2 | 0 | 0 | 6 | Acceptable | 6 | 2 |
Satellite | Kelp-Water | Kelp-Shallow Water | Kelp-Shadow | Kelp-Glint/Waves | ||||
---|---|---|---|---|---|---|---|---|
WORLDVIEW-2 | RE/Y RE-NDVI NIR2/Y | 3.19 2.96 2.51 | NIR1/B NDVI G-NDVI | 4.91 4.63 4.43 | RE/Y RE-NDVI RE/R | 2.72 2.32 1.99 | - - - | - - - |
GEOEYE-1 | G-NDVI NIR/G B-NDVI | 6.58 6.52 1.44 | B-NDVI NDVI G-NDVI | 6.58 6.52 1.44 | - - - | - - - | B-NDVI NDVI G-NDVI | 28.59 13.66 4.74 |
QUICKBIRD-2 | G-NDVI NIR/R NIR/G | 9.81 7.34 7.24 | NIR/R G-NDVI NIR/G | 15.80 9.85 7.08 | G-NDVI NIR/G NDVI | 7.46 6.95 5.02 | - - - | - - - |
PLANETSCOPE | NIR/G NIR/R NDVI | 14.02 8.55 7.55 | NIR/G NIR/R NDVI | 11.34 7.53 7.32 | - - - | - - - | NIR/G NIR/R NDVI | 19.63 8.81 7.39 |
RAPIDEYE | RE/G B-RE-NDVI G-RE-NDVI | 1.69 1.46 1.42 | NIR/R NIR/G RE/R | 31.74 11.23 9.11 | - - - | - - - | NIR/R NIR/G RE/R | 12.00 10.81 10.17 |
Timing | Satellite | Kelp Users’ Accuracy | Kelp Producers’ Accuracy | n= | Non-Kelp Users’ Accuracy | Non-Kelp Producers’ Accuracy | n= | Global Accuracy | n= |
---|---|---|---|---|---|---|---|---|---|
Concurrent | PlanetScope | 100 | 92 | 171 | 70 | 100 | 30 | 94 | 201 |
Spot 7 | 100 | 88 | 64 | 86 | 100 | 48 | 93 | 112 | |
Landsat-5 | 97 | 82 | 113 | 64 | 92 | 39 | 89 | 152 | |
Aerial | 100 | 83 | 6 | 75 | 100 | 3 | 88 | 9 | |
Rapid Eye | 100 | 88 | 7 | 100 | 100 | 1 | 88 | 9 | |
Non- concurrent | QuickBird-2 | 90 | 96 | 47 | 95 | 89 | 45 | 92 | 92 |
Geoeye-1 | 95 | 89 | 64 | 77 | 89 | 27 | 89 | 91 | |
Worldview-2 | 98 | 84 | 50 | 85 | 98 | 46 | 91 | 96 |
The Multi-Satellite Kelp Mapping Framework Recommendations | |
---|---|
Quality Criteria | Have a set of quality criteria adapted for the specific area of interest when choosing what images to use to minimizes the time and cost associated with building an archived imagery time series. Things to consider in the development of criteria for a given area: Peak biomass for acquisition timing; Aim for low tidal heights; Minimize cloud cover and haze; Minimize glint and waves; Minimize low sun angles and shadows; Minimize adjacency effects. |
Geometric and Atmospheric Corrections | When possible, attain imagery as atmospherically and geometrically corrected products and when not possible use simple approaches such as a first-order polynomial shift for geometric correction and the Rayleigh correction method to adjust atmospheric scattering and attenuation. |
Band Indices/Ratios | Use a measure of class separability such as the M-statistic to determine the best combination of band indices and ratios to use for each sensor. The most common band index used in floating kelp forest remote sensing is NDVI. However, we found G-NDVI, as well as band indices using the RedEdge band, often produced higher M-statistic scores. |
Classification | To classify floating kelp area within different imagery from different satellites, use an adaptable OBIA classification with the help of the feature space optimization tool to minimize errors and attain high-accuracy scores. In this case, the feature space optimization tool often selected between three and 10 features depending on the image, with, generally, the mean of the red-edge band, the mean of the near-infrared band and/or the mean of the band indices selected. Of note, expert knowledge is required to choose samples to train the classifier and a visual quality assessment of the classification should be performed to minimize erroneous classifications prior to the accuracy assessment. |
Accuracy Assessment | When possible, collect in situ validation data. However, if no ground-truth data are available, other forms of data can be used to validate the classification, such as past surveys that show the location of kelp forests, or expert knowledge based on reflectance values. |
Resolution | The ability to map floating kelp forests at different imagery resolutions can vary spatially based on ocean floor slope, and thus this metric can be used to highlight areas of uncertainty. Based on the Haida Gwaii test area: We suggest that regions with slopes higher than 11.4% should either be mapped only with the high-resolution imagery or excluded from comparisons between high- and medium-resolution imagery. We suggest that changes up to 7% be taken into consideration when comparing kelp distributions from imagery at different resolutions in low–mid slope areas. Special attention should be given to the detection limits at different resolutions when applying the framework in new areas, thus we suggest performing similar resolution analyses and adjusting the ocean floor slope threshold accordingly, especially if segment size and kelp forest density and species vary significantly from those presented in this study. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gendall, L.; Schroeder, S.B.; Wills, P.; Hessing-Lewis, M.; Costa, M. A Multi-Satellite Mapping Framework for Floating Kelp Forests. Remote Sens. 2023, 15, 1276. https://doi.org/10.3390/rs15051276
Gendall L, Schroeder SB, Wills P, Hessing-Lewis M, Costa M. A Multi-Satellite Mapping Framework for Floating Kelp Forests. Remote Sensing. 2023; 15(5):1276. https://doi.org/10.3390/rs15051276
Chicago/Turabian StyleGendall, Lianna, Sarah B. Schroeder, Peter Wills, Margot Hessing-Lewis, and Maycira Costa. 2023. "A Multi-Satellite Mapping Framework for Floating Kelp Forests" Remote Sensing 15, no. 5: 1276. https://doi.org/10.3390/rs15051276
APA StyleGendall, L., Schroeder, S. B., Wills, P., Hessing-Lewis, M., & Costa, M. (2023). A Multi-Satellite Mapping Framework for Floating Kelp Forests. Remote Sensing, 15(5), 1276. https://doi.org/10.3390/rs15051276