Spatio-Temporal Variations in Soil pH and Aluminum Toxicity in Sub-Saharan African Croplands (1980–2050)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Evaluation of Nitrogen Inputs and Outputs in SSA Croplands (1980–2050)
2.3. Calculation of Incoming Protons (H+) in SSA Croplands
2.4. Soil pH Variations and Aluminum Toxicity Risk from 1980 to 2050
2.5. Spatial and Temporal Modeling of Soil pH Variations
2.5.1. Environmental Covariate Selection and Relative Importance
2.5.2. Model Fitting and Evaluation
3. Results
3.1. Descriptive Statistics of Estimated Protons Produced (H+), Soil pH Decline, and Soil pH Change in SSA in Different Scenarios (1980–2050)
3.2. Potential Environmental Covariates and Their Relative Importance
3.3. Spatio-Temporal Prediction Maps of Soil Acidity Rate, Soil pH, and Potential Areas Affected by Aluminum Toxicity and Their Uncertainties
4. Discussion
4.1. Potential Soil Acidification in SSA Croplands
4.2. Soil Acidity Neutralization Potential in SSA
4.3. Model Performance and Uncertainty Assessment
4.4. Implications and Practical Recommendations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tian, D.; Niu, S. A Global Analysis of Soil Acidification Caused by Nitrogen Addition. Environ. Res. Lett. 2015, 10, 024019. [Google Scholar] [CrossRef]
- Von Uexküll, H.R.; Mutert, E. Global Extent, Development and Economic Impact of Acid Soils. Plant Soil 2004, 171, 1–15. [Google Scholar] [CrossRef]
- Xu, D.; Carswell, A.; Zhu, Q.; Zhang, F.; de Vries, W. Modelling Long-Term Impacts of Fertilization and Liming on Soil Acidification at Rothamsted Experimental Station. Sci. Total Environ. 2019, 713, 136249. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; He, X.; Liang, H.; Zhao, J.; Zhang, Y.; Xu, C.; Shi, X. Long-Term Tobacco Plantation Induces Soil Acidification and Soil Base Cation Loss. Environ. Sci. Pollut. Res. 2015, 23, 5442–5450. [Google Scholar] [CrossRef]
- Hue, N.V.; Vega, S.; Silva, J.A. Manganese Toxicity in a Hawaiian Oxisol Affected by Soil PH and Organic Amendments. Soil Sci. Soc. Am. J. 2001, 65, 153–160. [Google Scholar] [CrossRef] [Green Version]
- Sánchez, P.A. Soils of the Tropics. Prop. Manag. Soils Trop. 2019, 82–119. [Google Scholar] [CrossRef]
- Thomas, G.W.; Hargrove, W.L. The Chemistry of Soil Acidity. In Soil Acidity and Liming; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 1984; pp. 3–56. ISBN 9780891182078. [Google Scholar]
- Richter, D.D. Sources of Acidity in Some Forested Udults. Soil Sci. Soc. Am. J. 1986, 50, 1584–1589. [Google Scholar] [CrossRef]
- Munns, D.N.; Sánchez, P.A. Properties and Management of Soils in the Tropics. Bioscience 1977, 124, 187. [Google Scholar] [CrossRef]
- Agegnehu, G.; Amede, T.; Erkossa, T.; Yirga, C.; Henry, C.J.; Tyler, R.T.; Nosworthy, M.G.; Beyene, S.; Sileshi, G.W. Extent and Management of Acid Soils for Sustainable Crop Production System in the Tropical Agroecosystems: A Review. Acta Agric. Scand. Sect. B Soil Plant Sci. 2021, 71, 852–869. [Google Scholar] [CrossRef]
- Abruna, F.; Pearson, R.W.; Elkins, C.B.; Abruña, F.; Pearson, R.W.; Elkins, C.B.; Abruna, F.; Pearson, R.W.; Elkins, C.B. Quantitative Evaluation of Soil Reaction and Base Status Changes Resulting from Field Application of Residually Acid-Forming Nitrogen Fertilizers. Soil Sci. Soc. Am. J. 1958, 22, 539–542. [Google Scholar] [CrossRef]
- Juo, A.S.R.; Dabiri, A.; Franzluebbers, K. Acidification of a Kaolinitic Alfisol under Continuous Cropping with Nitrogen Fertilization in West Africa. Plant Soil 1995, 171, 245–253. [Google Scholar] [CrossRef]
- Stumpe, J.M.; Vlek, P.L.G.G. Acidification Induced by Different Nitrogen Sources in Columns of Selected Tropical Soils. Soil Sci. Soc. Am. J. 1991, 55, 145–151. [Google Scholar] [CrossRef]
- Guo, J.H.; Liu, X.J.; Zhang, Y.; Shen, J.L.; Han, W.X.; Zhang, W.F.; Christie, P.; Goulding, K.W.T.; Vitousek, P.M.; Zhang, F.S. Significant Acidification in Major Chinese Croplands. Science 2010, 327, 1008–1010. [Google Scholar] [CrossRef] [Green Version]
- Dong, Y.; Yang, J.; Zhao, X.; Yang, S.-H.; Zhang, G. Contribution of Different Proton Sources to the Acidification of Red Soil with Maize Cropping in Subtropical China. Geoderma 2021, 392, 114995. [Google Scholar] [CrossRef]
- Vanlauwe, B.; Kihara, J.; Chivenge, P.; Pypers, P.; Coe, R.; Six, J. Agronomic Use Efficiency of N Fertilizer in Maize-Based Systems in Sub-Saharan Africa within the Context of Integrated Soil Fertility Management. Plant Soil 2011, 339, 35–50. [Google Scholar] [CrossRef]
- Kaizzi, K.C.; Byalebeka, J.; Semalulu, O.; Alou, I.; Zimwanguyizza, W.; Nansamba, A.; Musinguzi, P.; Ebanyat, P.; Hyuha, T.; Wortmann, C.S. Maize Response to Fertilizer and Nitrogen Use Efficiency in Uganda. Agron. J. 2012, 104, 73–82. [Google Scholar] [CrossRef]
- Tadele, Z. Raising Crop Productivity in Africa through Intensification. Agronomy 2017, 7, 22. [Google Scholar] [CrossRef]
- Pande, V.S.; Kumburu, N.P. An Overview of Population Growth and Sustainable Development in Sub-Saharan Africa. In Handbook of Research on Sustainable Development and Governance Strategies for Economic Growth in Africa; Alemu, K.T., Alebachew, M.A., Eds.; IGI Global: Hershey, PA, USA, 2018; pp. 480–499. [Google Scholar]
- FAO. The State of Food Security and Nutrition in the World 2021: Transforming Food Systems for Food Security, Improved Nutrition and Affordable Healthy Diets for All; FAO: Rome, Italy, 2021; ISBN 9789251343258. [Google Scholar]
- Sánchez, P.A. Soil Fertility and Hunger in Africa. Science 2002, 295, 2019–2020. [Google Scholar] [CrossRef] [Green Version]
- Shamie, Z.; Mutegi, J.K.; Agesa, B.; Tamene, L.; Kihara, J.; Zingore, S.; Mutegi, J.K.; Agesa, B.; Tamene, L.; Kihara, J.; et al. Soil Degradation in Sub-Saharan Africa and Crop Production Options for Soil Rehabilitation. Better Crop Plant Food 2015, 99, 24–26. [Google Scholar]
- De Pauw, E.F.D.E. The Management of Acid Soils in Africa. Outlook Agric. 1994, 23, 11–16. [Google Scholar] [CrossRef]
- Sánchez, P.A.; Logan, T.J. Myths and Science about the Chemistry and Fertility of Soils in the Tropics. Myth. Sci. Soils Trop. 1992, 3, 35–46. [Google Scholar]
- FAO. World Food and Agriculture—Statistical Pocketbook 2019; Food and Agriculture Organization (FAO): Rome, Italy, 2019. [Google Scholar]
- Kimaru, G.; Jama, B. Improving Land Management in Eastern and Southern Africa: A Review of Practices and Policies; World Agroforestry Centre: Nairobi, Kenya, 2006. [Google Scholar]
- Mokwunye, A.U.; Vlek, P.L.G. Management of Nitrogen and Phosphorus Fertilizers in Sub-Saharan Africa. In Proceedings of the Developments in Plant and Soil Sciences, Icarda, Syria, 14–17 April 1986; p. 56. [Google Scholar]
- Alexandratos, N.; Bruinsma, J. World Agriculture towards 2030/2050 the 2012 Revision; ESA Working paper No. 12-03; FAO: Rome, Italy, 2012. [Google Scholar]
- Lassaletta, L.; Billen, G.; Garnier, J.; Bouwman, L.; Velázquez, E.; Mueller, N.D.; Gerber, J.S. Nitrogen Use in the Global Food System: Past Trends and Future Trajectories of Agronomic Performance, Pollution, Trade, and Dietary Demand. Environ. Res. Lett. 2016, 11, 95007. [Google Scholar] [CrossRef]
- Elrys, A.S.; Metwally, M.S.; Raza, S.; Alnaimy, M.A.; Shaheen, S.M.; Chen, Z.; Zhou, J. How Much Nitrogen Does Africa Need to Feed Itself by 2050? J. Environ. Manag. 2020, 268, 110488. [Google Scholar] [CrossRef]
- Hengl, T.; Miller, M.A.E.; Križan, J.; Shepherd, K.D.; Sila, A.; Kilibarda, M.; Antonijević, O.; Glušica, L.; Dobermann, A.; Haefele, S.M.; et al. African Soil Properties and Nutrients Mapped at 30 m Spatial Resolution Using Two-Scale Ensemble Machine Learning. Sci. Rep. 2021, 11, 6130. [Google Scholar] [CrossRef] [PubMed]
- Vlek, P.L.G.; Le, Q.B.; Tamene, L. Land Decline in Land-Rich Africa a Creeping Disaster in the Making; CGIAR Science Council Secretariat: Rome, Italy, 2008; p. 259. [Google Scholar]
- Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated World Map of the Köppen-Geiger Climate Classification. Hydrol. Earth Syst. Sci. 2007, 11, 1633–1644. [Google Scholar] [CrossRef] [Green Version]
- Hengl, T.; Heuvelink, G.B.M.; Kempen, B.; Leenaars, J.G.B.; Walsh, M.G.; Shepherd, K.D.; Sila, A.; MacMillan, R.A.; De Jesus, J.M.; Tamene, L.; et al. Mapping Soil Properties of Africa at 250 m Resolution: Random Forests Significantly Improve Current Predictions. PLoS ONE 2015, 10, e0125814. [Google Scholar] [CrossRef]
- Zanaga, D.; van de Kerchove, R.; de Keersmaecker, W.; Souverijns, N.; Brockmann, C.; Quast, R.; Wevers, J.; Grosu, A.C.; Paccini, A.; Vergnaud, S.; et al. ESA WorldCover 10 m 2020 V100. 2021. Available online: https://worldcover2021.esa.int/download (accessed on 20 February 2023).
- Ghimire, R.; Machado, S.; Bista, P. Soil PH, Soil Organic Matter, and Crop Yields in Winter Wheat Summer Fallow Systems. Agron. J. 2017, 109, 706–717. [Google Scholar] [CrossRef] [Green Version]
- Raza, S.; Miao, N.; Wang, P.; Ju, X.; Chen, Z.; Zhou, J.; Kuzyakov, Y. Dramatic Loss of Inorganic Carbon by Nitrogen-Induced Soil Acidification in Chinese Croplands. Glob. Chang. Biol. 2020, 26, 3738–3751. [Google Scholar] [CrossRef]
- Zamanian, K.; Zarebanadkouki, M.; Kuzyakov, Y. Nitrogen Fertilization Raises CO2 Efflux from Inorganic Carbon: A Global Assessment. Glob. Chang. Biol. 2018, 24, 2810–2817. [Google Scholar] [CrossRef]
- Nelson, P.N.; Su, N. Soil PH Buffering Capacity: A Descriptive Function and Its Application to Some Acidic Tropical Soils. Soil Res. 2010, 48, 201–207. [Google Scholar] [CrossRef]
- Hochman, Z.; Godyn, D.L.; Scott, B.; Robson, A. The Integration of Data on Lime Use by Modelling. In Soil Acidity and Plant Growth; Elsevier: Amsterdam, The Netherlands, 1989; pp. 265–301. [Google Scholar]
- Helyar, K.R.; Cregan, P.D.; Godyn, D.L. Soil Acidity in New South Wales—Current Ph Values and Estimates of Acidification Rates. Aust. J. Soil Res. 1990, 28, 523–537. [Google Scholar] [CrossRef]
- McBratney, A.; Santos, M.L.M.; Minasny, B. On Digital Soil Mapping. Geoderma 2003, 117, 3–52. [Google Scholar] [CrossRef]
- Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1-km Spatial Resolution Climate Surfaces for Global Land Areas. Int. J. Climatol. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- Hartmann, J.; Moosdorf, N. Global Lithological Map Database v1.0 (Gridded to 0.5° Spatial Resolution); PANGAEA: Bremerhaven, Germany, 2012; Volume 13. [Google Scholar] [CrossRef]
- Meyer, H.; Reudenbach, C.; Hengl, T.; Katurji, M.; Nauss, T. Improving Performance of Spatio-Temporal Machine Learning Models Using Forward Feature Selection and Target-Oriented Validation. Environ. Model. Softw. 2018, 101, 1–9. [Google Scholar] [CrossRef]
- Zeraatpisheh, M.; Garosi, Y.; Owliaie, H.R.; Ayoubi, S.; Taghizadeh-Mehrjardi, R.; Scholten, T.; Xu, M. Improving the Spatial Prediction of Soil Organic Carbon Using Environmental Covariates Selection: A Comparison of a Group of Environmental Covariates. Catena 2021, 208, 105723. [Google Scholar] [CrossRef]
- Heuvelink, G.; Angelini, M.; Poggio, L.; Bai, Z.; Batjes, N.; Bosch, R.V.D.; Bossio, D.; Estella, S.; Lehmann, J.; Olmedo, G.; et al. Machine Learning in Space and Time for Modelling Soil Organic Carbon Change. Eur. J. Soil Sci. 2020, 72, 1607–1623. [Google Scholar] [CrossRef]
- Deane-Mayer, Z.A.; Knowles, J. Ensembles of Caret Models [R Package CaretEnsemble Version 2.0.1]. 2019. Available online: https://cran.r-project.org/web/packages/caretEnsemble/index.html (accessed on 18 January 2020).
- Tajik, S.; Ayoubi, S.; Zeraatpisheh, M. Digital Mapping of Soil Organic Carbon Using Ensemble Learning Model in Mollisols of Hyrcanian Forests, Northern Iran. Geoderma Reg. 2020, 20, e00256. [Google Scholar] [CrossRef]
- Malone, B.; Minasny, B.; McBratney, A. Using R for Digital Soil Mapping; Springer: Cham, Switzerland, 2016. [Google Scholar] [CrossRef]
- Ayyadevara, V.K. Gradient Boosting Machine. In Pro Machine Learning Algorithms.; Academic Press: Berkeley, CA, USA, 2018. [Google Scholar]
- Hengl, T.; Leenaars, J.G.B.B.; Shepherd, K.D.; Walsh, M.G.; Heuvelink, G.B.M.M.; Mamo, T.; Tilahun, H.; Berkhout, E.; Cooper, M.; Fegraus, E.; et al. Soil Nutrient Maps of Sub-Saharan Africa: Assessment of Soil Nutrient Content at 250 m Spatial Resolution Using Machine Learning. Nutr. Cycl. Agroecosystems 2017, 109, 77–102. [Google Scholar] [CrossRef] [Green Version]
- Uwiragiye, Y.; Ngaba, M.J.Y.; Zhao, M.; Elrys, A.S.; Heuvelink, G.B.M.; Zhou, J. Modelling and Mapping Soil Nutrient Depletion in Humid Highlands of East Africa Using Ensemble Machine Learning: A Case Study from Rwanda. Catena 2022, 217, 106499. [Google Scholar] [CrossRef]
- Poggio, L.; de Sousa, L.M.; Batjes, N.H.; Heuvelink, G.B.M.; Kempen, B.; Ribeiro, E.D.C.; Rossiter, D.G. SoilGrids 2.0: Producing Soil Information for the Globe with Quantified Spatial Uncertainty. Soil 2021, 7, 217–240. [Google Scholar] [CrossRef]
- Cai, Z.; Wang, B.; Xu, M.; Zhang, H.; He, X.; Zhang, L.; Gao, S. Intensified Soil Acidification from Chemical N Fertilization and Prevention by Manure in an 18-Year Field Experiment in the Red Soil of Southern China. J. Soils Sediments 2014, 15, 260–270. [Google Scholar] [CrossRef]
- Cameron, K.C.; Di, H.J.; Moir, J.L. Nitrogen Losses from the Soil/Plant System: A Review. Ann. Appl. Biol. 2013, 162, 145–173. [Google Scholar] [CrossRef]
- Zhou, J.W.; Xia, F.; Liu, X.; He, Y.; Xu, J.; Brookes, P.C. Effects of Nitrogen Fertilizer on the Acidification of Two Typical Acid Soils in South China. J. Soils Sediments 2013, 14, 415–422. [Google Scholar] [CrossRef]
- Kemmitt, S.J.; Wright, D.L.; Jones, D.L. Soil Acidification Used as a Management Strategy to Reduce Nitrate Losses from Agricultural Land. Soil Biol. Biochem. 2005, 37, 867–875. [Google Scholar] [CrossRef]
- Kyveryga, P.; Blackmer, A.M.; Ellsworth, J.W.M.; Isla, R. Soil PH Effects on Nitrification of Fall-Applied Anhydrous Ammonia. Soil Sci. Soc. Am. J. 2004, 68, 545–551. [Google Scholar] [CrossRef] [Green Version]
- De Vries, W.; Breeuwsma, A.J. Relative Importance of Natural and Anthropogenic Proton Sources in Soils in The Netherlands. Water Air Soil Pollut. 1986, 28, 173–184. [Google Scholar] [CrossRef]
- Wortmann, C.S.; Milner, M.; Kaizzi, K.C.; Nouri, M.; Cyamweshi, A.R.; Dicko, M.K.; Kibunja, C.N.; Macharia, M.; Maria, R.; Nalivata, P.C.; et al. Maize-Nutrient Response Information Applied across Sub-Saharan Africa. Nutr. Cycl. Agroecosystems 2017, 107, 175–186. [Google Scholar] [CrossRef]
- Singh, B.; Odeh, I.O.A.; McBratney, A.B. Acid Buffering Capacity and Potential Acidification of Cotton Soils in Northern New South Wales. Aust. J. Soil Res. 2003, 41, 875–888. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, Y.; Peng, Y.; Cheng, P.; Li, F.; Liu, T. Acid-Base Buffering Characteristics of Non-Calcareous Soils: Correlation with Physicochemical Properties and Surface Complexation Constants. Geoderma 2020, 360, 114005. [Google Scholar] [CrossRef]
- De Vries, W.; Posch, M.; Kämäri, J. Simulation of the Long-Term Soil Response to Acid Deposition in Various Buffer Ranges. Water Air Soil Pollut. 1989, 48, 349–390. [Google Scholar] [CrossRef]
- Lu, X.; Mao, Q.; Mo, J.; Gilliam, F.S.; Zhou, G.; Luo, Y.; Zhang, W.; Huang, J. Divergent Responses of Soil Buffering Capacity to Long-Term N Deposition in Three Typical Tropical Forests with Different Land-Use History. Environ. Sci. Technol. 2015, 49, 4072–4080. [Google Scholar] [CrossRef]
- Dong, Y.; Yang, J.; Zhao, X.; Yang, S.; Mulder, J.; Dörsch, P.; Peng, X.; Zhang, G. Soil Acidification and Loss of Base Cations in a Subtropical Agricultural Watershed. Sci. Total Environ. 2022, 827, 154338. [Google Scholar] [CrossRef]
- Mulder, J.; van Breemen, N.; Eijck, H.C. Depletion of Soil Aluminium by Acid Deposition and Implications for Acid Neutralization. Nature 1989, 337, 247–249. [Google Scholar] [CrossRef]
- Meyer, H.; Pebesma, E. Predicting into Unknown Space? Estimating the Area of Applicability of Spatial Prediction Models. Methods Ecol. Evol. 2021, 12, 1620–1633. [Google Scholar] [CrossRef]
- Johnston, A.M.; Bruulsema, T.W. 4R Nutrient Stewardship for Improved Nutrient Use Efficiency. Procedia Eng. 2014, 83, 365–370. [Google Scholar] [CrossRef] [Green Version]
- Yadav, M.R.; Kumar, R.; Parihar, C.M.; Yadav, R.K.; Jat, S.; Ram, H.; Meena, R.K.; Singh, M.; Verma, A.P.; Ghoshand, A.; et al. Strategies for Improving Nitrogen Use Efficiency: A Review. Agric. Rev. 2017, 38, 29–40. [Google Scholar] [CrossRef] [Green Version]
- Elrys, A.S.; Chen, Z.; Wang, J.; Uwiragiye, Y.; Helmy, A.M.; Desoky, E.-S.M.; Cheng, Y.; Zhang, J.; Cai, Z.C.; Müller, C. Global Patterns of Soil Gross Immobilization of Ammonium and Nitrate in Terrestrial Ecosystems. Glob. Chang. Biol. 2022, 28, 4472–4488. [Google Scholar] [CrossRef]
- Vanlauwe, B.; Bationo, A.; Chianu, J.; Giller, K.E.; Merckx, R.; Mokwunye, U.; Ohiokpehai, O.; Pypers, P.; Tabo, R.; Shepherd, K.D.; et al. Integrated Soil Fertility Management: Operational Definition and Consequences for Implementation and Dissemination. Outlook Agric. 2010, 39, 17–24. [Google Scholar] [CrossRef] [Green Version]
Descriptive Statistics of Mean Annual Soil pH Decline (pH Unit) | ||||
---|---|---|---|---|
Soil pH Decline (N = 9043) | Mean | Std. D | Min | Max |
1980–2022) | 0.01 | 0.01 | 0.00 | 0.06 |
2022–2050 (BAU) | 0.02 | 0.02 | 0.00 | 0.11 |
2022–2050 (EqD) | 0.05 | 0.04 | 0.00 | 0.26 |
2022–2050 (S1) | 0.06 | 0.05 | 0.00 | 0.31 |
2022–2050 (S2) | 0.04 | 0.03 | 0.00 | 0.22 |
2022–2050 (S3) | 0.03 | 0.02 | 0.00 | 0.17 |
Descriptive Statistics of Soil pH (1980–2050) | ||||
---|---|---|---|---|
Soil pH (N = 9043) | Mean | Std. D | Min | Max |
1980 | 6.09 | 0.90 | 3.72 | 9.8 |
2022 | 6.08 | 0.90 | 3.70 | 9.79 |
2050 BAU | 6.07 | 0.90 | 3.68 | 9.78 |
2050 EqD | 6.05 | 0.89 | 3.55 | 9.78 |
2050 S1 | 6.04 | 0.89 | 3.50 | 9.77 |
2050 S2 | 6.05 | 0.89 | 3.58 | 9.78 |
2050 S3 | 6.06 | 0.90 | 3.66 | 9.78 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Uwiragiye, Y.; Khalaf, Q.A.W.; Ali, H.M.; Ngaba, M.J.Y.; Yang, M.; Elrys, A.S.; Chen, Z.; Zhou, J. Spatio-Temporal Variations in Soil pH and Aluminum Toxicity in Sub-Saharan African Croplands (1980–2050). Remote Sens. 2023, 15, 1338. https://doi.org/10.3390/rs15051338
Uwiragiye Y, Khalaf QAW, Ali HM, Ngaba MJY, Yang M, Elrys AS, Chen Z, Zhou J. Spatio-Temporal Variations in Soil pH and Aluminum Toxicity in Sub-Saharan African Croplands (1980–2050). Remote Sensing. 2023; 15(5):1338. https://doi.org/10.3390/rs15051338
Chicago/Turabian StyleUwiragiye, Yves, Qahtan Abdul Wahid Khalaf, Hayssam M. Ali, Mbezele Junior Yannick Ngaba, Mingxia Yang, Ahmed S. Elrys, Zhujun Chen, and Jianbin Zhou. 2023. "Spatio-Temporal Variations in Soil pH and Aluminum Toxicity in Sub-Saharan African Croplands (1980–2050)" Remote Sensing 15, no. 5: 1338. https://doi.org/10.3390/rs15051338
APA StyleUwiragiye, Y., Khalaf, Q. A. W., Ali, H. M., Ngaba, M. J. Y., Yang, M., Elrys, A. S., Chen, Z., & Zhou, J. (2023). Spatio-Temporal Variations in Soil pH and Aluminum Toxicity in Sub-Saharan African Croplands (1980–2050). Remote Sensing, 15(5), 1338. https://doi.org/10.3390/rs15051338