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Abstract: Ship detection in synthetic aperture radar (SAR) images has attracted widespread attention
due to its significance and challenges. In recent years, numerous detectors based on deep learning
have achieved good performance in the field of SAR ship detection. However, ship targets of the
same type always have various representations in SAR images under different imaging conditions,
while different types of ships may have a high degree of similarity, which considerably complicates
SAR target recognition. Meanwhile, the ship target in the SAR image is also obscured by background
and noise. To address these issues, this paper proposes a novel oriented ship detection method in
SAR images named SPG-OSD. First, we propose an oriented two-stage detection module based on
the scattering characteristics. Second, to reduce false alarms and missing ships, we improve the
performance of the network by incorporating SAR scattering characteristics in the first stage of the
detector. A scattering-point-guided region proposal network (RPN) is designed to predict possible
key scattering points and make the regression and classification stages of RPN increase attention to
the vicinity of key scattering points and reduce attention to background and noise. Third, supervised
contrastive learning is introduced to alleviate the problem of minute discrepancies among SAR object
classes. Region-of-Interest (RoI) contrastive loss is proposed to enhance inter-class distinction and
diminish intra-class variance. Extensive experiments are conducted on the SAR ship detection dataset
from the Gaofen-3 satellite, and the experimental results demonstrate the effectiveness of SPG-OSD
and show that our method achieves state-of-the-art performance.

Keywords: ship detection; deep-learning; scattering point; contrastive learning; synthetic aperture
radar (SAR)

1. Introduction

Synthetic Aperture Radar (SAR) is a microwave imaging sensor with the ability to
operate all day and is merely affected by weather conditions. Therefore, the SAR system has
unique advantages in the application of various fields, and can play an essential role in high
resolution earth observation [1]. With the development of SAR system techniques, a rising
number of high-resolution images have been acquired, hence increasing the requirement
for SAR image interpretation. Ship detection of SAR images is one of the important tasks
and has great value for commercial and societal applications [2,3].

In conventional algorithms, detection and classification steps are separated into two
independent and unrelated processes. Constant false alarm ratio (CFAR) is one of the most
popular ship detectors and has been extensively studied [4]. It conducts statistical modeling
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of background clutter and detects anomalies that do not conform to the clutter distribu-
tion [5]. Meanwhile, ship classification is mostly based on feature extraction and matching
technologies [6]. Bag of words (BOW)-based methods [7,8] and local feature descriptors [9]
have been widely used for SAR image scene classification. There are also some studies that
have used machine learning methods for classification, such as SVM [10] and KNN [11]. The
hand-designed features extracted by these traditional algorithms rely on prior knowledge,
and its performance can be affected by different sensors and complex environments.

With the development of deep learning, increasingly more end-to-end methods have
been proposed and applied in different kinds of domains. The methods based on deep
CNNs have also been introduced to the SAR field and have demonstrated excellent per-
formance [12]. Compared with traditional ship detection methods represented by CFAR,
CNN-based approaches have strong representation and automatic feature extraction capa-
bilities under complex background conditions, which can produce more accurate results.
Although these methods improve SAR detection performance, applying CNN-based al-
gorithms to the field of SAR presents certain problems. In both near-shore and off-shore
scenarios, ships in SAR images frequently have arbitrary orientations as a result of the
SAR geometry acquisition [13]. In the field of computer vision, most methods employ
the horizontal bounding box (HBB) to represent the location of objects. However, the
HBBs introduce a large amount of background when detecting ships, which increases the
difficulty of the algorithm in distinguishing the target from the background. Especially
when detecting near-shore targets, the results of detection tend to be closer to other near-
shore facilities due to the complex background. Ships are often densely docked in ports,
resulting in severe target scattering interference and blurred target edges, as well as a
great deal of overlap between HBBs, which interfere with each other in non-maximum
suppression (NMS) processing, hence lowering the accuracy of detection [14]. To address
these issues, oriented bounding box (OBB)-based methods indicate accurate orientation
and effectively improve the performance of the object detection algorithm in the field of
remote sensing [15–17].

Moreover, SAR images are different from optical images because of their different
imaging mechanisms. Due to the huge domain differences between natural images and
SAR images, the development of deep learning for object detection in SAR images has been
limited. A single target in an SAR image is presented as a collection of discrete or isolated
strong backscattering points. The ship targets typically have strong backscattering intensity,
and show highlighting characteristics in SAR images [18]. Small differences between classes
in SAR images lead to intractable difficulty in identifying different classes. These lead to
the failure of some algorithms in detection by extracting optical features. Furthermore, the
imaging characteristics of a target are related to parameters such as resolution, azimuth
angle, and incident angle. The same target exhibits different characteristics under different
conditions. On the one hand, ship targets are very similar to port facilities or disturbing
noise under certain imaging conditions. On the other hand, the visual features learned
by the convolutional neural network cannot adapt to the scattering changes of the target
when the SAR imaging conditions, such as radar parameters, target characteristics and
marine environment, change [19]. Both reasons result in missing ships and false alarms, as
shown by the yellow ellipses and the blue ellipses in Figure 1. Therefore, it is necessary
to reasonably utilize the scattering mechanism of the target to guide network adaptive
feature learning.

To overcome the aforementioned difficulties, a new network (SPG-OSD) is proposed
in this article for oriented ship detection in SAR images. We propose a unified detection
algorithm for the characteristics of SAR images. Although anchor-free methods usually
have simple pipelines and produce final detection results within a single stage, they are
incapable of handling complicated scenes and situations without anchors and additional
anchor-based refinement [20]. Consequently, our baseline is built on a two-stage detector
with a series of improvements. The RPN of the baseline employs six parameters to regress
the anchors and directly generates high-quality-oriented proposals in a nearly cost-free
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manner. The key scattering point is introduced into a region proposal network (RPN) to
improve the performance of anchor boxes. As can be seen in Figure 1, the background
noise is forecast to be the container ship, while the ship is predicted to be the background.
One of the key factors is that RPN finds it challenging to effectively differentiate between
foreground and background when using the two-stage target detection algorithm in first-
stage prediction due to the characteristics of SAR imaging and complex environmental
characteristics. Therefore, we use the key scattering points to guide the RPN network
to extract the features near these points, achieving a better performance in foreground
and background classification and anchor regression. Additionally, we apply supervised
contrastive learning loss to the network to ease ship misclassification issues in SAR images.
The loss can make RoI embeddings of the same category come as close together as possible,
and embeddings of different categories as far apart as possible.

Remote Sens. 2023, 15, x FOR PEER REVIEW 3 of 23 
 

 

the anchors and directly generates high-quality-oriented proposals in a nearly cost-free 
manner. The key scattering point is introduced into a region proposal network (RPN) to 
improve the performance of anchor boxes. As can be seen in Figure 1, the background 
noise is forecast to be the container ship, while the ship is predicted to be the background. 
One of the key factors is that RPN finds it challenging to effectively differentiate between 
foreground and background when using the two-stage target detection algorithm in first-
stage prediction due to the characteristics of SAR imaging and complex environmental 
characteristics. Therefore, we use the key scattering points to guide the RPN network to 
extract the features near these points, achieving a better performance in foreground and 
background classification and anchor regression. Additionally, we apply supervised con-
trastive learning loss to the network to ease ship misclassification issues in SAR images. 
The loss can make RoI embeddings of the same category come as close together as possi-
ble, and embeddings of different categories as far apart as possible.  

The main contributions of our work can be summarized as follows: 
1. In this article, a novel method of ship detection named SPG-OSD in SAR images is 

proposed. According to the characteristics of SAR images, this method combines the 
features and distribution information of key scattering points to guide the network. 
The experiments with the dataset demonstrate the superiority of our methodology; 

2. Key scattering points are innovatively used to guide RPN to solve the problem of 
foreground and background misclassification, which effectively alleviates the false 
alarm and missing ship. The Scattering-Point-Guided RPN (SPG RPN) can predict 
the position of key scattering points and apply location information to the deforma-
ble convolution module to better extract the features near the key scattering points; 

3. In order to ease ship misclassification issues in SAR images, we augment a Region-
of-Interest (RoI) head with a contrast branch where proposals are encoded as contrast 
features. RoI contrastive (RIC) loss is introduced into the ship detection network, 
which can enhance instance-level intra-class compactness and inter-class variance. 

 
Figure 1. Detection results of the common method. The green boxes, orange boxes, yellow ellipses, 
and blue ellipses represent the ground truth, detection objects, missing ships, and false alarms, re-
spectively. 

2. Related Works 
2.1. Deep-Learning-Based Object Detection in SAR Images 

Recently, deep convolutional neural networks (CNN) [21,22] have led to a series of 
breakthroughs in image classification [21] and object detection [23]. Deep-learning-based 
object detection frameworks can be primarily divided into two main streams: two-stage 
detectors and one-stage detectors. Two-stage detectors generally have great performance 
and stability by producing accurate bounding boxes, where region proposals are 
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The main contributions of our work can be summarized as follows:

1. In this article, a novel method of ship detection named SPG-OSD in SAR images is
proposed. According to the characteristics of SAR images, this method combines the
features and distribution information of key scattering points to guide the network.
The experiments with the dataset demonstrate the superiority of our methodology;

2. Key scattering points are innovatively used to guide RPN to solve the problem of
foreground and background misclassification, which effectively alleviates the false
alarm and missing ship. The Scattering-Point-Guided RPN (SPG RPN) can predict
the position of key scattering points and apply location information to the deformable
convolution module to better extract the features near the key scattering points;

3. In order to ease ship misclassification issues in SAR images, we augment a Region-of-
Interest (RoI) head with a contrast branch where proposals are encoded as contrast
features. RoI contrastive (RIC) loss is introduced into the ship detection network,
which can enhance instance-level intra-class compactness and inter-class variance.

2. Related Works
2.1. Deep-Learning-Based Object Detection in SAR Images

Recently, deep convolutional neural networks (CNN) [21,22] have led to a series of
breakthroughs in image classification [21] and object detection [23]. Deep-learning-based
object detection frameworks can be primarily divided into two main streams: two-stage
detectors and one-stage detectors. Two-stage detectors generally have great performance
and stability by producing accurate bounding boxes, where region proposals are generated
in the first stage and bounding box location regression and classification are completed in
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the second stage, such as R-CNN [23], Fast R-CNN [24], Faster R-CNN [25], and Cascade
R-CNN [26]. Meanwhile, one-stage detectors have higher computational efficiency, such
as SSD [27], YOLO [28–30], RetinaNet [31], and CornerNet [32]. Due to its potent capacity
to automatically extract features, deep learning plays an increasingly significant role in
the field of SAR object detection. Li et al. [33] utilized transfer learning, feature fusion,
and hard negative mining to implement Faster RCNN on SAR images. Kang et al. [34]
combined traditional and deep learning methods and used CFAR as the post-processing
component of Faster RCNN to recalculate low-scoring bounding boxes in order to improve
detection results. The framework proposed by Qian et al. [35] is based on Mask R-CNN and
employs both Single-Mask and Multiple-Masks. Considering the speed and efficiency of a
one-stage detector, there have also been studies [36–38] based on YOLO. Zhou et al. [38]
proposed a lightweight YOLOv4 ship detection method that could significantly reduce
the number of parameters while maintaining high precision. Zheng et al. [39] proposed a
multi-features method with two parallel channels to extract, respectively, deep learning
features and handcrafted features.

With advances in deep learning, some new techniques have been deployed in SAR
object detection. Song et al. [40] used deformable convolutional networks (DCNs) [41] to
extract features and introduce contrastive learning to compare the RoI features of original
and augmented targets, which improved the robustness of the network to the change in
target shape. Scattering points have recently been used in various studies [42–44] to guide
networks in SAR object detection. Fu et al. [42] proposed an anchor-free network that
applies key scattering points to guide network training and uses predicted key scattering
point locations as offsets for deformable convolution modules. To prevent the discrete-
ness of objects, Kang et al. [43] designed a framework composed of a scattering point
relation module. Sun et al. [44] extracted strong scattering points by CFAR and utilized the
scattering points to classify ships by a ship classification encoder module.

2.2. Oriented Object Detection

With the rapid development of deep learning networks in the field of remote sens-
ing, many detectors based on oriented bounding box (OBB) have been proposed. RoI
Transformer [45] spatially deforms the RoI and learns deformation parameters under the
supervision of oriented-bounding-box (OBB) annotations. Gliding Vertex [46] initially iden-
tifies the horizontal box and then executes sliding (Gliding) on the horizontal box’s four
fixed points to acquire the oriented box. CSL [47] converts the angle prediction assignment
of regression into a classification task and provides a circular smooth labeling strategy
for dealing with the periodicity of angles. R3Det [48] uses horizontal anchors in the first
stage to increase speed and the number of proposals, then refines rotated anchors in the
refinement stage to accommodate dense sceneries. S2ANet [49] employs an active rotation
filter to encode orientation information and subsequently generates orientation-sensitive
and orientation-invariant features to reduce the disparity between classification scores
and localization precision. Oriented RepPoints [50] provides an effective adaptive point
learning algorithm capable of capturing the geometric information of instances with vari-
ous orientations for the detection of aerial objects. The first stage of Oriented R-CNN [51]
adopts a simple oriented RPN structure, which is a lightweight, fully convolutional network
with few parameters, and modifies the RPN regression branch output parameters from
4 to 6. To overcome the mismatch between the metric and the loss function, KFIoU [52]
presents a skewed Intersection-over-Union (IoU) based on the Kalman filter.

Oriented object detection in SAR images has various applications, such as the detection
of ships for maritime surveillance [53], the detection of bridges [54] and vehicles [55] for
infrastructure inspection, and the detection of buildings for urban planning and disaster
management [56]. The availability of new datasets, such as RSDD-SAR [57], has facilitated
the development of rotated target detection algorithms with state-of-the-art performance.
Recent studies [53,58,59] have demonstrated that polar encoding and multi-scale CNNs
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are examples of deep learning techniques that can be used to enhance the performance of
oriented ship detection algorithms.

2.3. Improved RPN

In the present era of object detection, especially for complicated scenes, two-stage ap-
proaches have dominated the paradigm. In numerous anchor-based detectors, the method
of generating anchors with a sliding window on feature maps is commonly utilized. A
Region Proposal Network (RPN) was proposed by Faster RCNN to create object proposals,
and a tiny fully convolutional network was utilized to map each sliding window anchor to
a low-dimensional feature. Numerous studies have attempted to enhance the performance
of RPN, a crucial component of two-stage detectors. In general, the result of one stage
is used as the input for the subsequent stage, and a multi-step refinement is iteratively
performed until a precise localization is achieved [60]. Zhong et al. [61] sequentially stacked
two RPN sub-networks, with RPN 2 modified to take output proposals from RPN 1 as
a reference. Siamese Cascaded RPN [62] employs a new feature transfer block based on
deformable convolution to maximize the utilization of multilevel features for each RPN.
Wang et al. [63] proposed a guided anchoring for RPN to build an adaptive shape bound-
ing box via deformable convolution that could adapt to the changes in anchor geometry.
Vu et al. [20] advocated the use of adaptive convolution to guide anchors and deploy a
single anchor per place.

2.4. Contrastive Learning

Contrastive Learning (CL) is a discriminative method that seeks to learn an embedding
space in which comparable sample pairs are close together and dissimilar sample pairs
are far apart; it can be used in both supervised and unsupervised settings. To achieve this,
the approach calculates the similarity of two embeddings using a loss function [64]. For
computer vision applications, picture feature representations retrieved from the encoder
are used to measure contrastive loss. Wang et al. [65] presented Dense Contrast Learning
(DenseCL), an algorithm that enables self-supervised learning by maximizing the pixel-
level pairwise contrast loss between two views of the input image. Momentum Contrast
(MoCo) establishes a dynamic dictionary that keeps the sample properties in the queue
as consistent as feasible. Chen et al. [66] recently developed self-supervised contrastive
learning methods without the need for specialized architectures or memory banks. Instead
of focusing on pixel-level information, the algorithm learns to construct representations that
encode high-level properties that effectively differentiate across images. Khosla et al. [67]
offered a new supervised loss, the optimization goal of which is to make the normalized
embedding of the same label as close as possible, and the embedding of distinct labels as
far away as possible.

3. Material and Methodology
3.1. Dataset

The dataset includes 30 panoramic SAR tiles of port areas from the Chinese Gaofen-3,
which is a civilian SAR satellite. It is an extension of the dataset SRSDD-v1.0 [68] from 6 to
16 classes. Table 1 lists the details of the number of various ship types in the training dataset
and test dataset. The dataset contains nearly identical data for six types of ships, such as the
SRSDD-v1, namely ore-oil, Container, Fishing, LawEnforce, Dredger, and Cell-Container.
Additionally, the original construction method of the dataset was used to include ten new
types of ships. These original SAR images are in spotlight (SL) mode with a resolution of
1 m in range direction and azimuth, which provides 4632 SAR ships and consists of two
different polarization methods (HH and VV), and have been cropped to 1024 × 1024 pixels
slices. The annotation format refers to the format of the DOTA dataset [69]. The annotation
uses a rotatable box for labeling through the coordinates of the four vertices of the box
and cover sixteen different classes of ships. In addition, most of the images in the dataset
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contain nearshore areas with complex background interference, which greatly increases the
challenge of ship detection.

Table 1. Statistics of the number of vessels of each type.

Target Train Dataset Size Test Dataset Size

ore-oil 142 28
Container 1744 393

Fishing 229 46
LawEnforce 20 3

Dredger 186 53
Cell-Container 103 28

Type1 27 7
Type2 26 8
Type3 371 149
Type4 40 10
Type5 31 10
Type6 140 52
Type7 68 18
Type8 284 119
Type9 48 14
Type10 174 63
Total 3633 999

3.2. Overview Network Structure

Our proposed method SPG-OSD is built on the two-stage detector, where the first stage
generates high-quality oriented proposals, while the second stage refines the detections; the
overall framework is shown in Figure 2. We establish our baseline and propose scattering-
point-guided RPN and RoI contrastive loss for the network. ResNet50 is employed as the
backbone to extract image features, whereas DCNv2 [70] is applied in the latter two stages
to better extract the geometric features of ships and to expand the receptive field of convo-
lution. The outputs of the backbone of the last four stages are denoted as {C2, C3, C4, C5},
and their relative downsampling ratios to the input image are {4, 8, 16, 32}. Our feature
pyramid network (FPN) follows PANet [71], which can confuse multiscale information
by combining high-level features of deep convolutional layers with low-level features of
shallow convolutional layers and increase the capacity to localize small objects in SAR
images. Specifically, after the downsampling process, the network upsamples the feature
map of the convolutional layer and obtains the downsampled information of the same level
through horizontal connections, which transfers the high-level semantic information to the
low-level layer and utilizes the high-level semantic information to improve the detection
effect of the low-level layer. The Bottom-up Path Augmentation module then transmits
the low-level information upward, retaining the shallow-level feature information more
effectively. The four levels of features {P2, P3, P4, P5} are obtained by FPN.

The RPN takes four levels of features {P2, P3, P4, P5} of FPN as input and adds a head
of the same design (one 3 × 3 convolutional layer and two sibling 1 × 1 convolutional
layers) for each feature level. The anchor is denoted by a 4-dimensional vector (x, y, w, h)
and the oriented bounding box is denoted by a 6-dimensional vector (x, y, w, h, ∆α, ∆β),
where (x, y) are the center coordinates, and w and h are the width and height of the outer
rectangle. ∆α and ∆β are the offsets from the top and right midpoints of the outer rectangle,
as shown in Figure 3. Fixed-size features are extracted from each oriented proposal using
rotated RoI Alignment, which projects the oriented rectangular onto the feature map. In the
classification branch, we use Equlization Loss v2 [72] to alleviate the long-tail problem of
SAR datasets. The loss increases the weight of positive gradients and decreases the weight
of negative gradients based on their accumulated positive-to-negative gradient ratio.
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3.3. Scattering-Point-Guided RPN
3.3.1. Scattering Point Extraction

The SAR image is the transformation between the ground points at the resolution unit
scale and the image points at the pixel scale by the SAR system. The main content of the
transformation is to convert the echo of the ground point into the image intensity, so the
image intensity reflects the structural scattering characteristics of the target. Therefore,
we use scattering feature points to guide the RPN so that the network can better adapt to
changes in SAR imaging conditions. Since data augmentation is used during the training
phase (see Section 4.2 for details), the scatter features are extracted on the data augmented
images. After converting the ground truth from the oriented box to the horizontal box
and cropping the ground truth from images, we extract feature points that reflect their
scattering distributions via the Harris corner detector [73] in the ground truth box of each
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ship target. In order to more accurately locate the true corners without missing them, points
with a response value greater than 0.01 times the maximum response value are considered
feature points. Then, when the number of feature points in a ground truth is more than 20,
we cluster the feature points into 9 categories through K-means, and the center points of the
cluster are defined as the key scattering points, the locations of which contain the structural
features of different ships and are insensitive to changes in SAR imaging conditions, as
shown in Figure 4. If there are less than 20 feature points in a ground truth, the nine points
with the highest response value are chosen as key scattering points. The offsets of the
nine key scattering points in each ground truth box with reference to the ground truth
center point coordinate pgt are represented as

{
∆qk

gt | k = 1, . . . , 9
}
∈ R1×18 and the key

scattering point locations map Qgt ∈ R(H/s)×(W/s)×18 ( s is the output stride) is composed

by the offsets
{

∆qk
gt | k = 1, . . . , 9

}
in the corresponding ground truth box assigned to each

anchor box.
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3.3.2. Feature Alignment

Nonetheless, the offsets utilized during network training diverge from those employed
in the ground truth, since they are determined with respect to the anchor center point, as
opposed to the ground truth center point. To account for this disparity, it becomes necessary to
revise the offsets ∆qk

gt in Qgt for each ground truth, so that they are associated with the position
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of the anchor center point p on the feature map {Pi, i = 2, 3, 4, 5} ∈ R(H/s)×(W/s)×c (c is the
output channel) by the following equation:

∆qk
p = ∆qk

gt + pgt − p, (1)

an illustration is shown in Figure 5. The key scattering point locations map
Sgt ∈ R(H/s)×(W/s)×18 composed by the updated offsets ∆qk

p is obtained.
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Then, a branch comprised of a 1× 1 convolution and a 3× 3 convolution is added
to the RPN to predict the locations of key scattering points in each anchor box. At each
location p in the map Pi ∈ R(H/s)×(W/s)×c, the offsets

{
∆qk | k = 1, . . . , 9

}
∈ R1×18 of

9 possible key scattering point locations from the current location are predicted and the
offset map Q ∈ R(H/s)×(W/s)×18 is obtained. Since these locations are computed at different
scales, the locations coordinates need to be restored to the original size:

x2 =
W
w
· x1, y2 =

H
h
· y1 (2)

where (W, H) and (w, h) represent original size and scaled size, respectively. (x1, y1) and
(x2, y2) represent the scaled coordinates of key scattering points in the offset map Q and
the original coordinates, respectively. The final predicted key scattering point locations
map S ∈ R(H/s)×(W/s)×18 is obtained by (2).

3.3.3. Loss Calculation and Feature Guidance

In order to better measure the similarity of the two point sets, we propose to use
the Earth Mover’s distance (EMD) [74] as the loss to calculate the similarity between the
predicted points N ∈ Rd×9×2, d = (H/s)× (W/s) by reshaping map S and referenced
ground truth points Ngt ∈ Rd×9×2, d = (H/s)× (W/s) by reshaping map Sgt:

Lscatter = dEMD
(

N , Ngt
)
= minφ:N→Ngt ∑xi∈N ‖xi − φ(xi)‖2. (3)

In fact, the chamfer distance (CD) [75] is another candidate method to evaluate the
similarity between two sets of points. However, EMD captures geometry better than CD
and can make full use of the information of each point in the point sets. Therefore, we
choose to use EMD for key scattering point locations loss.

In a two-stage detector, RPN densely generates a large number of anchor boxes in the
first stage and classifies the foreground and background. Due to the variety of imaging
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conditions and the presence of a substantial amount of interfering noise and artificial
facilities in SAR images, particularly in the nearshore background, RPN is unable to
generate effective anchor boxes and correctly differentiate foreground and background. As
a result, we use the predicted key scattering point locations as the offset of the deformable
convolution to make the RPN focus on extracting features near the key scattering points.
We can acquire offset map Q from the output of the key scattering point prediction branch,
and then apply deformable convolution Φ3×3 to the four levels of feature Pi with the offsets
∆qk in map Q. For each of the locations p on the feature map:

P′i (p) = Φ3×3(Pi, {∆qk}) = ∑9
k=1 ω(∆qk) · Pi(p + ∆qk) (4)

where ω is a set of learnable weights and P′i is the scattering-point-guided feature map.
After that, the classification and regression of RPN can have better performance. The
improved RPN loss function is shown as follows:

Lrpn = λ1Lscatter + Lr_cls + Lr_reg (5)

where λ1 is a balancing parameter for Lscatter and is set to 0.5 by default. Lr_cls is the cross
entropy loss and Lr_reg is the Smooth L1 loss.

3.4. RoI Contrastive Loss

Due to the similarity of different ship classes in SAR images, the detector frequently
fails to classify. It is challenging to construct a robust classifier because of the small margins
between the RoI features of different categories. To increase classification accuracy, we
introduce a supervised contrastive learning strategy and propose the RoI contrastive loss
for the network to learn more discriminative object embeddings. On the basis of the original
classification head and location regression head, we add a supervised contrastive learning
head in parallel and incorporate contrastive encoding loss into the iterative optimization
loss function. Contrastive learning is applied to feature extraction between classes and
within classes of the target, and the loss through cosine similarity is iteratively calculated to
reduce intra-class differences and increase inter-class differences, improving the accuracy
of classification. In a two-stage detector, the RPN inputs the extracted features from the
backbone network, outputs region proposal candidates, and regresses the bounding box
if the prediction contains an object. In a two-stage detector, the RPN inputs the features
extracted by the backbone network and outputs region proposal candidates, while RoI head
classifies each region proposal candidate and regresses the bounding box if the prediction
contains an object. In the training pipeline, the RoI head feature extractor encodes the
region proposals as vector embeddings fi ∈ R1024. Then, the contrastive branch with a
2-layers multi-layer-perceptron (MLP) head encodes the RoI feature to contrastive feature
vi ∈ RDC , by default DC = 128, and is calculated as

vi = W1σ(W2 fi) (6)

where W1 and W2 are trainable weights, and σ is an RELU function.
We then measure the similarity between object proposal representations of Rol features

encoded in the contrast head, and optimize the contrast objective to maximize the consis-
tency between object proposals from the same class and facilitate divergence of proposals
from different classes. For a mini-batch containing N Rol box features {vi, ui, yi}N

i=1, vi is
the Rol feature encoded by the contrastive head of the i-th region proposal, ui is the lo score
with the matched ground truth boxes, and yi is the label of ground truth. We compute the
following loss function:

LC =
1
N ∑N

i=1 f (ui) · Lvi (7)
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Lvi
=

−1
Nyi − 1 ∑2N

j=1

Remote Sens. 2023, 15, x FOR PEER REVIEW 11 of 23 
 

 

ℒ௩ = ିଵேିଵ ∑     𝟙    ஷ ⋅ 𝟙௬ୀ௬ೕଶேୀଵ   ⋅ log ୣ୶୮ቀ𝒛⋅𝒛ೕഓ ቁ∑ 𝟙ಯೖೖಿసభ  ⋅ୣ୶୮ቀ𝒛⋅𝒛ೖഓ ቁ  (8)

where 𝑁௬ is the number of embeddings with the same label y, and 𝜏 is the hyper-pa-
rameter temperature [76]. 𝑓ሺ𝑢ሻ controls whether the proposal is added to the loss calcu-
lation:  𝑓ሺ𝑢ሻ = 𝕀ሼ𝑢 ⩾ 𝜙ሽ, (9)

by default 𝜙=0.5.  
When calculating the differences in image features, cosine similarity is used for meas-

urement. Cosine similarity employs the cosine value of the angle between the two vectors 
in the vector space as the measure of the difference between the two individuals. It is 
widely used in machine learning in high-dimensional space, such as face recognition 
based on cosine similarity and change detection of remote sensing images. The proposed 
feature map is encoded into 128 dimensions. In essence, these features belong to high-
dimensional space. The cosine similarity algorithm converts these features into high-di-
mensional vectors. The value of the angle cosine between two vectors can indicate 
whether or not they point in the same direction. During the training phase, the contrastive 
loss is added to the loss of the entire network, resulting in the following final loss function:  𝐿 = 𝐿 + 𝐿௦ + 𝐿 + 𝜆ଶ𝐿ோூ  (10)

where 𝐿௦ is the Equlization Loss v2 and 𝐿 is the Smooth 𝐿1 loss. 𝜆ଶ is a balancing 
parameter for 𝐿RIC and is set as 0.2 in this article.  

4. Results 
4.1. Implementation Details 

The experiments were implemented based on the MMRotate [77] codebase. Given 
the properties of the SAR image and the orientation of the vessel under examination, the 
data augmentation approach exclusively employs 90 and 180 degree rotations to augment 
the sample set. We set the hyper-parameter temperature as 0.1 and threshold φ as 0.5 in 
RoI contrastive loss. For RPN, an anchor with an IoU overlap with any ground-truth box 
is higher than 0.7, or an anchor with an IoU overlap with ground-truth box is the highest 
and with an IoU is higher than 0.3 are considered positive samples, and an anchor is 
marked as a negative sample when its IoU is lower than 0.3. The IoU threshold for NMS 
(non-maximum suppression) is set as 0.8. Due to the dense docking of ships in the port, 
Soft-NMS is used in the second stage of the detector and the IoU threshold is set as 0.1 in 
the testing phase. The model is trained on a single 48 GB NVIDIA RTX 8000 GPU with a 
batch size of four. We optimize the overall network with the SGD algorithm with a mo-
mentum of 0.9 and a weight decay of 0.005. 

4.2. Evaluation Metric 
In the experiments, widely used metrics including precision, recall, F1-score, and av-

erage precision (AP) are adopted to evaluate the performance of the detectors. The preci-
sion and recall are computed as follows:  precision = ேౌேౌାேూౌ  (11)recall = ேౌேౌାேూొ  (12)

where 𝑁, 𝑁, and 𝑁 denote the number of true positives (TP), false positives (FP), 
and false negatives (FN), respectively. A detection box is typically labeled as TP if the IoU 
between the predicted box and the ground truth is above a threshold (generally set as 0.5). 
Otherwise, it is considered as FP that represents false alarms. A ground truth that has no 

i 6=j ·

Remote Sens. 2023, 15, x FOR PEER REVIEW 11 of 23 
 

 

ℒ௩ = ିଵேିଵ ∑     𝟙    ஷ ⋅ 𝟙௬ୀ௬ೕଶேୀଵ   ⋅ log ୣ୶୮ቀ𝒛⋅𝒛ೕഓ ቁ∑ 𝟙ಯೖೖಿసభ  ⋅ୣ୶୮ቀ𝒛⋅𝒛ೖഓ ቁ  (8)

where 𝑁௬ is the number of embeddings with the same label y, and 𝜏 is the hyper-pa-
rameter temperature [76]. 𝑓ሺ𝑢ሻ controls whether the proposal is added to the loss calcu-
lation:  𝑓ሺ𝑢ሻ = 𝕀ሼ𝑢 ⩾ 𝜙ሽ, (9)

by default 𝜙=0.5.  
When calculating the differences in image features, cosine similarity is used for meas-

urement. Cosine similarity employs the cosine value of the angle between the two vectors 
in the vector space as the measure of the difference between the two individuals. It is 
widely used in machine learning in high-dimensional space, such as face recognition 
based on cosine similarity and change detection of remote sensing images. The proposed 
feature map is encoded into 128 dimensions. In essence, these features belong to high-
dimensional space. The cosine similarity algorithm converts these features into high-di-
mensional vectors. The value of the angle cosine between two vectors can indicate 
whether or not they point in the same direction. During the training phase, the contrastive 
loss is added to the loss of the entire network, resulting in the following final loss function:  𝐿 = 𝐿 + 𝐿௦ + 𝐿 + 𝜆ଶ𝐿ோூ  (10)

where 𝐿௦ is the Equlization Loss v2 and 𝐿 is the Smooth 𝐿1 loss. 𝜆ଶ is a balancing 
parameter for 𝐿RIC and is set as 0.2 in this article.  

4. Results 
4.1. Implementation Details 

The experiments were implemented based on the MMRotate [77] codebase. Given 
the properties of the SAR image and the orientation of the vessel under examination, the 
data augmentation approach exclusively employs 90 and 180 degree rotations to augment 
the sample set. We set the hyper-parameter temperature as 0.1 and threshold φ as 0.5 in 
RoI contrastive loss. For RPN, an anchor with an IoU overlap with any ground-truth box 
is higher than 0.7, or an anchor with an IoU overlap with ground-truth box is the highest 
and with an IoU is higher than 0.3 are considered positive samples, and an anchor is 
marked as a negative sample when its IoU is lower than 0.3. The IoU threshold for NMS 
(non-maximum suppression) is set as 0.8. Due to the dense docking of ships in the port, 
Soft-NMS is used in the second stage of the detector and the IoU threshold is set as 0.1 in 
the testing phase. The model is trained on a single 48 GB NVIDIA RTX 8000 GPU with a 
batch size of four. We optimize the overall network with the SGD algorithm with a mo-
mentum of 0.9 and a weight decay of 0.005. 

4.2. Evaluation Metric 
In the experiments, widely used metrics including precision, recall, F1-score, and av-

erage precision (AP) are adopted to evaluate the performance of the detectors. The preci-
sion and recall are computed as follows:  precision = ேౌேౌାேూౌ  (11)recall = ேౌேౌାேూొ  (12)

where 𝑁, 𝑁, and 𝑁 denote the number of true positives (TP), false positives (FP), 
and false negatives (FN), respectively. A detection box is typically labeled as TP if the IoU 
between the predicted box and the ground truth is above a threshold (generally set as 0.5). 
Otherwise, it is considered as FP that represents false alarms. A ground truth that has no 

yi=yj · log
exp

(
zi ·

zj
τ

)
∑N

k=1

Remote Sens. 2023, 15, x FOR PEER REVIEW 11 of 23 
 

 

ℒ௩ = ିଵேିଵ ∑     𝟙    ஷ ⋅ 𝟙௬ୀ௬ೕଶேୀଵ   ⋅ log ୣ୶୮ቀ𝒛⋅𝒛ೕഓ ቁ∑ 𝟙ಯೖೖಿసభ  ⋅ୣ୶୮ቀ𝒛⋅𝒛ೖഓ ቁ  (8)

where 𝑁௬ is the number of embeddings with the same label y, and 𝜏 is the hyper-pa-
rameter temperature [76]. 𝑓ሺ𝑢ሻ controls whether the proposal is added to the loss calcu-
lation:  𝑓ሺ𝑢ሻ = 𝕀ሼ𝑢 ⩾ 𝜙ሽ, (9)

by default 𝜙=0.5.  
When calculating the differences in image features, cosine similarity is used for meas-

urement. Cosine similarity employs the cosine value of the angle between the two vectors 
in the vector space as the measure of the difference between the two individuals. It is 
widely used in machine learning in high-dimensional space, such as face recognition 
based on cosine similarity and change detection of remote sensing images. The proposed 
feature map is encoded into 128 dimensions. In essence, these features belong to high-
dimensional space. The cosine similarity algorithm converts these features into high-di-
mensional vectors. The value of the angle cosine between two vectors can indicate 
whether or not they point in the same direction. During the training phase, the contrastive 
loss is added to the loss of the entire network, resulting in the following final loss function:  𝐿 = 𝐿 + 𝐿௦ + 𝐿 + 𝜆ଶ𝐿ோூ  (10)

where 𝐿௦ is the Equlization Loss v2 and 𝐿 is the Smooth 𝐿1 loss. 𝜆ଶ is a balancing 
parameter for 𝐿RIC and is set as 0.2 in this article.  

4. Results 
4.1. Implementation Details 

The experiments were implemented based on the MMRotate [77] codebase. Given 
the properties of the SAR image and the orientation of the vessel under examination, the 
data augmentation approach exclusively employs 90 and 180 degree rotations to augment 
the sample set. We set the hyper-parameter temperature as 0.1 and threshold φ as 0.5 in 
RoI contrastive loss. For RPN, an anchor with an IoU overlap with any ground-truth box 
is higher than 0.7, or an anchor with an IoU overlap with ground-truth box is the highest 
and with an IoU is higher than 0.3 are considered positive samples, and an anchor is 
marked as a negative sample when its IoU is lower than 0.3. The IoU threshold for NMS 
(non-maximum suppression) is set as 0.8. Due to the dense docking of ships in the port, 
Soft-NMS is used in the second stage of the detector and the IoU threshold is set as 0.1 in 
the testing phase. The model is trained on a single 48 GB NVIDIA RTX 8000 GPU with a 
batch size of four. We optimize the overall network with the SGD algorithm with a mo-
mentum of 0.9 and a weight decay of 0.005. 

4.2. Evaluation Metric 
In the experiments, widely used metrics including precision, recall, F1-score, and av-

erage precision (AP) are adopted to evaluate the performance of the detectors. The preci-
sion and recall are computed as follows:  precision = ேౌேౌାேూౌ  (11)recall = ேౌேౌାேూొ  (12)

where 𝑁, 𝑁, and 𝑁 denote the number of true positives (TP), false positives (FP), 
and false negatives (FN), respectively. A detection box is typically labeled as TP if the IoU 
between the predicted box and the ground truth is above a threshold (generally set as 0.5). 
Otherwise, it is considered as FP that represents false alarms. A ground truth that has no 

i 6=k · exp
(
zi · zk

τ

) (8)

where Nyi is the number of embeddings with the same label yi, and τ is the hyper-parameter
temperature [76]. f (ui) controls whether the proposal is added to the loss calculation:

f (ui) = I{ui > φ} (9)

by default φ = 0.5.
When calculating the differences in image features, cosine similarity is used for mea-

surement. Cosine similarity employs the cosine value of the angle between the two vectors
in the vector space as the measure of the difference between the two individuals. It is
widely used in machine learning in high-dimensional space, such as face recognition based
on cosine similarity and change detection of remote sensing images. The proposed feature
map is encoded into 128 dimensions. In essence, these features belong to high-dimensional
space. The cosine similarity algorithm converts these features into high-dimensional vec-
tors. The value of the angle cosine between two vectors can indicate whether or not they
point in the same direction. During the training phase, the contrastive loss is added to the
loss of the entire network, resulting in the following final loss function:

L = Lrpn + Lcls + Lreg + λ2LRIC (10)

where Lcls is the Equlization Loss v2 and Lreg is the Smooth L1 loss. λ2 is a balancing
parameter for LRIC and is set as 0.2 in this article.

4. Results
4.1. Implementation Details

The experiments were implemented based on the MMRotate [77] codebase. Given the
properties of the SAR image and the orientation of the vessel under examination, the data
augmentation approach exclusively employs 90 and 180 degree rotations to augment the
sample set. We set the hyper-parameter temperature as 0.1 and threshold ϕ as 0.5 in RoI
contrastive loss. For RPN, an anchor with an IoU overlap with any ground-truth box is
higher than 0.7, or an anchor with an IoU overlap with ground-truth box is the highest and
with an IoU is higher than 0.3 are considered positive samples, and an anchor is marked as a
negative sample when its IoU is lower than 0.3. The IoU threshold for NMS (non-maximum
suppression) is set as 0.8. Due to the dense docking of ships in the port, Soft-NMS is used
in the second stage of the detector and the IoU threshold is set as 0.1 in the testing phase.
The model is trained on a single 48 GB NVIDIA RTX 8000 GPU with a batch size of four.
We optimize the overall network with the SGD algorithm with a momentum of 0.9 and a
weight decay of 0.005.

4.2. Evaluation Metric

In the experiments, widely used metrics including precision, recall, F1-score, and
average precision (AP) are adopted to evaluate the performance of the detectors. The
precision and recall are computed as follows:

precision =
NTP

NTP + NFP
(11)

recall =
NTP

NTP + NFN
(12)

where NTP, NFP, and NFN denote the number of true positives (TP), false positives (FP),
and false negatives (FN), respectively. A detection box is typically labeled as TP if the IoU
between the predicted box and the ground truth is above a threshold (generally set as 0.5).
Otherwise, it is considered as FP that represents false alarms. A ground truth that has no
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matched detection box is regarded as FN that represents a missing ship. The F1-score is the
harmonic mean of the precision and recall:

F1 =
2× Precision × Recall

Precision + Recall
(13)

All prediction results are sorted in descending order according to their detection
confidence scores. The precision and recall are calculated at each threshold to obtain a
precision-recall curve (PRC). The AP metric is defined as the integral under the correspond-
ing PRC as:

AP =
∫

Precision| recall =r (14)

In this article, AP0.5 is calculated at the IoU threshold of 0.5 and AP0.75 is calculated at
the IoU threshold of 0.75. The mean average precision (mAP) represents the mean AP of all
categories and measures the detection ability of the trained model on all categories:

mAP =
1

Nc
∑Nc

i APi (15)

where Nc is the number of categories and APi is the AP of category i.

4.3. Comparison with Other Methods

To validate the effectiveness of SPG-OSD, we compared our method with eight ori-
ented object detection methods for our dataset; Table 2 reports the detailed comparison
results. These methods include: (1) Anchor-based one-stage object detectors: CSL [47],
R3Det [48], S2ANet [49], and KFIoU [52]. (2) Anchor-free object detectors: Oriented Rep-
Points [50]. (3) Anchor-based two-stage object detectors: RoI Transformer [45], Gliding
Vertex [46], and Oriented-RCNN [51]. The backbones were uniformly set to ResNet-50.
Our method reaches 69.34% mAP and surpasses all comparison methods, which is very
competitive compared to the current state-of-the-art methods. In addition, our baseline
reaches 65.90% mAP, which also demonstrates the effectiveness of our improvement for the
framework. SPG-OSD significantly increases AP0.5, AP0.75 precision, recall, and F1 by more
than 4.8%, 5.5%, 10.0%, 4.5%, and 9.5% over other methods, respectively. It is also worth
mentioning that SPG-OSD still has a significant improvement under the strict metrics of
AP0.75, indicating that the accuracy of detection location is greatly improved. Figure 6
shows the comparison between the detection results of Oriented RCNN and SPG-OSD
proposed in this paper on our dataset. By comparison, our method shows immense superi-
ority and significantly reduces false alarms and missing ships. SPG-OSD can effectively
distinguish background noise and nearshore facilities, and also has a good performance in
small object detection. To better demonstrate the experimental results, Figure 7 illustrates
the confusion matrixes of Oriented-RCNN and SPG-OSD. The last column of the confusion
matrix is the rate of missing ships, and the last row is the rate of targets with IoU less than
the threshold, including inaccurate predictions and false alarms. Taking the first row in
Figure 7b as an example, in all the boxes labeled as ore-oil, 71% were correctly identified as
ore-oil, and 5%, 8%, 2%, and 2% were mistakenly identified as Container, Dredger, Type1,
Type5, and 8% were not detected. The comparison shows that SPG-OSD has a remarkable
improvement in LawEnforce, Type1, and Type5. Most of the other categories have also
been improved to varying degrees. A small number of categories have a slight decrease,
which is class equilibration due to long-tail loss. By comparing the last column, it can be
found that that SPG-OSD substantially reduces the probability of Type1, Type4, and Type5
being recognized as background. The superiority and robustness of the proposed method
in ship detection and classification in SAR images were verified through the comparison of
a series of experimental results.
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Table 2. Comparison with state-of-the-art methods.

Method Precision Recall F1 AP0.5 AP0.75

Gliding Vertex 0.2982 0.6197 0.4026 0.5319 0.1501
RoI Transformer 0.4393 0.6730 0.5316 0.5608 0.1305

R3Det 0.0633 0.6769 0.1158 0.4096 0.1479
CSL 0.0465 0.6388 0.0867 0.2758 0.0756

S2ANet 0.1093 0.7203 0.1898 0.5751 0.1459
KFIoU 0.0831 0.8304 0.1511 0.5303 0.1852

Oriented RepPoints 0.0343 0.8951 0.0661 0.4828 0.0951
Oriented-RCNN 0.3665 0.7406 0.4903 0.6447 0.1885
Baseline (ours) 0.3891 0.7717 0.5173 0.6590 0.2048

SPG-OSD (ours) 0.4669 0.7859 0.5858 0.6934 0.2437
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4.4. Ablation Studies

In this section, we conduct a series of ablation experiments on our dataset to analyze
the effectiveness of each proposed component in SPG-OSD. The preliminary network
(illustrated in Section 3.2) without SPG RPN and RIC loss is denoted as the baseline. We
first evaluate the performance of the baseline, and then the SPG RPN and RIC loss based
on the baseline are separately studied in detail. For fair comparison, all experiments
are performed with the same settings and training strategy. The specific comparisons of
experimental results are briefly reported in Table 3 and the comparisons of the confusion
matrixes are presented in Figure 8.

Table 3. Influence of each component in the proposed method.

SPG RPN RIC Loss Precision Recall F1 AP0.5 AP0.75

× × 0.3891 0.7717 0.5173 0.6590 0.2048√
× 0.4486 0.7798 0.5696 0.6805 0.2319

×
√

0.4448 0.7754 0.5653 0.6707 0.2313√ √
0.4669 0.7859 0.5858 0.6934 0.2437
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Figure 8. Visualization of the results by confusion matrixes. The horizontal axis corresponds to
the predicted label and the vertical axis corresponds to the ground-truth label, respectively. Rows
or columns 1 to 16 correspond to ore-oil, Container, Fishing, LawEnforce, Dredger, Cell-Container,
Type1-10, and background, respectively. (a) The confusion matrix of the baseline. (b) The confusion
matrix of the baseline with the SPG RPN. (c) The confusion matrix of the baseline with the RIC Loss.
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4.4.1. Effect of Scattering-Point-Guided RPN

We first investigate the impact of the SPG RPN by adding it to the baseline. The results of
the ablation experiments in the second row of Table 3 show that the SPG RPN module achieves
comparable performance. The baseline with SPG RPN increases the precision, F1, AP0.5, and
AP0.75 by 5.9%, 5.2%, 2.1%, and 2.7% over the baseline, respectively. The greatest improvement
among these metrics is found to be in precision, resulting in fewer false detections. Figure 8a,b
shows that almost all categories have been improved with the help of SPG RPN. SPG RPN
can predict the key scattering points near each anchor and enhance the feature extraction near
the scattering points. The predicted key scattering point positions after feature alignment are
used as the offsets of the deformable convolution module, which extracts feature maps before
inputting the classification branch and the regression branch of RPN. Therefore, when the
densely generated anchors are regressed in the first stage of the detector, most of the places
that are likely to have ships will be predicted, and the classification accuracy of foreground
and background will be improved. In the end, the number of ships that are not detected in
the second stage of the network will be greatly reduced. To better illustrate the effect of the
SPG RPN, we calculated the sum of the elements in each row of the channel dimension to
generate a visual activation heatmap, shown in Figure 9. We utilized the confidence scores
of the deformable convolution module of the SPG RPN and the convolution module of the
baseline to draw a visualization of feature maps. We used the HSV color space to represent
confidence scores, with orange and yellow representing high confidence scores and purple
and magenta representing low confidence scores. We can observe that the baseline ignores
an unobvious ship target in Figure 9b. Comparing Figure 9b,c, the proposed SPG RPN can
make the targets prominent and enhance the saliency of the targets, and focus more on the
targets and less on the background, which improves the ability of the network to discriminate
between objects and background in SAR images.
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Figure 9. Visualization of the confidence heatmaps. The yellow ellipse represents missing ship.
(a) Ground truth in SAR image. (b) Visualization of confidence heatmap extracted by convolution
in baseline without SPG RPN. (c) Visualization of confidence heatmap extracted by deformable
convolution in SPG RPN (blue feature map in Figure 2).



Remote Sens. 2023, 15, 1411 17 of 22

4.4.2. Effect of RoI Contrastive Loss

In the third row of Table 3, the results of the ablation experiments indicate that the RIC
loss has increased by 0.0117 for AP0.5, 0.0265 for AP0.75, 0.048 for F1, and 0.0557 for precision
compared to the baseline. Figure 8a,c shows significant improvement in ore-oil, which is
different from SPG RPN. From the confusion matrix, the misclassification of the ore-oil,
Dredger, Cell-Container, and Type2 into other categories is reduced. RIC loss increases the
inter-class distance and reduces the intra-class distance through contrastive supervised
learning, which makes the proposal features extracted by the network more discriminative.
In the ship detection of SAR images, a portion of a certain ship is frequently predicted as
ships of other categories, resulting in the detection result for a ship containing bounding
boxes of multiple categories. For instance, the baseline predicts a part of Cell-Container as
ore-oil in Figure 10a, and predicts ore-oil as Cell-Container after adding ore-oil to a larger
outer contour in Figure 10c. This is caused by the lack of discrimination in the learned ship
features and the inability to remove redundant bounding boxes during NMS processing. In
comparison, RIC loss effectively reduces false alarms, especially when multiple bounding
boxes overlap in Figure 10. t-SNE visualization of object proposal embeddings confirms the
effectiveness of the RIC loss in reducing intra-class variance and forming sharper decision
boundaries, as shown in Figure 11. The majority of categories shift from a dispersed
distribution to a clustered distribution. The experimental outcomes corresponded well
with our anticipations.
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5. Discussion

The experimental results of our dataset and comparisons with other state-of-the-art
object detection algorithms demonstrate the superiority of the proposed method. The
performance of orientated ship detection in SAR images can be significantly improved with
the implementation of either our proposed SPG RPN or RIC loss. The results show that SPG-
OSD significantly reduces false alarms and missing ships, while improving the accuracy of
detection location. The proposed method is effective in distinguishing background noise and
nearshore facilities, and also performs well in small object detection. However, there are also
some drawbacks to the proposed method. First, the use of key scattering points for feature
extraction may not be effective in certain scenarios where there are no clear scattering points.
Second, in scenarios where there is a need for real-time detection, anchor-free methods
may be more suitable than the proposed anchor-based method. Third, these two modules
(SPG RPN RIC loss) have distinct effects on the network, as evidenced by their distinct loss
weights. In our tests, we employed default values to make the loss proportional to other
baseline losses. The impact of the loss of weight of the two modules on the network needs
to be investigated in greater detail. Additionally, the two modules are deployed at different
stages in the detector and prioritize distinct optimizations. When back-propagating, the
loss gradients of two stages in a two-stage detector may be influenced by one another. If
the RPN and R-CNN components could be decoupled, the results might be improved. On
the other hand, the methods used in this research could potentially be improved. SPG RPN
introduces a key scattering point mechanism to improve the performance of the RPN in
target detection in SAR images. In effect, there is geometric structure information for the
distribution of key scattering points of a target. Key scattering points of ships of the same
category have comparable topology structure, which can also be confirmed by the similar
distribution of key scattering points of the two Containers in Figure 4c,d. Therefore, we
can further apply the scattering point topology structure to improve the accuracy of ship
classification in SAR images in the future.

6. Conclusions

In this paper, we proposed a novel method named Scattering-Point-Guided RPN
for Oriented Ship Detection (SPG-OSD) in SAR images. The proposed method addresses
the challenges of ship detection in SAR images, such as the various representations of
ship targets and obscuration by background and noise. The proposed method consists of
a two-stage detector with a scattering-point-guided RPN and RoI contrastive loss. The
first stage generates high-quality oriented proposals, while the second stage refines the
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detections. The scattering-point-guided RPN is designed to predict the key scattering
points and guide the RPN network to extract features near these points. The key scattering
point is applied on the RPN to enhance adaptability to SAR imaging conditions and the
discrimination of foreground and background, which establishes the connection between
key scattering points and the geometric features. Furthermore, the RoI contrastive loss
aims to improve discrimination between different categories by reducing the margin of
RoI features within the same class and increasing the margin of RoI features between
different classes. Extensive experiments on the Gaofen-3 satellite SAR ship detection
dataset demonstrate that SPG-OSD achieves state-of-the-art performance in ship detection.
The results show the excellent performance and superiority of our method in comparison
to other methods. The effectiveness of our innovation, including scattering-point-guided
RPN and RoI contrastive loss, is demonstrated in ablation experiments, and it is more
robust to various imaging conditions and cluttered backgrounds. The proposed SPG-OSD
method shows promising results for oriented ship detection in SAR images, and it can be
potentially applied to other fields, such as land use classification and object detection in
SAR images.
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