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Abstract: Current vehicle recognition methods are less concerned simultaneously with: (1) the
scale difference between vehicles and other objects in urban city; and (2) the impact of physical
characteristics of vehicles. Based on the region growth of relative tension, a method for measuring
the similarity of side projection profile of a vehicle’s body is proposed for recognizing vehicles.
First, region growth of relative tension is used to divide 3D point clouds into a series of spatial
regions. Point clouds in these regions are projected to a 2D plane. Then, relevant 2D features are
extracted, including side projection profile of vehicle body and sizes of vehicles. Screening by these
relevant features, part of these regions, and point clouds inside them which conforms to the similarity
measurement conditions of vehicles are selected. Quantitative evaluations on the selected data set
show that the proposed algorithm achieves a recall, precision, and F-score of 0.837, 0.979, and 0.902,
respectively, in recognizing vehicles. Comparative studies demonstrate the superior performance of
the proposed algorithm.

Keywords: relative tension; region growth; side projection profile; vehicle recognition; vehicle-
mounted laser point cloud

1. Introduction

Recently, more and more people have begun to enter the city circle in pursuit of
better medical conditions and education systems (for example, for work, to buy goods
in stores, for general services, etc.). This poses a major challenge to urban planning and
construction. As the number of vehicles in cities grows, vehicle-related researches are of
vital significance for intelligent transport, which has attracted more and more attention
widely. Some progress has been made in vehicle recognition.

Algorithms of vehicles recognition based on image processing are currently mature.
The early research on vehicle recognition divided the vehicle recognition model of remote
sensing images into two types: an implicit model based on appearance and an explicit
model [1]. Explicit models, such as the geometric edge model [2] and the 3D vehicle
model [3], represent the vehicle target by box or wireframe, and match the image from top
to bottom. The implicit model, such as the hierarchical model [4], classifies the extracted
features from bottom to top.

Inspired by the recent advancement of deep learning, many state-of-the-art vehicle
recognition algorithms in remote sensing have been developed [5-10]. For example, for
the object rotation problem, a simple but effective method was proposed to train rotation-
invariant and fisher discriminative CNN models to further boost object recognition per-
formance [5]. The multidimensional features generated by Fourier HOG were creatively
treated as different frequency channel features to recognize remote sensing objects [10].
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With the development of processing technology, the precision of vehicle recognition from
remote sensing images would be further improved.

Recently, the automated analysis of 3D point clouds has become a topic of great
importance in photogrammetry, remote sensing, computer vision, and robotics. One
avenue of research directly addresses the analysis of urban environments. 3D laser scanning
devices collect object surface information without contact, and quickly obtain massive 3D
point clouds with certain attributes in real time. These point clouds reflect important 3D
geospatial information of the city, thereby portraying the complex urban environment [11].
Accurate vehicle recognition is the basis for the applications of laser point cloud data to a
3D urban city [12-18]. Generally, there are two factors that affect the accuracy of vehicle
recognition from 3D point clouds (that is, vehicle neighborhood selection and vehicle
feature extraction).

On the one hand, it is crucial to define the vehicle neighborhood. At present, there are
two basic ways to define the neighborhood of point clouds and a series of derivative methods.

Neighborhood selection is performed for each point. The process involves selecting a
point cloud as the center and define a fixed 3D structure (cube, cylinder, sphere, etc.) as its
neighborhood area. All point clouds in this area are its neighborhood points. The neighbor-
hood of each point cloud is unique, which is conducive to improving the recognition accuracy.
For example, Weinmann et al. [19] defined a spherical neighborhood with a fixed radius for
each point cloud, extracted 26 types of features for the optimal feature combination, and
finally obtained high accuracy. There are also a series of derivative methods [20,21]. However,
these methods have the following two limitations: (1) Ignoring the density inhomogeneity
of point clouds. Due to the denseness of the vehicle-mounted point cloud, each point may
appear many times in the neighborhoods of different central points adjacent to it, resulting in
redundancy using of the point. (2) Using the hard threshold to acquire a fixed 3D structure
without considering adjacency problem between ground objects.

Neighborhood selection is performed for each block. The basic idea is to divide point
cloud data into multiple independent area blocks. Point clouds within an area block share
the block neighborhood [22-28]. Gorte [24] took TIN as a seed and angle and distance as
features. He used the principle of region growth to segment point clouds. Yu Liang [25]
also used region growth to segment point clouds. Point clouds that logically belong to the
same object were divided into a neighborhood, which greatly reduced the computational
burden. In recent years, the convolutional layer of neural network structures plays the role
of neighborhood selection [29-32]. However, these network structures are only used for
supervised applications. In addition, a lightweight fuzzy neural network was proposed for
3D object recognition and localization [33]. The fine details of the objects were preserved
without shape deformations, which helped to improve the recognition accuracy by 2D
segmentation techniques applied on projected Lidar images.

On the other hand, vehicle characteristic extraction also greatly affects vehicle recog-
nition performance. The basic idea is to extract the attribute information of point clouds,
such as elevation, intensity, color, spatial information [34,35]. For example, Zhang et al. [34]
segmented point clouds by using region growth algorithm with vehicle size limitation,
and finished vehicle recognition according to the profile shape. Zhang et al. [35] pro-
posed a shape-based recognition method. They used a dynamic time warping similarity
measurement to judge whether a given segment is a vehicle or not.

However, when the dependence of objects in the urban environment changes, the
geometric features with good recognition performance may no longer work well. For
example, Yang et al. [14] excavated the semantic rules between objects, and performed
multi-level expression and description of urban objects. This method had a good effect
on the recognition of urban object point clouds. However, common occlusion and uneven
point cloud density are not within the scope of this semantic rule. In addition, the features
based on neural network structures outline object characteristic from multiple angles,
including global and local information [36—40]. However, the work depends on a large
number of label samples.
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In response to the above problems, we propose a method for measuring the similarity
of the side projection profile of car body based on region growing of relative tension. We
first use the idea of region growth based on relative tension to partition point cloud data
in 3D regions. The point clouds per region are projected to a 2D plane. Then relevant 2D
features are extracted including side projection profile of vehicle body and sizes of vehicles.
Screening by the similarity measurement, these regions and point clouds which conforms
to the similarity measurement conditions of vehicles are selected out. Finally, the vehicle
recognition performance on two experimental data sets is evaluated with three indices. The
contributions in the paper mainly contain two points:

(1)  According to the physical shape of vehicles, two-dimensional feature extraction is
carried out for vehicle point clouds of three-dimensional regions. The side projection
profile of vehicle body can not only describes the two-dimensional characteristics of
vehicles but also eliminates the interference caused by a large number of missing data.
At the same time, the process of dimension reduction also reduces the complexity of
the problem.

(2) Based on the principle of least squares, similarity measurement of the side projection
profile is used to recognize vehicle point clouds.

The remainder of this paper is organized as follows. Section 2 introduces the proposed
approach. Section 3 discusses the experiment and result analysis, Section 4 gives compara-
tive studies between the proposed method and existing work, and Section 5 presents the
conclusion and future work.

2. Methods

The propose of this paper is to exploit vehicle recognition method based on region
growth of relative tension and similarity measurement of side projection profile of vehicle
body. In the section, three parts including point cloud pre-removing, neighborhood division
and similarity measurement, are discussed to complete a whole procedure. Figure 1 gives
the proposed workflow.
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Figure 1. The workflow of vehicle recognition based on region growth of relative tension and
similarity measurement of side projection profile of vehicle body.

2.1. Point Cloud Pre-Removing

Considering to the height attribute, the common ground objects in the urban scene
can be divided into three types: high ground object points, low ground object points and
ground points [41], as shown in Figure 2.
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Figure 2. Ground object points based on height attribute.

The height attribute of vehicles follows market rules and can be used as a basis for
removing ground points and high ground object points. The software CloudCompare [42,43]
is directly used to filter ground points. Then, high ground object points of the non-ground
point clouds are filtered by feature combinations [44]. The above two steps are not the core
idea of the proposed method, detailed description could be found in corresponding citations.
Remaining point clouds are segmented for vehicle recognition.

2.2. Neighborhood Division

As shown in Figure 1, neighborhood division in the section consists of: (1) neighbor-
hood segmentation in the Section 2.2.1; and (2) neighborhood splitting and merging in the
Section 2.2.2. The goal of the latter is to post-process the results of the former.

2.2.1. Neighborhood Segmentation

Region growth is often used for neighborhood segmentation of object recognition
applications. For these applications, recent publications show that it is common to map 3D
point clouds into a 2D image, which leads to the lack of 3D information of objects [45-47].
In the paper, neighborhood segmentation is performed based on the region growth of
relative tension. We use the tension generated by the distance between point clouds to
search the neighborhood by means of 3D spatial region growth.

Before describing the detailed process of neighborhood segmentation, we introduce
the constraint condition of region growth in the paper.

To quantify the constraint condition between each seed point and its neighborhood
points, we establish a neighboring graph for point clouds. The adjacency matrix of the
graph is A, the elements of the matrix are

%:{”ﬂwﬁmeN@0wm€Nm) o

0, otherwise

where aff ;) is the degree of adjacency between the point p; and the point p;, N(p;)
represents the point set of all of the neighboring point clouds of the point p;.

We use the neighboring graph to select new seed sets. A Gaussian kernel function is
often used to calculate the adjacency A;; between the point p; and the point p; [48]:

—llpi = pjll,
affuj) = EXP{T} 2)
where ||p; — pj||, represents the Euclidean distance measure.

Observing the Formula (2), we can see that the degree of adjacency is only related to

the distance. The farther the distance, the lower the degree of adjacency. If the new seed
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point is selected based only on the Formula (2), the point closest to the original seed point
will be selected. In the case of high point cloud density, this method wastes computing
resource and the iteration is too slow. So, it is necessary to take a trade-off between the
distance and the density. We use the linear combination of the Gaussian kernel function
and the penalty term to calculate the adjacency A;; between the point p; and the point p;.
The improved adjacency is called the relative tension rt(;;) between the point p; and the
point p; as follows

—llpi = pjl
rtipy = affuy) +Ax|pi — pill,= exp{lzﬂlz +Ax|lpi=pil,, A>0 (3)

where the Gaussian kernel function and the penalty term function are respectively ex-
pressed as Formulas (4) and (5), A > 0, the range is (0,1], it is to regulate the effects of the
Gaussian kernel function and the penalty term function. And ||p; — pj||, represents the
Euclidean distance measurement. The Gaussian kernel function is related to the point
density, the penalty term function is related to the distance between points. The Gaussian
kernel function is defined as a monotone function of the Euclidean distance between two
points in the paper.

filpiop) = exp{W} 4)

fa(pipj) = A llpi —pill, ©)

Figure 3 shows the change trend of the Gaussian kernel function and the penalty term
function. Itis in an inverse proportion between the Gaussian kernel function and the distance.

=lx]|
y1(x) =exp{ 2022} ¥

Y2(0) = A+ |Ixll,

X

Figure 3. The change trend of the Gaussian kernel function and the penalty term function.

Based on above, the detailed process of neighborhood segmentation is as follows:

(1) With randomly taking a seed point as the center, all points in the cube with a fixed
radius are caught as its neighboring points.

(2) According to computing the value of relative tension between the seed point and its
neighboring points by Formula (3), we select several point clouds with the highest
value of relative tension from these neighboring points as new seed points to form a
new seed set.

(38) We perform the same neighborhood division on the new seed set again to obtain
neighboring points. These points are merged with original neighboring points into
new neighboring points. New seed points are selected out again by step (2).

(4) We iterate the above three steps. When the new seed set can no longer catch neighbor-
ing points, the algorithm stops. The area which contains the last set of neighboring
points and all of the seed sets is a complete neighborhood.

A complete neighborhood may be completed by only one growth, or be completed by
several growths. The incremental process ensures that the growth in each iteration step
is completed on the nearest neighboring point clouds, which conforms to the first law of
geography [49]. The first law of geography states that “everything is related to everything
else, but near things are more related than distant things”.
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Figure 4 shows the neighborhood formation process of a red seed point. The red point
in Figure 4a is the initial seed point. Taking this red point as the center, point clouds in gray
within a fixed radius are its neighborhood points in Figure 4a. Then we select several new
seed points in Figure 4b based on the constraint conditions. Figure 4c shows the results of
finding the neighboring points with the purple and brown new seed points as the center
points respectively. As seen in Figure 4c, the neighboring points of the two seed points are
partially overlapped. As a selected new seed point in green from neighborhood points of
brown point, Figure 4d shows the results of finding the neighboring points of the green
point. Figure 4e shows the neighborhood points in gray of all new seed points. Until now,
the first round of searching for new seed points and their neighborhoods finishes. Then, we
use the formula (3) for the seed points selected in the first round to find the new seed points
and their neighborhoods in the second round. When the neighborhoods of the new seed
set in the (n-1)-th round all are empty, the algorithm ends. An independent neighborhood
is formed.

(a) (b)

g A

d
&) (d)
Figure 4. Neighborhood formation process of a red seed point. (a—e): non-gray dots: seed points;
purple box: the neighboring region with the purple seed point as the center point; the same goes for
other colorful boxes.

2.2.2. Neighborhood Splitting and Merging

As mentioned in the Section 2.2, the goal of neighborhood splitting and merging is
to post-process the results of neighborhood segmentation in the Section 2.2.1, so that the
segmentation results are more in line with the needs.

With region growth based on relative tension, the data set is segmented into multiple
neighborhood regions. A region may contain two or more different types of objects. The
goal of neighborhood splitting is to separate such different types of objects in one region
further. Or one object may be divided into different regions. The goal of neighborhood
merging is to combine such different regions together.

(1) Neighborhood splitting

For the situation that a region may contain two or more different types of ground
objects, we give an example to explain the neighborhood splitting method in Figure 5.
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Figure 5. Neighboring splitting analysis of discrete points on a 2D plane. Note: display of 2D discrete
points (a); the statistics of the number of point clouds in blocks (b).

Figure 5a shows the distribution trajectory of discrete points in a 2D space. There is
a gap near the interval [39,40] on the X axis. We divide the discrete points into several
blocks along the X axis with a step length of 0.3, and count points in these blocks to get the
histogram in Figure 5b. It is clear in Figure 5b that the number of points in the 8-th and 9-th
block is zero. Therefore, we use the 8-th block as the boundary to split the original discrete
points into two parts. Mathematical description of neighborhood splitting is as follows.

Recording independent regions obtained by region growth of relative tension
as R = {Ry,...,R;,..., Ry}, the points in the point set R; are represented by P; =
{p]- = (x]-, Y, z]-) ]] =1,2,...,N}, where M is the number of regions, N is the number
of point clouds in a region R;. 3D coordinates of the point p; are represented by x;, y;
and z; respectively in a XYZ space.

To separate objects that are close but do not belong to the same category, the point
clouds in a region are divided into several blocks along the parking direction of the vehicle.
We count point clouds in each block and represent them by Num = {nq,...,n;,...,ns},
where n; is the number of point clouds in i-th block, ¢ is the number of blocks.

If there are different types of objects in a small region, the number of point clouds in
the blocks of which different objects are adjacent will be significantly small. Using this
simple idea, we calculate the first derivative and the second derivative of the set Num.
We compare the element value of the second derivative with the magnitude of zero to
find the adjacent position. The calculation formulas for the first derivative and the second
derivative are as follows.

The first derivative:

DER; = [dery, ..., der;, ... der] (6)
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0,i=1
deri = {ni —njq,i2>2 @
The second derivative:
DER; = [Dery,...,Der;, ..., Der] (8)
o (1—pB)*der;,i=1
Der; = {ﬁ wder;_1+ (1 — B) xder;,i>2 ©)

where B is the hyperparameter, generally setted to 0.5, 0.9, or 0.99.

A pseudo-code of computing the first derivative and the second derivative is given in
Algorithm 1, and a pseudo-code of spitting a neighborhood into two sub-regions is given
in Algorithm 2. The idea of splitting into several sub-regions is the same.

Algorithm 1: Computing the first derivative and the second derivative.

Input: P; = {pj = (x]-, yj,zj> ‘] = 1,2,...,N},
Step length A,

y axis < parking direction,

Yi = {y1,-- yn},

VO = O, u, ,3

i

: t ceil(max() min(Yi)

:Forg: 1totdo{

st min(Y;) +Ax(g—1)
sty min(Y;) +Axg

D3 ﬁﬂd(yz > &&Y; < t)
2 n(g) < length(ts)

)

II: compute DER;

:Forg: 1to (t —1) do {

Dty = n(g+1) —n(g)

. DERl(g + 1) < t4

o}
: DERy = [0, DER{]

III: compute DER;

1: For g: 1 to t do {

2: t5 4 axVg+ B+ DERy(g)

3: DERz(g) < t5

4: VO — t5

5:}

Output: the first derivative: DER;,
the second derivative: DER,

NN s WN -

(2) Neighborhood merging

In the section, we solve the problem of neighborhood merging. The regional fitness
distance is used. Assuming that two regions to be merged, if the region R; is contained in the
region R;, two regions should be merged. If the region R; is separated from the region R;, two
regions should not be merged together. According to the value of the fitness distance in the
Formula (10), we determine whether the two regions should be merged or not.

size(bj;) — size(R;) — size(R;)
size(obj)

M(R;,Rj) =1~ (10)

where b;; is the smallest circumscribed cube of the two regions, size(R;) refers to the volume
of the smallest circumscribed cube of the region R;, size(obj) refers to the volume of the
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smallest circumscribed cube of all regions to be merged. The higher the value, the higher
the probability of merging them.

After obtaining final neighborhoods by neighborhood splitting and merging, we next
catch and re-sample side projection profile of point clouds in each neighborhood in the
Sections 2.3.1 and 2.3.2. Then we measure the similarity between these side projection
profiles and vehicle samples in the Sections 2.3.3 and 2.3.4, to recognize the vehicles that
fits the similarity criteria.

Algorithm 2: Spitting a neighborhood into two sub-regions.

Input: P; = {pj = (x]-, yj,zj> ‘] = 1,2,...,N},
the first derivative: DER;,
the second derivative: DER,
: Ind < find(DER; < 0)

1 | < length(Ind)

1if1==0

P+ Pi

ind < i

celseif | = 1&& Ind = N
P+ P,'

8:ind < i

9:else

10: tem <+ Ind(1)

11: Py + {pj = (xj, y]-,z]-> ‘] =1,2,...,tem—13,
12:  Pp + {p]- = (xj, yj,zj> ’] =tem—1,...,N
13: ind < [i,i].

Output: P;, i or Py, Pp, [i,i].

N U W N

’

2.3. Similarity Measurement

To determine whether point clouds in a neighborhood belong to a vehicle or not, we
can get the answer through the following four steps, also as shown in Figure 1. Here a
simple logic explanation is given as follows.

(1) In Section 2.3.1, it explains how to obtain side projection profile of point clouds in
a neighborhood according to the degree of curvature of the profile curve. The side
projection profile is mathematically a series of discrete points.

(2) Generally, the point clouds of side projection profiles that obtain in (1) can not be
directly involved in similarity measurement. It is necessary to re-sample the point
clouds to meet the measurement conditions in the Section 2.3.2.

(8) The unique shape of a vehicle is important information. Normal distribution mea-
surement in Section 2.3.3 can provide the value range of vehicle length and vehicle
width for removing point clouds of some of non-vehicles.

(4) InSection 2.3.4, the principle of least squares is used to recognize point clouds of vehicles.

2.3.1. Obtaining Side Projection Profile

Due to the complex urban environment, the phenomenon of mutual occlusion among
objects is widespread. When we collect data with the point cloud device moving along
the road, it will cause point clouds of the obscured part of the ground objects missing.
Fortunately, the vehicle data on the side near the point cloud device can be completely
collected. From these data, we intentionally select out feature points to represent side
projection profile of car body. Feature points are caught according to the degree of curvature
of the profile curve [50].
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Givenaset X = [X(1),...,X(i),..., X(n)], n is the number of elements. According
to the interpolation principle, the second derivative of point X (i) is as follows

1

X// (1') ~ hz

[X(i—h)—2X(i)+ X(i + h)] (11)
The curvature of a point on the curve is similar to the second derivative of that point.
Suppose that the curvature of point X (i) is K, then

hiz[X(i—h) —2X(i) + X(i + h)] (12)

The side projection of car body is parallel to the YOZ plane from the experiment data
sets, namely the Paris-Rue-Madame data set [51] and the Paris-rue-Cassette database [52].
We project point clouds in each neighborhood to the YOZ plane. Two discrete point sets
based on the Y and Z directions can be obtained. According to formula (12), feature points
are extracted in the Y and Z directions respectively. Point clouds at the index positions of the
feature points in the two directions are combined to describe original side projection profile of
car body. Figure 6 shows the profile projection and feature points of the point cloud data of a
vehicle on the YOZ plane. It gives the projection profile of the vehicle on the YOZ plane based
on original collected points in Figure 6a. Figure 6b shows the selected feature points of the
vehicle according to the degree of curvature of the profile curve. Compared with Figure 6a,
the number of points in Figure 6b has decreased significantly. These feature points are caught
to accurately and concisely delineate the contour of the vehicle.

Z Z

(a) (b)

Figure 6. Side projection profile of a vehicle on YOZ plane. Note: based on original collected points
(a); based on selected feature points of the vehicle (b). (Red, green: different reflectance values of
point clouds).

2.3.2. Re-Sampling Side Projection Profile

The side projection profile of car body is mathematically a series of discrete points.
The number of discrete points for different types of vehicles is not the same. To better
measure the similarity of the side projection profile of car body; it is necessary to keep the
numbers of discrete points equal [53]. This work is carried out by re-sampling the original
side profile based on the side profile of the sample vehicle.

The re-sampling process is as follows. First, we establish a 2D YOZ coordinate system.
The horizontal and vertical axes of the coordinate system are consistent with Y and Z values
of vehicle point clouds. The origin of the coordinate system is the center of gravity of the
projection profile of sample car body. Starting from the positive Y axis in the counterclock-
wise direction with theta angle as the interval, we draw a ray with an inclination angle from
the origin of the coordinate system to intersect the side profile of the sample vehicle and
the point clouds to be recognized on the YOZ plane. Intersection points are the resampled
profile points, denoted as (V4 Zak), (Vb Zbi), Wherek = 1,2,...,m;n = %. If there is
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no intersection, a point closest to the ray is selected. Figure 7a shows the complete side
projection profiles of the point clouds to be recognized and the vehicle sample on the YOZ
plane. Figure 7b shows the side projection profiles after re-sampling. To ensure a sufficient
density of sampling points, the angle sampling interval in the paper is 1°.

>

Vehicle to be
recognized

Vehicle to be
recognized

Vehicle
sample

Vehicle
sample

(a) (b)

Figure 7. Re-sampling the side projection profile of the point clouds to be recognized. Note: before
re-sampling (a); after re-sampling (b).

For the type of non-convex side profile, there may be more than one intersection point
between the ray at a certain angle and the side profile, as shown in Figure 8. We deal with
the problem as follows.

4
Q3
Q2 .
Ql .
X P3
v v >
P1 p2

Figure 8. Selection of the corresponding point pairs.

According to the ray direction, the intersection points between the ray and the side
profile of the sample vehicle are recorded as

Pa = {Pa,l/ ceey Pﬂ,ir oo rpu,ml} = {(yu,llza,l)r (ya,Zr Za,Z)/ ey (ya,mlrza,ml)} (13)

Specifically, m1 is the number of the intersection points between the ray and the side
projection profile of the sample vehicle.

The intersection points between the ray and the side projection profile of the point
clouds to be recognized are recorded as

Py={Ppr,- - Poise s Py} = { (Wb, 201), (Wb2:262)s - - - (Yom2s Zbm2) } (14)

Specifically, m2 is the number of intersection points between the ray and the side
projection profile of the point clouds to be recognized.
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If m1 and m2 are equal, then P, ; and P, ; are marked as the corresponding point pair.
For example, (P1, Q1), (P2, Q2), (P3, Q3) in Figure 8 are the corresponding point pairs. If
these two numbers of intersection points are not equal, the intersection points between the
angle ray and the two side profiles are discarded.

It gives an example of re-sampling the side projection profile of point clouds of a
vehicle in Figure 9. According to the degree of curvature of the profile curve, Figure 9a
shows the side projection profile of feature points of the vehicle. Figure 9b shows the
side projection profile of the vehicle after re-sampling. By comparison, the side projection
profile of the vehicle is still well preserved to meet normal distribution measurement in
Section 2.3.3 and similarity measurement of side projection profile in Section 2.3.4.

(a) (b)

Figure 9. An example of re-sampling the side projection profile of point clouds of a vehicle. Note:
before re-sampling (a); after re-sampling (b).

After re-sampling the side projection profile, a set S of corresponding point pairs is obtained:

S = { ((]/a,lzza,l)/ (]/h,lzzh,l)/ (yC,l/ZC,l)/ ey (yg,llzg,l))/

((]/a,i/ Za,i)r (yb,ir Zb,i)/ (y'c,i/ ZC,i)/ ey (yg,i/ Zg,i) )/ (15)

(<ya,k/ Zaje)r (Yoo Zojc) s (YejorZeje)s - -s (yg'k’ Zg'k) )
i=1,...kk=12..,mn="2)

where g is the number of intersection point pairs between the sample vehicle and point
clouds to be recognized.

2.3.3. Normal Distribution Measurement

The unique shape of a vehicle is important information to recognize it from complex
urban environment. We consider two factors of body length and body width in the paper,
which are defined as follows [54]:

Body length: the longest distance of the car point clouds in the length direction.

Body width: the farthest distance of the car point clouds in the width direction. The
width of the vehicle body does not include the extended width of the left and right rearview
mirrors (that is, the folded width of the rearview mirrors).

Taking into account the experiment data sets in the paper, the shape sizes of cars refer
to European standards. Table 1 shows the size information of the best-selling cars in the
European market.
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Table 1. Size information of the best-selling cars in the European market.

Number Brand Model Body Length Body Width
(mm) (mm)
1 Volkswagen Golf 4262 1799
2 Tesla Model 3 4694 1850
3 Ford Focus 4647 1810
4 Renault S.A. Clio 4063 1732
5 Benz Class A 4622 1796
6 Skoda Octavia 4675 1814
7 Nissan Qashgqai 4401 1837
8 Toyota Yaris 4160 1700
9 Ford Fiesta 3980 1722
10 Mini Hatch 3832 1727
11 Opel Corsa 3741 1608
12 Citroen c3 3850 1667
13 Renault S.A. Captur 4122 1778
14 BMW Series 1 4341 1765
15 Volvo XC60 4688 1902
16 Peugeot 208 3962 1739
17 Toyota Corolla 4635 1780
18 Volkswagen Polo 4053 1740
19 Volkswagen Tiguan 4486 1839
20 ELAT. 500X 3547 1627
21 Smart Smart 2695 1663
22 Renault S.A. Magotan 4865 1832
23 Benz Class E 5065 1860
24 Benz Class S 5259 1899
25 Peugeot 5008 4670 1855
26 BMW X5 4930 2004
27 Audi Q3 4518 1843
28 Porsche 911 4519 1852
29 Hyundai Encino 4195 1800
30 Suzuki SX4 4135 1755

After counting the body length and body width of 30 best-selling cars in the European
market, corresponding histogram and normal distribution fitting are shown in Figure 10.

The vehicle length /width statistical histogram shows the relationship between length /width
and the corresponding frequency. The vehicle length/width normal distribution detection is
to test whether the vehicle length /width conforms to the normal distribution or not. If the “+”
point basically coincides with the red straight line, it can be considered as satisfying the normal
distribution. The vehicle length/width normal distribution fitting gives the relationship between
the vehicle length/width and the normal distribution density. The value corresponding to the
horizontal axis at the apex of the red curve is the average value of vehicle length/width. Based
on normal distribution law, the value range of vehicle length and vehicle width are computed
for removing point clouds of some of non-vehicles.

2.3.4. Similarity Measurement of Side Projection Profile

In above sections, we obtain corresponding point sets of both the sample vehicle and
side projection profile of point clouds to be recognized after re-sampling in the Formula
(15). We select out corresponding point sets which meet normal distribution measurement
to measure their similarity of side projection profiles.
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Figure 10. Normal distribution fitting of body size of the best-selling cars in the European Market.
Note: The statistics histogram of body length/width of the best-selling cars (a,d); normal distribution
detection of body length/width of the best-selling cars (b,e); normal distribution fitting of body
length/width of the best-selling cars (c,f).

Due to the unique structure of the vehicle shape, there is no rotation deformation among
the side projection profiles of vehicle body for the same type of vehicles. There is only
translation and zoom deformation. Coordinate transformation model used for similarity
measurement can be expressed as

Yg=Aay*Ya+Apy x Yo+ ...+ Apyxys+dy
Zg =Mz *Za + A xZp+ ...+ Ap kzp+dz

(16)
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The corresponding points in the point set S are brought into the Formula (16). The
principle of least squares is used to find the parameters (Ay, Az, dy, dz) , that is, to solve the
linear formula as Ay = b. The expression of A, y, b are as follows:

Yai Yoo Y2 O 0 - 0 10

0 0 - 0 Zg1  Zp1 T Zf1 01
A= PRI : R 17)

Yok Yor -Yfk 0 0 0 0 10

0 0 -+ 0 zy zpe--- zp 01

T
v = (Ao Ay Az Age, dy, d2) (18)
T

b= (]/g,ll ZodrrYg ks Zg,k) (19)

After obtaining parameters of the similarity measurement model, we convert the side
profile of point clouds to be measured as (¥, Z,,), and the calculation formula is

F/T,j:]/a,j*)\y‘i‘dy
{ﬁ,j =2Z5i %Az + dz (20)

The overall similarity error between point clouds to be measured and side profile
8 v?
data points of the sample vehicleis v = )~ -}, the similarity residual of a single point is
j=1

represented as v = \/(]/a,j - ]/T])z + (Za,j - ﬁ])z

To achieve the optimal similarity measurement, it is necessary to iteratively perform
the above computing process until the overall similarity error no longer changes.

3. Results and Discussion

In the section, vehicle recognition results are given. Selection of two parameters radius
and seed number, and performance of each step in the Section 2.2 are discussed.

3.1. Vehicle Recognition Results

In this section, experiments are tested on the open source data set [51]. The data set
consists of two files, which are referred by the area A and area B. Figure 11 shows the street
view in the area A and area B.

@) (b)

Figure 11. The street view in the area A (a) and area B (b). Note: Vehicles in dark blue, other objects
in different colors (buildings in green, motorcycles in yellow, ground in gray, trash cans in red, others
in light blue).
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To quantitatively assess the accuracy of vehicle recognition results, we adopt the
following three indices: recall, precision, and F-score [55]. In the paper, recall evaluates
the ratio of the correctly recognized objects to the ground truth; precision measures the
ratio of the correctly recognized objects to all of the recognized components; F-score is an
overall measure. The three indices are defined as follows: recall = TP /(TP + FN), precision
=TP/(TP + FP), and F-score = 2*recall*precision/(recall + precision), where TP, FN, and
FP denote the numbers of true positives, false negatives, and false positives, respectively.
Table 2 gives the results of vehicle recognition on the Paris-rue-Madame database [51]
under three indices. The proposed algorithm achieves a recall, precision, and F-score of
0.837, 0.979 and 0.902, respectively.

Table 2. The results of recognizing vehicle points on Pari-Rue-Madame database.

Data Set Recall Precision F-Score

Paris-Rue-Madame

database 0.837 0.979 0.902

Table 3 gives the results of the number of cars that exist versus the number of cars
that are successfully separated on the Paris-rue-Madame database [51]. According to the
proposed method, 45 vehicles are extracted from actual 51 cars, and the accuracy is 0.882.

Table 3. The results of recognizing actual vehicles on Pari-Rue-Madame database.

Data Set Right Left Erroneous

In the area A Ground truth 8 19 -

(Left in Figure 11) Recognition result 7 16 4

Paris-Rue-Madame database ;
Right Left Erroneous
In the area B
(Right in Figure 11) Ground truth 13 11 -
Recognition result 12 10 2

Figure 12 visualizes the view comparison of vehicle recognition results with ground
truth in regions A and B. It shows actual location of vehicles in the area A in Figure 12a.
Figure 12b shows the recognized vehicles and their locations in the area A. By comparison,
most of the vehicles are successfully recognized, and the vehicles in the middle of the road
also can be successfully recognized. Several motorcycles in yellow and other objects are
mistakenly recognized as vehicles. The height attribute of vehicles is used as a basis for
removing ground points and high ground object points in Section 2.1. It is similar in height
attribute for vehicles and motorcycles. Motorcycle point clouds, as part of remaining point
clouds, are misidentified as vehicles. Figure 12c shows actual location of vehicles in the
area B, and Figure 12d shows the recognized vehicles and their locations in the area B. By
comparison, most of the vehicles are successfully recognized, and the vehicles at the end of
the road can also be successfully recognized. Several motorcycles in yellow, attachments of
building in green and other objects in other colors are mistakenly recognized as vehicles.
More features need to be explored to avoid such errors.
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W

i

(0)
Figure 12. The view comparison of vehicle recognition results with ground truth in regions
A and B. Note: actual location of vehicles respectively in the area A and B (a,c); vehicle recogni-
tion results respectively in the area A and B (b,d). Vehicles in dark blue (a—d), objects in other colors

are misidentified as vehicles (b,d).
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Additionally, the proposed algorithm runs on a computer with Intel(R) Core(TM)
17-7700HQ CPU @ 2.80 GHz with 4 cores, RAM 16.0 GB. The programming language
is in MATLAB. The detailed computing time in each processing step is listed in Table 4.
The total time cost for recognizing vehicles on the Paris-Rue-Madame data set is about
55 min. Specifically, the processing time for point cloud pre-removing is about 15 min,
the processing time for neighborhood division is about 38 min, the processing time for
similarity measurement is about 2 min.

Table 4. Computing time (minute).

Data Set Point Clot}d Nelg'hl?o.rhood Similarity Total
Pre-Removing Division Measurement
Paris-Rue-Madame 15 38 5 55

data set

3.2. Selection of Parameters Radius and Seed Number

The influence of parameters the radius and the seed number per segmentation in Sec-
tion 2.2.1 on vehicle recognition performance and computation time is explored in the section.

Figure 13 shows the value change trend of three indices (recall, precision, and F-score)
and computation time with the variation of parameter radius. As the radius increases, the
computation time decreases, precision value almost keeps stable, both the recall value and
the F-score value increase first and then decrease. Comprehensively, the result should be
optimal when R equals to 0.5.

1 65
0.8 55 %
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U7 50 £
[}
- 0.6 45 E
B £
5 0% 40 <

>

04 2
03 35 ‘é_
0.2 0§

0 | 20

0.3 04 0.5 0.6 0.7
Radius (m)
B time s Recall Precision s F-score

Figure 13. The value change trend of three indices (recall, precision, and F-score) and computation
time with the variation of the parameter radius.

Figure 14 shows the value change trend of three indices (recall, precision, and F-score)
and computation time with the variation of parameter seed number. As the seed number
increases, the computation time increases, precision value almost keeps stable, both the
recall value and the F-score value keep stable first and then decrease. Comprehensively,
the result should be optimal when seed number equals to 5.

From Figures 13 and 14, the computation time is inversely proportional to the radius
value, but proportional to the seed number. For the convenience, the reason behind computa-
tion time difference with the variation of parameters radius and seed number is explained in
a two-dimensional space. Figure 15 shows the results of finding the neighboring points with
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the red\green'\blue seed points as the center points respectively. When every seed point looks
for its neighborhood points, the point clouds in the gray region is retrieved once. Compared
Figure 15a,b, the smaller the radius value, the more point clouds are repeatedly retrieved, and
the longer the computation time. Compared Figure 15c,d, the more the seed number, the more
point clouds are repeatedly retrieved, and the longer the computation time.

P — - — 50
0.9 —_— _
45 8
08 s
£
0 a0 E
o U6 F
3 05 -
04 g
30 £
03 é
02 5 8
0.1 I
0 20
4 5 6 7 8 9 10 11 12

Seed number

N time e rocy]| « Precision s F-score

Figure 14. The value change trend of three indices (recall, precision, and F-score) and computation
time with the variation of the parameter seed number.

P
<~/

(a) (b)
(0) (d)

Figure 15. The reason behind computation time difference with the variation of parameters radius
and seed number ((a,b): different radii; (c,d): different seed numbers). (Gray: the region within all
points; red circle: the neighboring region with the red seed point as the center point; the same goes
for other colorful circles).
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3.3. Performance of Region Growth Based on Relative Tension

Figure 16 shows neighborhood changes of region growth based on relative tension
during the incremental iterative process. Different neighborhoods are displayed in different
colors. From Figure 16a—f, the shapes of colorful blocks gradually become larger. From
shape and position distribution of the neighborhoods in Figure 16f, 3D neighborhoods
obtained by the proposed method conforms to the law of vehicle distribution. Point cloud
distribution obviously conforms to the parking rules of vehicles on both sides of the road.
Different colorful blocks are arranged in two parallel straight lines (on both sides of the
road). A few blocks appear in the vertical direction in the center of the road, which represent
cars turning at the intersection.

(a) (b)
- .% *, \' .
DI S
S \_::\
(c) (d)
S \\7 », \\7‘
s IR
N \.q\
(e) ®

Figure 16. Neighborhood changes of region growth based on relative tension during the iterative
process. Different neighborhoods are displayed in different colors. (a—f): different neighborhood
segmentation results during the incremental iterative process.

Furthermore, to get a clearer picture of local results in Figure 16, without loss of
generality, partial neighborhood segmentation results are shown in Figure 17. In Figure 17,
for example, one vehicle in each black ellipse is divided into multiple small areas. The
examples exactly demonstrate the necessity of neighborhood splitting and merging.

3.4. Performance of Neighborhood Splitting and Merging

As introduced in the Section 2.2.2 and the example in Figure 17, the data set is seg-
mented into multiple neighborhood regions. A region may contain two or more different
types of objects. Or one object may be divided into different regions. The purpose of
neighborhood splitting and merging is to make one object as completely divided into
an independent region as possible. Without loss of generality, we give two examples to
illustrate the usefulness of the proposed method.
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(@) (b)

Figure 17. Partial neighborhood results of region growth based on relative tension. Note: Different
neighborhoods are displayed in different colors.

Figure 18 shows an example of neighborhood splitting and merging. By region growth
based relative tension, Figure 18a shows two cars are segmented into one region in gray. We
divide them into several small regions according to the proposed neighborhood splitting
method. The smaller car is divided into two regions in dark blue and light blue, as shown
in Figure 18b. Figure 18c gives the result of neighborhood merging. Two small regions
belonging to the same car in Figure 18b are successfully merged together.

(a) (b) (c)

Figure 18. An example of neighborhood splitting and merging effect. Neighborhood segmentation
result by region growth based relative tension (a); on the basis of the result in (a), neighborhood
splitting result (b); on the basis of the result in (b), neighborhood merging result (c). Note: Different
neighborhoods are displayed in different colors.

Figure 19 shows another example of neighborhood splitting and merging effect. It is
the neighborhood segmentation result by region growth based relative tension in Figure 19a.
The four vehicles are divided into six regions by neighborhood segmentation and indicated
by six colors. On the basis of the results, Figure 19b shows the neighborhood splitting result.
On the basis of the result in Figure 19b, it is the neighborhood merging result in Figure 19¢c.
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In Figure 19a, each vehicle is represented by either one color or multiple colors. There is
no obvious case that multiple vehicles are in the same color. According to the Algorithms
1 and 2 in the Section 2.2.2, vehicles do not be split again. So Figure 19a,b are completely
the same. In Figure 19¢, the areas in yellow-green and rose red in Figure 19b have been
successfully merged into vehicles in dark purple. The areas in gray and wine red have been
merged successfully into a vehicle in lavender.

(@) (b) (c)

Figure 19. Another example of neighborhood splitting and merging effect. Neighborhood segmenta-
tion result by region growth based relative tension (a); on the basis of the result in (a), neighborhood
splitting result (b); on the basis of the result in (b), neighborhood merging result (c). Note: Different
neighborhoods are displayed in different colors.

Let’s take the smaller car in Figure 18 to analyze the mathematical principles behind
neighborhood splitting and merging. Figure 20 shows number change of point clouds in
the area where the smaller car is located, and its first and second derivatives. The value of
the second derivative is less than 0 at the length “8” in Figure 20c.

According to Algorithm 2, we split the point clouds in the area into two small regions
at the length “8”, namely the regions in dark blue and in light blue in Figure 18b. We
calculate the fitness distance of these two small areas according to the Formula (10)

6.7949 — 5.2851 — 0.9636

M=1- 6.7949 = 0.9196

By computation, M is greater than 0.9. These two small regions need to be merged.
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Figure 20. Number change of point clouds in a certain area and its first and second derivatives. Note:
number change (a); first derivative (b); second derivative (c).

4. Comparative Studies

The comparison between the proposed method and existing work are presented from
four aspects in the section.

4.1. Recognition Result Indices

A performance comparison on car recognition is conducted on the publicly avail-
able Paris-Rue-Madame data set [51], between the proposed method and the existing
methods [20,56,57]. Brief description of these three existing methods are given below.

A new methodology for large-scale urban 3D point cloud classification is described [20].
The main contribution is an in-depth analysis of a powerful strategy for recovering individ-
ual 3D neighborhoods of optimal size. The most crucial issue of the whole methodology
remains an appropriate selection of the scale parameter, which generally requires a higher
computational effort due to the consideration of individual 3D neighborhoods of optimal size.

An effective and efficient method for point-wise semantic classification is proposed to
handle unstructured and inhomogeneous point clouds [56]. The contribution of the present
paper is a feature set that addresses both variations in point density and computational
efficiency, which turns out to be careful handling of neighborhood relations.

A new, fully automatic and versatile framework is presented [57]. 5 different neigh-
borhood definitions, 21 features, 6 approaches for feature subset selection and 2 different
classifiers are evaluated to explore optimal neighborhoods for individual 3D point classifi-
cation. In addition to the large time consumption, the non-obvious feature-class correlation
affects the accuracy of vehicle recognition.

The comparison results for the Paris-rue-Madame database [51] are listed in Table 5.
The best results are respectively in bold. The proposed algorithm achieves a recall, precision,
and F-score of 0.837, 0.979 and 0.902, respectively. By comparison, the proposed method
keep competitive performances on recall, precision, and F-score value. Although a lower
recall value, the proposed approach obtains the best precision to recognize cars, and the
F-score result is excellent and near the best result value. This strength comes from the use
of physical characteristics of vehicles that provides distinct information, which improves
their recognition.
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Table 5. Comparison results between the proposed and three existing methods on [51].

Data Set Method Recall Precision F-Score
Hackel et al. [56] 0.9786 0.9086 0.9423
Paris-Rue-Madame Weinmann et al. [20] 0.6476 0.7948 0.7137
data set Weinmann et al. [57] 0.603 0.768 0.676
Proposed 0.837 0.979 0.902
The proposed method also is tested on the Paris-rue-Cassette database [52]. The
comparison results between the proposed method and two previous work are given in
Table 6. The best results are respectively in bold. The proposed algorithm achieves a recall,
precision, and F-score of 0.9496, 0.7832 and 0.8584, respectively. The proposed approach
obtains the best Recall, and the F-score result is excellent and near the best result value.
Table 6. Comparison results between the proposed and two existing methods on [52].
Data Set Method Recall Precision F-Score
Hackel et al. [56] 0.9307 0.8608 0.8943
Paris-Rue-Cassette data set Weinmann et al. [20] 0.6112 0.6767 0.6423
Proposed 0.9496 0.7832 0.8584

4.2. Neighborhood Segmentation Performance

Figure 21 provides side-by-side comparisons of neighborhood segmentation among
highly relevant algorithms DBCSAN [58], kmeans [59], mean shift [60], and the proposed
method for the Paris-rue-Madame database [51]. Figure 21a,c,e,g show the ground truth.
Vehicles are distinguished by different colors. In Figure 21b,d,f,h, neighborhood segmenta-
tion results by four algorithms are displayed. Different neighborhoods are displayed in
different colors.

As expected, the general tread is that most neighborhoods of vehicles in Figure 21b,d,f,h
are correctly segmented and overall appearance is matched with ground truth quite well.
Specifically, comparing color chromatic aberration in these four figures, the proposed
method best preserves the independence among vehicles. However, there are cases where
slight differences occur. Errors are highlighted in the black ellipses in Figure 21b,d,f,h. In
Figure 21b, vehicle neighborhoods are correctly segmented, but point clouds of some of
non-vehicles in the black ellipses are mistakely kept by the proposed method. In Figure 21d,
the independence among vehicles is not obvious, and the segmentation results by the
DBSCAN include a few non-vehicle point clouds. In Figure 21f, beside mistakes in the
black ellipses, the problem with the neighborhood segmentation by the kmeans is the
fragmentation. Most vehicles consist of neighborhood fragmentations in several colors.
These fragmentations can reduce similarity measurement performance. In Figure 21h, point
clouds of some of non-vehicles are kept and point clouds of some of vehicles are missed, as
shown in the black ellipses, which will negatively affect the accuracy of vehicle recognition.
More feature combinations in the Section 2.1 could be further explored to help reduce such
errors in removing point clouds of non-vehicles.

Additionally, compared with the proposed method and mean shift algorithm, kmeans
and DBSCAN algorithms are more prone to computation time problem when the number
of point clouds is too large. The comparison of computation time is given in next section.

4.3. Computation Time

Concerning the computational complexity, we may consider the computation time
required for processing different numbers of point clouds. In Figure 22, this is carried
out for neighborhood segmentation of DBCSAN, kmeans, mean shift and the proposed
method. To show the computational complexity more clearly, the vertical axis shows the
logarithmic value of computation time. It becomes apparent that both the proposed method
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and mean shift algorithm show superior computational advantage for increasing numbers
of considered 3D points. The computational burden of BDSCAN algorithm is significantly
heavier than the proposed method and mean shift algorithm. Three given values in green
line in Figure 22 reflect that required computation time is the most difficult problem when
considering kmeans algorithm.
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Figure 21. Side-by-side comparisons of neighborhood segmentation ((a,c,e,g): Grouth truth; (b): the
proposed method; (d): DBSCAN; (f): Kmeans; (h): mean shift). Note: Vehicles are distinguished by
different colors (a,c,e,g); Different neighborhoods are displayed in different colors (b,d,f/h).
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Required computation time

Figure 22. Required computation times for neighborhood segmentation of DBCSAN, kmeans, mean
shift, and the proposed method.

4.4. Recognition Performance for Specific Situations

The existing methods are limited to complex situations such as objects overlap. Some
moving cars which were distorted also failed to be recognized by them. Comparatively,
benefited from side projection profile properties of vehicle body, the proposed method is
able to deal with those cars that overlapped with the trees. The core of the neighborhood
division algorithm in this paper is the spatial tension between point clouds. Figure 23 shows
the vehicle recognition advantage of the proposed method in these limitation situations
of above three methods for the Paris-rue-Madame database [51]. Figure 23a shows that
the moving vehicles in the black ellipses are well recognized by the proposed method.
Figure 23b presents that the proposed algorithm can separate well the vehicles and trees
that overlap in the Z direction. The separation between trees and vehicles comes from two
aspects. On the one hand, the operation of point cloud pre-removing in the Section 2.1
could filter some of tree points in the Z direction. On the other hand, there are great
difference in the size and side projection profile between vehicles and trees, as shown in
green curve in Figure 23b. These differences play a key role in recognizing the vehicles.
Spaces between trees and vehicles in the Z direction also help separate each other.

@) (b)

Figure 23. Vehicle recognition advantage of the proposed method in two limitation situations. Note:
the recognition result of the moving vehicles by the proposed method (a); the separation between the
vehicles and trees that overlap in the Z direction (b) (vehicles in dark blue, trees in red).
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5. Conclusions

We propose to recognize urban vehicles based on region growth of relative tension
and similarity measurement of side projection profile of vehicle body in the paper. Quan-
titative evaluations on the selected data set show that the proposed algorithm achieves
a recall, precision, and F-score of 0.837, 0.979 and 0.902 respectively. Experiments show
that region growth algorithm based on relative tension well guarantees the integrity and
independence of physical structures of vehicles. Although part of 3D data of vehicle point
clouds are missing, side projection profile of car body in 2D plane is complete. It enables
similarity measurement method of the side projection profile to successfully recognize
neighborhoods that contain point clouds of vehicles. Comparative studies demonstrate the
superior advantage of the proposed algorithm in vehicle recognition result, neighborhood
segmentation performance and computation time. In conclusion, by using point cloud data,
we have provided a promising and effective solution to accurate recognition of road scene
vehicles toward transportation related applications. Further exploration on both touching
cars and a car driven template would foster even stronger the proposed method in the
future work.
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