Sources and Risk Characteristics of Heavy Metals in Plateau Soils Predicted by Geo-Detectors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Source and Method
2.2.1. Sample Collection and Processing
2.2.2. Remote Sensing Data
2.2.3. Geological Information
2.2.4. Other Geospatial Data
2.3. Geo-Detector Method
2.4. Moran Index
2.5. Methods for Assessment of HM Pollution
2.5.1. Contamination Factor (CF)
2.5.2. Geoaccumulation Index (Igeo)
2.5.3. Potential Ecological Risk Index (PERI)
2.6. Statistical Analysis
3. Results and Discussion
3.1. Statistics of the HMs Present in the Agricultural Soil of the YTRB
3.2. Spatial Distribution of the Soil HMs in the YTRB
3.3. Importance Evaluation of Influencing Factors
3.4. Identification of Risk Characteristics of HMs
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jayakumar, M.; Surendran, U.; Raja, P.; Kumar, A.; Senapathi, V. A review of heavy metals accumulation pathways, sources and management in soils. Arab. J. Geosci. 2021, 14, 1–19. [Google Scholar] [CrossRef]
- Zhou, W.; Yang, H.; Xie, L.; Li, H.; Huang, L.; Zhao, Y.; Yue, T. Hyperspectral inversion of soil heavy metals in Three-River Source Region based on random forest model. Catena 2021, 202, 105222. [Google Scholar] [CrossRef]
- Qiao, P.; Yang, S.; Lei, M.; Chen, T.; Dong, N. Quantitative analysis of the factors influencing spatial distribution of soil heavy metals based on geographical detector. Sci. Total Environ. 2019, 664, 392–413. [Google Scholar] [CrossRef]
- Zhao, Y.; Deng, Q.; Lin, Q.; Zeng, C.; Zhong, C. Cadmium source identification in soils and high-risk regions predicted by geographical detector method. Environ. Pollut. 2020, 263, 114338. [Google Scholar] [CrossRef] [PubMed]
- Oladoye, P.O.; Olowe, O.M.; Asemoloye, M.D. Phytoremediation technology and food security impacts of heavy metal contaminated soils: A review of literature. Chemosphere 2022, 288, 132555. [Google Scholar] [CrossRef]
- Mao, C.; Song, Y.; Chen, L.; Ji, J.; Li, J.; Yuan, X.; Yang, Z.; Ayoko, G.A.; Frost, R.L.; Theiss, F. Human health risks of heavy metals in paddy rice based on transfer characteristics of heavy metals from soil to rice. Catena 2019, 175, 339–348. [Google Scholar] [CrossRef]
- Chen, Q.Y.; Costa, M. Arsenic: A Global Environmental Challenge. Annu. Rev. Pharmacol. Toxicol. 2021, 61, 47–63. [Google Scholar] [CrossRef] [PubMed]
- Rezapour, S.; Moghaddam, S.S.; Nouri, A.; Aqdam, K.K. Urbanization influences the distribution, enrichment, and ecological health risk of heavy metals in croplands. Sci. Rep. 2022, 12, 3868. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.; Song, X.; Ding, D.; Wang, Q.; Zhang, Z.; Tang, Z. Bioremediation of PAHs and heavy metals co-contaminated soils: Challenges and enhancement strategies. Environ. Pollut. 2022, 295, 118686. [Google Scholar] [CrossRef]
- Xu, Q.; Chu, Z.; Gao, Y.; Mei, Y.; Yang, Z.; Huang, Y.; Yang, L.; Xie, Z.; Sun, L. Levels, sources and influence mechanisms of heavy metal contamination in topsoils in Mirror Peninsula, East Antarctica. Environ. Pollut. 2020, 257, 113552. [Google Scholar] [CrossRef]
- Pecina, V.; Brtnicky, M.; Baltazar, T.; Juricka, D.; Kynicky, J.; Galiova, M.V. Human health and ecological risk assessment of trace elements in urban soils of 101 cities in China: A meta-analysis. Chemosphere 2021, 267, 129215. [Google Scholar] [CrossRef]
- Baalousha, M.; Wang, J.; Erfani, M.; Goharian, E. Elemental fingerprints in natural nanomaterials determined using SP-ICP-TOF-MS and clustering analysis. Sci. Total Environ. 2021, 792, 148426. [Google Scholar] [CrossRef]
- Bi, H.; Ni, Z.; Tian, J.; Jiang, C.; Sun, H.; Lin, Q. Influence of lignin on coal gangue pyrolysis and gas emission based on multi-lump parallel reaction model and principal component analysis. Sci. Total Environ. 2022, 820, 153083. [Google Scholar] [CrossRef] [PubMed]
- Aali, A.A.; Shirazy, A.; Shirazi, A.; Pour, A.B.; Hezarkhani, A.; Maghsoudi, A.; Hashim, M.; Khakmardan, S. Fusion of Remote Sensing, Magnetometric, and Geological Data to Identify Polymetallic Mineral Potential Zones in Chakchak Region, Yazd, Iran. Remote Sens. 2022, 14, 6018. [Google Scholar] [CrossRef]
- Shabani, A.; Ziaii, M.; Monfared, M.; Shirazy, A.; Shirazi, A. Multi-Dimensional Data Fusion for Mineral Prospectivity Mapping (MPM) Using Fuzzy-AHP Decision-Making Method, Kodegan-Basiran Region, East Iran. Minerals 2022, 12, 1629. [Google Scholar] [CrossRef]
- Chao, S.; Liu, J.; Chen, Y.; Cao, H.; Zhang, A. Implications of seasonal control of PM(2.5)-bound PAHs: An integrated approach for source apportionment, source region identification and health risk assessment. Environ. Pollut. 2019, 247, 685–695. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.F.; Li, X.H.; Christakos, G.; Liao, Y.L.; Zhang, T.; Gu, X.; Zheng, X.Y. Geographical Detectors-Based Health Risk Assessment and its Application in the Neural Tube Defects Study of the Heshun Region, China. Int. J. Geogr. Inf. Sci. 2010, 24, 107–127. [Google Scholar] [CrossRef]
- Shi, T.; Hu, Z.; Shi, Z.; Guo, L.; Chen, Y.; Li, Q.; Wu, G. Geo-detection of factors controlling spatial patterns of heavy metals in urban topsoil using multi-source data. Sci. Total Environ. 2018, 643, 451–459. [Google Scholar] [CrossRef]
- Deng, X.; Hu, S.; Zhan, C. Attribution of vegetation coverage change to climate change and human activities based on the geographic detectors in the Yellow River Basin, China. Environ. Sci. Pollut. Res. Int. 2022, 29, 44693–44708. [Google Scholar] [CrossRef]
- Wang, X.; Meng, Q.; Zhang, L.; Hu, D. Evaluation of urban green space in terms of thermal environmental benefits using geographical detector analysis. Int. J. Appl. Earth Obs. Geoinf. 2021, 105, 102610. [Google Scholar] [CrossRef]
- Liu, Q.; Li, M.; Duan, J.; Wu, H.; Hong, X. Analysis on influence factors of soil Pb and Cd in agricultural soil of Changsha suburb based on geographically weighted regression model. Trans. Chin. Soc. Agric. Eng. 2013, 29, 225–234. [Google Scholar]
- Wen, Y.; Li, W.; Yang, Z.; Zhang, Q.; Ji, J. Enrichment and source identification of Cd and other heavy metals in soils with high geochemical background in the karst region, Southwestern China. Chemosphere 2020, 245, 125620. [Google Scholar] [CrossRef]
- Tapia, J.; Mukherjee, A.; Rodriguez, M.P.; Murray, J.; Bhattacharya, P. Role of tectonics and climate on elevated arsenic in fluvial systems: Insights from surface water and sediments along regional transects of Chile. Environ. Pollut. 2022, 314, 120151. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Cao, X.; Xu, Q.; Huang, X.; Herzschuh, U.; Shen, Z.; Peng, W.; Liu, S.; Wu, D.; Wang, J.; et al. Vegetation change and human-environment interactions in the Qinghai Lake Basin, northeastern Tibetan Plateau, since the last deglaciation. Catena 2022, 210, 105892. [Google Scholar] [CrossRef]
- Zhang, Z.; Che, Q.; Xue, Z. Unexpected Heavy Metal Pollution in Wetland Soils Along the Yarlung Tsangbo River in Tibet, China: Assessment and Source Apportionment. Water Air Soil Pollut. 2020, 231, 483. [Google Scholar] [CrossRef]
- Yu, C.R.; Sun, Y.; Zhong, X.; Yu, Z.; Li, X.; Yi, P.; Jin, H.; Luo, D. Arsenic in permafrost-affected rivers and lakes of Tibetan Plateau, China. Environ. Pollut. Bioavailab. 2019, 31, 226–232. [Google Scholar] [CrossRef]
- Qu, B.; Zhang, Y.; Kang, S.; Sillanpää, M. Water chemistry of the southern Tibetan Plateau: An assessment of the Yarlung Tsangpo river basin. Environ. Earth Sci. 2017, 76, 1–12. [Google Scholar] [CrossRef]
- Wang, G.; Zeng, C.; Zhang, F.; Zhang, Y.; Scott, C.A.; Yan, X. Traffic-related trace elements in soils along six highway segments on the Tibetan Plateau: Influence factors and spatial variation. Sci. Total Environ. 2017, 581, 811–821. [Google Scholar] [CrossRef]
- An, S.; Liu, N.; Li, X.; Zeng, S.; Wang, X.; Wang, D. Understanding heavy metal accumulation in roadside soils along major roads in the Tibet Plateau. Sci. Total Environ. 2022, 802, 149865. [Google Scholar] [CrossRef]
- Yang, Q.; Wang, S.; Zhao, C.; Nan, Z. Risk assessment of trace elements accumulation in soil-herbage systems at varied elevation in subalpine grassland of northern Tibet Plateau. Environ. Sci. Pollut. Res. Int. 2022, 29, 27636–27650. [Google Scholar] [CrossRef]
- Li, L.; Wu, J.; Lu, J.; Min, X.; Xu, J.; Yang, L. Distribution, pollution, bioaccumulation, and ecological risks of trace elements in soils of the northeastern Qinghai-Tibet Plateau. Ecotoxicol. Environ. Saf. 2018, 166, 345–353. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Zhao, M.; Cai, B.; Song, X.; Tang, R.; Huang, X.; Huang, H.; Huang, J.; Fan, Z. Risk assessment and driving factors of trace metal(loid)s in soils of China. Environ. Pollut. 2022, 309, 119772. [Google Scholar] [CrossRef]
- Immerzeel, W.W.; Van Beek, L.P.; Bierkens, M.F. Climate change will affect the Asian water towers. Science 2010, 328, 1382–1385. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Ding, L.; Xu, Q.; Wang, H.; Yue, Y.; Baral, U. The evolution of Yarlung Tsangpo River: Constraints from the age and provenance of the Gangdese Conglomerates, southern Tibet. Gondwana Res. 2017, 41, 249–266. [Google Scholar] [CrossRef]
- Soesbergen, A.V.; Nilsen, K.; Burgess, N.D.; Szabo, S.; Matthews, Z. Food and nutrition security trends and challenges in the Ganges Brahmaputra Meghna (GBM) delta. Elem. Sci. Anth. 2017, 5, 56. [Google Scholar] [CrossRef] [Green Version]
- Aitchison, J.C.; Davis, A.M.; Zhu, B.D. New constraints on the India–Asia collision: The Lower Miocene Gangrinboche conglomerates, Yarlung Tsangpo suture zone, SE Tibet. J. Asian Earth Sci. 2002, 21, 251–265. [Google Scholar] [CrossRef]
- Yang, J.; Ge, L.; Xiong, M.; Wang, C.; Xu, X.; Tang, X. Quantitative analysis of heavy metal pollution in surface soil along the Funan River by XRF. J. Phys. Conf. Ser. 2020, 1629, 012098. [Google Scholar] [CrossRef]
- Li, W.; Niu, N.; Guo, N.; Zhou, H.; Bu, J.; Ding, A. Comparative Study on the Determination of heavy metals in Soil by XRF and ICP-MS. J. Phys. Conf. Ser. 2021, 2009, 012075. [Google Scholar] [CrossRef]
- Wang, J.; Xu, C. Geodetector: Principle and prospective. Acta Geol. Sin. 2017, 72, 116–134. [Google Scholar]
- Zhang, C.; Luo, L.; Xu, W.; Ledwith, V. Use of local Moran’s I and GIS to identify pollution hotspots of Pb in urban soils of Galway, Ireland. Sci. Total Environ. 2008, 398, 212–221. [Google Scholar] [CrossRef]
- Wu, Z.; Chen, Y.; Han, Y.; Ke, T.; Liu, Y. Identifying the influencing factors controlling the spatial variation of heavy metals in suburban soil using spatial regression models. Sci. Total Environ. 2020, 717, 137212. [Google Scholar] [CrossRef] [PubMed]
- Müller, G. Index of geoaccumulation in sediments of the Rhine river. Geojournal 1969, 2, 108–118. [Google Scholar]
- Hakanson, L. An ecological risk index for aquatic pollution control.a sedimentological approach. Water Res. 1980, 14, 975–1001. [Google Scholar] [CrossRef]
- Zhang, J.W.; Yan, Y.N.; Zhao, Z.Q.; Li, X.D.; Guo, J.Y.; Ding, H.; Cui, L.F.; Meng, J.L.; Liu, C.Q. Spatial and seasonal variations of dissolved arsenic in the Yarlung Tsangpo River, southern Tibetan Plateau. Sci. Total Environ. 2021, 760, 143416. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Xu, Z.; Zhou, J.; Fan, P. Natural arsenic source, migration, and flux in a catchment on the Southern Tibetan Plateau. Sci. Total Environ. 2022, 838, 155898. [Google Scholar] [CrossRef]
- Huang, M.; Sun, H.; Liu, H.; Wang, X.; Wang, B.; Zheng, D. Atmospheric Arsenic Deposition in the Pearl River Delta Region, South China: Influencing Factors and Speciation. Environ. Sci. Technol. 2018, 52, 2506–2516. [Google Scholar] [CrossRef]
- Mohammadi, M.; Naghibi, S.A.; Motevalli, A.; Hashemi, H. Human-induced arsenic pollution modeling in surface waters—An integrated approach using machine learning algorithms and environmental factors. J. Environ. Manag. 2022, 305, 114347. [Google Scholar] [CrossRef]
- Yang, G.; Peng, Y.; Olefeldt, D.; Chen, T.; Wang, G.; Li, F.; Zhang, D.; Wang, J.; Yu, J.; Liu, L.; et al. Changes in Methane Flux along a Permafrost Thaw Sequence on the Tibetan Plateau. Environ. Sci. Technol. 2018, 52, 1244–1252. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Yuan, S.; Zhang, T.; Liu, X.; Liu, Y.; Miao, Y. Sedimentary record of climate change across the Eocene/Oligocene transition from the Qaidam Basin, northeastern Tibetan Plateau. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2021, 564, 110203. [Google Scholar] [CrossRef]
- Kicińska, A.; Pomykała, R.; Izquierdo-Diaz, M. Changes in soil pH and mobility of heavy metals in contaminated soils. Eur. J. Soil Sci. 2021, 73, e13203. [Google Scholar] [CrossRef]
- Guo, X.-D.; Ding, L.; Laskowski, A.K.; Wang, H.-Q.; Baral, U.; Zeng, D.; Ding, X.-L.; Yue, Y.-H.; Xie, J.-X.; Cai, F.-L. Provenance of Late Cretaceous accretionary complex within the Yarlung–Zangpo suture zone, Bainang, southern Tibet: Implications for the subduction–accretion of the Neo-Tethyan ocean. Gondwana Res. 2022, 106, 78–91. [Google Scholar] [CrossRef]
- Guo, Q.; Planer-Friedrich, B.; Liu, M.; Yan, K.; Wu, G. Magmatic fluid input explaining the geochemical anomaly of very high arsenic in some southern Tibetan geothermal waters. Chem. Geol. 2019, 513, 32–43. [Google Scholar] [CrossRef]
- Tang, P.; Tang, J.-X.; Lin, B.; Wang, L.-Q.; Zheng, W.-B.; Leng, Q.-F.; Gao, X.; Zhang, Z.-B.; Tang, X.-Q. Mineral chemistry of magmatic and hydrothermal biotites from the Bangpu porphyry Mo (Cu) deposit, Tibet. Ore Geol. Rev. 2019, 115, 103122. [Google Scholar] [CrossRef]
CF | Contamination Factor | Igeo | Pollution Class | PERI | Risk Class |
---|---|---|---|---|---|
CF < 1 | low contamination | Igeo ≤ 0 | practically unpolluted | PERI < 110 | low |
1 ≤ CF < 3 | moderate contamination | 0< Igeo ≤1 | unpolluted to moderately polluted | 110 ≤ PERI < 220 | moderate |
3 ≤ CF ≤ 6 | considerable contamination | 1< Igeo ≤2 | moderately polluted | 220 ≤ PERI < 440 | strong |
CF > 6 | very high contamination | 2 < Igeo ≤ 3 | moderately to strongly polluted | 440 ≤ PERI < 880 | very strong |
3 < Igeo ≤ 4 | strongly polluted | PERI > 880 | highly-strong | ||
4 < Igeo≤ 5 | strongly to extremely polluted | ||||
Igeo > 5 | extremely polluted |
Range | Mean | Median | Standard Deviation | Variable Coefficient | Soil Environment Quality a | Soil Background Value/(mg·kg−1) | |||
---|---|---|---|---|---|---|---|---|---|
mg·kg−1 | TP b | China c | World c | ||||||
As | 1.7–81.3 | 17.9 | 15.5 | 11.2 | 62.6% | 25 | 18.7 | 11.2 | 6 |
Pb | 10.7–225.6 | 32.4 | 29.0 | 20.8 | 64.3% | 170 | 28.9 | 26 | 35 |
Cd | 0.04–0.47 | 0.14 | 0.12 | 0.09 | 62.3% | 0.6 | 0.08 | 0.097 | 0.35 |
Cr | 0.8–270.2 | 63.1 | 57.4 | 40.7 | 64.5% | 250 | 77.4 | 61 | 70 |
Ni | 4.4–446.9 | 43.7 | 32.1 | 53.3 | 121.7% | 190 | 32.1 | 26.9 | 50 |
Zn | 25.0–300.9 | 100.9 | 52.4 | 52.4 | 51.9% | 300 | 73.7 | 74.2 | 90 |
Elements | Moran’s I | Z | p |
---|---|---|---|
Pb | 0.285 | 3.742 | 0.001 |
Zn | 0.465 | 5.92 | 0.001 |
Ni | 0.283 | 3.67 | 0.001 |
Cr | 0.325 | 4.21 | 0.001 |
As | 0.106 | 1.45 | 0.147 |
Cd | −0.045 | −0.446 | 0.655 |
(X1 ∩ X2) | DEM | Precipitation | LUCC | Clay | Sand | Silt | pH | GA | RT | Mining |
---|---|---|---|---|---|---|---|---|---|---|
DEM | 0.12 | |||||||||
Precipitation | 0.27 | 0.22 | ||||||||
LUCC | 0.18 | 0.25 | 0.05 | |||||||
Clay | 0.13 | 0.25 | 0.09 | 0.05 | ||||||
Sand | 0.17 | 0.25 | 0.09 | 0.10 | 0.04 | |||||
Silt | 0.16 | 0.26 | 0.10 | 0.09 | 0.09 | 0.03 | ||||
pH | 0.26 | 0.24 | 0.20 | 0.21 | 0.20 | 0.21 | 0.16 | |||
GA | 0.24 | 0.30 | 0.14 | 0.15 | 0.16 | 0.16 | 0.27 | 0.08 | ||
RT | 0.22 | 0.28 | 0.16 | 0.15 | 0.15 | 0.15 | 0.24 | 0.23 | 0.08 | |
Mining | 0.19 | 0.27 | 0.10 | 0.10 | 0.11 | 0.12 | 0.22 | 0.18 | 0.19 | 0.04 |
(X1 ∩ X2) | DEM | Precipitation | LUCC | Clay | Sand | Silt | pH | GA | RT | Mining |
---|---|---|---|---|---|---|---|---|---|---|
DEM | 0.01 | |||||||||
Precipitation | 0.35 | 0.24 | ||||||||
LUCC | 0.05 | 0.27 | 0.02 | |||||||
Clay | 0.03 | 0.27 | 0.03 | 0.00 | ||||||
Sand | 0.05 | 0.30 | 0.04 | 0.02 | 0.01 | |||||
Silt | 0.06 | 0.30 | 0.05 | 0.02 | 0.03 | 0.01 | ||||
pH | 0.21 | 0.30 | 0.17 | 0.16 | 0.17 | 0.19 | 0.14 | |||
GA | 0.14 | 0.36 | 0.13 | 0.11 | 0.13 | 0.14 | 0.28 | 0.10 | ||
RT | 0.14 | 0.32 | 0.15 | 0.12 | 0.15 | 0.16 | 0.28 | 0.22 | 0.10 | |
Mining | 0.11 | 0.32 | 0.11 | 0.06 | 0.09 | 0.10 | 0.22 | 0.23 | 0.24 | 0.05 |
(X1 ∩ X2) | DEM | Precipitation | LUCC | Clay | Sand | Silt | pH | GA | RT | Mining |
---|---|---|---|---|---|---|---|---|---|---|
DEM | 0.03 | |||||||||
Precipitation | 0.43 | 0.37 | ||||||||
LUCC | 0.06 | 0.40 | 0.02 | |||||||
Clay | 0.06 | 0.38 | 0.08 | 0.02 | ||||||
Sand | 0.15 | 0.40 | 0.11 | 0.09 | 0.07 | |||||
Silt | 0.12 | 0.39 | 0.09 | 0.08 | 0.09 | 0.06 | ||||
pH | 0.32 | 0.41 | 0.27 | 0.27 | 0.30 | 0.31 | 0.24 | |||
GA | 0.19 | 0.43 | 0.18 | 0.16 | 0.22 | 0.21 | 0.35 | 0.13 | ||
RT | 0.17 | 0.43 | 0.14 | 0.15 | 0.21 | 0.19 | 0.33 | 0.27 | 0.10 | |
Mining | 0.09 | 0.44 | 0.06 | 0.06 | 0.11 | 0.11 | 0.32 | 0.19 | 0.17 | 0.02 |
(X1 ∩ X2) | DEM | Precipitation | LUCC | Clay | Sand | Silt | pH | GA | RT | Mining |
---|---|---|---|---|---|---|---|---|---|---|
DEM | 0.02 | |||||||||
Precipitation | 0.34 | 0.29 | ||||||||
LUCC | 0.07 | 0.35 | 0.01 | |||||||
Clay | 0.05 | 0.31 | 0.05 | 0.01 | ||||||
Sand | 0.09 | 0.32 | 0.07 | 0.05 | 0.05 | |||||
Silt | 0.08 | 0.32 | 0.07 | 0.03 | 0.07 | 0.03 | ||||
pH | 0.24 | 0.32 | 0.18 | 0.16 | 0.17 | 0.16 | 0.11 | |||
GA | 0.12 | 0.45 | 0.13 | 0.11 | 0.15 | 0.14 | 0.23 | 0.08 | ||
RT | 0.10 | 0.43 | 0.10 | 0.08 | 0.14 | 0.12 | 0.20 | 0.15 | 0.06 | |
Mining | 0.12 | 0.34 | 0.08 | 0.04 | 0.09 | 0.07 | 0.16 | 0.17 | 0.17 | 0.01 |
(X1 ∩ X2) | DEM | Precipitation | LUCC | Clay | Sand | Silt | pH | GA | RT | Mining |
---|---|---|---|---|---|---|---|---|---|---|
DEM | 0.03 | |||||||||
Precipitation | 0.49 | 0.43 | ||||||||
LUCC | 0.09 | 0.45 | 0.03 | |||||||
Clay | 0.05 | 0.44 | 0.04 | 0.00 | ||||||
Sand | 0.15 | 0.45 | 0.11 | 0.08 | 0.07 | |||||
Silt | 0.12 | 0.45 | 0.10 | 0.08 | 0.10 | 0.06 | ||||
pH | 0.31 | 0.46 | 0.26 | 0.25 | 0.27 | 0.29 | 0.23 | |||
GA | 0.17 | 0.49 | 0.14 | 0.11 | 0.21 | 0.21 | 0.33 | 0.08 | ||
RT | 0.21 | 0.51 | 0.18 | 0.16 | 0.22 | 0.21 | 0.35 | 0.28 | 0.12 | |
Mining | 0.17 | 0.54 | 0.17 | 0.13 | 0.24 | 0.19 | 0.36 | 0.27 | 0.28 | 0.10 |
(X1 ∩ X2) | DEM | Precipitation | LUCC | Clay | Sand | Silt | pH | GA | RT | Mining |
---|---|---|---|---|---|---|---|---|---|---|
DEM | 0.10 | |||||||||
Precipitation | 0.54 | 0.50 | ||||||||
LUCC | 0.14 | 0.52 | 0.07 | |||||||
Clay | 0.12 | 0.51 | 0.09 | 0.03 | ||||||
Sand | 0.26 | 0.56 | 0.19 | 0.16 | 0.11 | |||||
Silt | 0.21 | 0.55 | 0.17 | 0.12 | 0.16 | 0.09 | ||||
pH | 0.40 | 0.55 | 0.35 | 0.35 | 0.39 | 0.39 | 0.33 | |||
GA | 0.27 | 0.57 | 0.24 | 0.21 | 0.29 | 0.27 | 0.42 | 0.13 | ||
RT | 0.24 | 0.57 | 0.19 | 0.16 | 0.24 | 0.22 | 0.40 | 0.27 | 0.10 | |
Mining | 0.18 | 0.59 | 0.15 | 0.13 | 0.24 | 0.22 | 0.45 | 0.28 | 0.25 | 0.08 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wen, Q.; Yang, L.; Yu, J.; Wei, B.; Yin, S. Sources and Risk Characteristics of Heavy Metals in Plateau Soils Predicted by Geo-Detectors. Remote Sens. 2023, 15, 1588. https://doi.org/10.3390/rs15061588
Wen Q, Yang L, Yu J, Wei B, Yin S. Sources and Risk Characteristics of Heavy Metals in Plateau Soils Predicted by Geo-Detectors. Remote Sensing. 2023; 15(6):1588. https://doi.org/10.3390/rs15061588
Chicago/Turabian StyleWen, Qiqian, Linsheng Yang, Jiangping Yu, Binggan Wei, and Shuhui Yin. 2023. "Sources and Risk Characteristics of Heavy Metals in Plateau Soils Predicted by Geo-Detectors" Remote Sensing 15, no. 6: 1588. https://doi.org/10.3390/rs15061588
APA StyleWen, Q., Yang, L., Yu, J., Wei, B., & Yin, S. (2023). Sources and Risk Characteristics of Heavy Metals in Plateau Soils Predicted by Geo-Detectors. Remote Sensing, 15(6), 1588. https://doi.org/10.3390/rs15061588